Kyle Bunkers Undead Army Explainer

1 Problem Statement

From the fivethirtyeight Riddler May 17, 2019.

Consider living army vs an undead living army. They fight in duels only. If the living person wins,
they continue on to the next undead. If the undead wins, they take the living and convert them
into their army as one of the undead. Suppose each side has a 50% chance of winning any single
battle. This continues until the living or undead army is depleted to no members. What is the
chance the living army will be victorious? Which size will yield a 50% chance for either side to be
victorious?

We can show this with a contour plot more effectively for these larger army sizes. Let’s go up to
a million, say.

2 Answer

This problem can be completed in many ways. The brute force method of simulation quickly runs
into problems when the army sizes become large, but it will give you an answer. It will make it
hard (besides guess and check) to see which sizes give approximately equal odds.

The more elegant method is to form Pr,(a,d) as the probability that the winning army will win
when there are @ members in the alive army, and d members in the undead army. We know that
Pr,(1,1) = 0.5 because we were given this. Then the probability of the live army winnning is
simply the probability that they win the next match times Pr,(a,d — 1) or the probability they
lose the next match times Pr,(a — 1,d 4+ 1). This gives the recursion relation

Pr,(a,d) = p, Pro(a,d — 1) + (1 — p,) Pro(a — 1,d + 1) (1)

It is well-known that recursion is a great way of destroying your computer’s computational capabil-
ities, however. So actually solving the problem by using recursion is usually a bad idea. What you
can do instead, is recast the problem as an iterative problem. In our case, that means, start with
Pr,(1,1) = 0.5, We also happen to know that Pr,(a,0) =1 and Pr,(0,d) = 1. So we can create a
table where the columns correspond to the number of members in the undead army and the rows
correspond to the number of members in the alive army. After filling in this table, we note that
Pr,(a,d) comes from Pr,(a,d — 1), in the column to the left of Pr,(a,d) and from Pr,(a —1,d+1)
which is the row above and column to the right. This means we should fill in our table row by row
from the left column to the right columns so that we always have the values we need.

When we do this, we find

If we create a probability table for all armies possible between 0 and 1000 for both the alive and
undead armies, a different pattern emerges from the 2 to 3 times. We see that we need the alive
army member number to be approximately the square of the undead army member number (in
fact, we need a little more than the square). That is if there are 30 undead, we need a little more
than 900 alive to have a decent chance of victory!

We can see this in the figure 1, where we see that the probability of victory for the alive army
really dies off quickly. If we do a log-log plot, we can see the square root (the probability=0.5 line
has a slope of nearly 2 on our plot which means that a® ~ d is required to have even odds) quite
easily.

©XK. J. Bunkers 1of6 Explainer

Kyle Bunkers Undead Army Explainer

Alive Wins Probability

5000

4000

9
2 3000
=
1]
=
Q
= 2000
<
1000
10 20 30 40 50 80 70
Undead Members
Alive Wins Probability
3.5
3.0
]
o 2.5
Qo
5
= 2.0
Q@
2
< 15
=
(=1}
Qo
- 10
0.5
0.0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 175
logi1oUndead Members

Figure 1: We see the probability as a filled in contour plot for the regular and logarithm (base 10)
of army member numbers. What is interesting is that for small army sizes the alive army actually
has an even bigger advantage over the undead.

©K. J. Bunkers 2 0f 6 Explainer

© 00O U WN

10

11

12
13

Kyle Bunkers Undead Army Explainer

i—j 1 2 3 4 5 6 7 8 9 10
1 50.0 25.0 125 62 31 16 08 04 02 0.1
2 62.5 375 219 125 70 39 21 12 06 0.3
3 68.8 453 289 180 109 65 39 22 13 0.7
4 727 50.8 344 227 146 92 57 35 2.1 13
5 7.4 549 388 26.7 180 118 7.7 49 31 19
6 774 581 424 302 21.0 143 96 64 4.1 2.7
7 79.1 60.7 454 332 238 16.7 115 7.8 52 3.5
8 80.4 629 48.1 359 263 189 134 93 64 4.3
9 81.5 64.8 50.3 383 28.6 21.0 152 10.8 7.6 5.2
10 | 824 66.4 523 40.5 30.7 23.0 169 122 87 6.1

Table 1: This shows the probability of the alive army being victorious over the undead (all are
percentages). The column gives the number in the alive army and the row gives the number of
undead in the undead army. Note that only 18 entries have the alive army as more likely to win.
Inspecting the chart, you might think the alive army needs to be around 2 to 3 times larger to
have an equiprobable chance of victory with these (small) army sizes. Having so few entries is
misleading, however.

We can also think about answering the question of how much more skilled would the alive army
need to be to compensate for this. We can choose values and find that if Pr,(1,1) ~ 2/3 ~ 0.667,
then we suddenly have an even match for even numbers. Thus, if the alive soldiers are about twice
as skilled as the undead, they can get by with even odds when their numbers are equal. This
sort of makes sense since if they are twice as skilled, then losing one member to the other side is
equivalent in a match of equal skill to simply losing one from your own army. Figure 2 shows this
skilled alive army case. It also shows that for small armies, the skilled alive army is even more
effective, because the slope of equal probability is less than one for less than 10 undead.!

The code below lists a variety of ways of approching the problem. The best way is iteration, as all
it requires is a large amount of memory to contain the giant table of values for large army sizes.
In the code, I simply refer to the undead as the dead because it’s two letters less and that’s how
I initially programmed it. It’s more work to change than it is worth at this point since it doesn’t
make the problem any less clear to refer to the undead as the dead.

undead_army.py
#!/usr/bin/env python2
import numpy as np
from timeit import default_timer as timer
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib.ticker as ticker

Riddler May 17, 2019

One soldier steps forward from each line and the pair duels — half the time the living soldier
wins, half the time the dead soldier wins.
If the living soldier wins, he goes to the back of his army’s line, and the dead soldier is out

(the living army uses dragonglass weapons, so the dead soldier is dead forever this time).

If the dead soldier wins, he goes to the back of their army’s line, but this time the (formerly)
living soldier joins him there.

(Reanimation is instantaneous for this Night King.)

The battle continues until one army is entirely eliminated.

IThis would seem to suggest that if the skilled alive people only ever met groups of 1 to 10 undead at a time,
they would overestimate how well they would do against larger armies of the undead.

©K. J. Bunkers 3 of 6 Explainer

Kyle Bunkers Undead Army Explainer

Alive Wins Probability

logipAlive Members

1.0 1.5 2.0
logi1oUndead Members

Figure 2: We see the probability as a filled in contour plot for the regular and logarithm (base 10)
of army member numbers. Note how only at large equal numbers do we get equal probability. At
small equal army numbers the alive actually have a slight advantage.

What starting sizes of the armies, living and dead, give each army a 50—50 chance of winning?

#define variables

a is initial number of alive warriors
d is initial number of dead warriors
na=1000

nd=1000

p-a=0.667

#much slower Method 1, as expected
##Method 1, direct brute force
#start=timer ()
set random seed
#np .random . seed (1)
#trials=int (led)
#Awins=0
#for j in range(trials):
##form two armies of size NIA and N2D (alive and dead)
NlA=na
N2D=nd
while (N1A%*N2D>0):
aw=np .random .random (1)
if aw>=p_.a:
N2D=N2D—-1
else:
N1A=N1A—-1
N2D=N2D+1
print ("NA”)N1A)
print ("ND” ,N2D)
if N2D==0:
Awins=Awins+1

#end=timer ()

Ik

#print (” Alive wins”,”/” 7 trials” ,Awins,” /7 ,trials ,”=" float (Awins)/float (trials))
#print (” Method 1 time” ,(end—start))

©K. J. Bunkers 4 of 6 Explainer

114
115
116
117
118
119

Kyle Bunkers Undead Army Explainer

Method 2, brute force with numpy arrays
#start=timer ()

set random seed

#np.random.seed (1)

#trials=int (led)

##form two armies of size NIA and N2D (alive and dead)
#tones=np.ones(trials)

#N1A=naxtones

#N2D=ndx*tones

#while np.sum(N1AxN2D)!=0:
aw=np.random.random (trials)

maska=N1A>0

maskd=N2D>0

dwin=aw>(1—p-a)

awin=aw<=p_a

totmaskd=maska*maskd*dwin
totmaska=maska*maskd*awin

N2D [totmaska]=N2D[totmaska]—tones [totmaska]
N1A[totmaskd]=NIA[totmaskd]—tones [totmaskd]
N2D[totmaskd]=N2D[totmaskd]+tones [totmaskd]
#end=timer ()

#Awins=np .sum (N1A>N2D)

#print (*)

#print (” Alive wins”,”/” 7 trials” Awins,” /7 ,trials ,”=" float (Awins)/float (trials))
#print (” Method 2 time” ,(end—start))

FF IR FFHFEREFE

Method 3, brute force alternate numpy array method
Still slower than Method 2

#start=timer ()

set random seed

#np.random . seed (1)

#trials=int (led)

##form two armies of size NIA and N2D (alive and dead)
#tones=np.ones(trials)

#N1A=naxtones

#N2D=nd* tones

#while np.sum(N1AxN2D)!=0:

aw=np.random.random (trials)

totmaskd =(((NIA>0)&(N2D>0))&(aw>(1—p-a)))

totmaskd=np.logical_and (np.logical_and (N1A>0,N2D>0) ,aw>0.5)
totmaska=(((N1A>0)&(N2D>0))& (aw<=p_-a))

N2D[totmaska]=N2D[totmaska]—tones [totmaska]

NIA[totmaskd]=NIA[totmaskd]—tones [totmaskd]

N2D[totmaskd]=N2D[totmaskd]+tones [totmaskd]
#end=timer ()

#Awins=np . sum (N1A>N2D)

#print (77)

#print (” Alive wins”,”/” ,” trials” ,Awins,” /” ,trials ,”=" float (Awins)/float (trials))
#print (” Method 3 time” ,(end—start))

Method 4, using math, but incredibly inefficient recursive calls

use this is a recurrence relation

f(a,d)=p-axf(a,d—1)+(1—p-a)*f(a—1,d+1)

where p_a is probability of a winning (representing a alive people)

and (1—p-a)=p.d is probability of dead winning (reprsenting d dead people)
#def f(a,d,p-a=0.5):

if a==0:

return 0.
elif d==0:
return 1.
else:

return p-a*xf(a,d—1)+(1-p-a)*f(a—1,d+1)
#start=timer ()

Hprint (7)

#print (”Win percentage for living ,” ,f(na,nd))
#end=timer ()

#print (” Method 4 time” ,(end—start))

Method 5, using math, but iteration instead of recursion
use this is a recurrence relation

©K. J. Bunkers 5 of 6 Explainer

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

Kyle Bunkers Undead Army Explainer

f(a,d)=p.axf(a,d—1)+(1—p-a)=*f(a—1,d+1)

where p_a is probability of a winning (representing a alive people)

and (1—p.a)=p-d is probability of dead winning (reprsenting d dead people)
#

#

d

note idea is to make a large table and then fill in from the boundaries
ef f_it(a,d,p-a=0.5):
if a<0 or d<O:

return “a,d>=0_required”
p-d=l-p_a
wintable=np.zeros ((a+1,a+d+1))
wintable[:,0]=1.
wintable [0,:]=0.
for i in range(l,a+1):

for j in range(1l,at+d):

wintable [i,j]=p-a*xwintable[i,j—1]+p-d*wintable[i—1,j+1]

return wintable[1:,1:d+1]

©K. J. Bunkers 6 of 6

Explainer

	Problem Statement
	Answer

