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Chapter 1

Setting Up the DDE Model

We begin by laying the groundwork for delay differential equations and the epidemiological models
that I will use to investigate some possible influences on the spread of a disease. This work
should be viewed with extreme caution, as my code is not optimized, nor has it been benchmarked
extensively enough to ensure that its results should be free of error. In addition, the models I will
use for epidemiology are still fairly crude and so should not be taken to fully indicate what should
be done. Instead, they should be used for allowing us to formulate and ask questions that more
advanced models and experts should be able to answer or explain. That is, this helps us gain a
little intuition and should not be taken as any sort of final word.

1.1 Delay Differential Equations

Because many ideas in epidemiology require us to use information from past data, it makes sense
to consider the use of delay differential equations (DDEs). These are like ordinary or partial
differential equations, but include data from the past. An ODE is of the form

dX

dt
= F(X(t), t) (1.1.1)

where X(t) is a time-dependent vector array,1 F is vector array function of X(t) and t, and t is a
time-like variable.

A DDE involves a time delay (say τ), so an example would be

dX

dt
= F(X(t− τ), t− τ) (1.1.2)

although generalizations abound. For example let τi be a set of different delays. A more generic
DDE would then be of the form

dX

dt
= F(X(t− τ1, t− τ2, . . .), t− τ, t− τ1, t− τ2, . . .) (1.1.3)

with multiple different time delays allowed.

1By vector array, I mean a vector in the mathematical sense rather than the geometric “Euclidean” vector sense.
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6 SIR Models

Solving DDEs analytically is often impossible beyond a few time delays (if at all), and so numerical
methods present themselves as the easiest way to solve these problems. We can convert a DDE
into an ODE form and then apply normal ODE methods of solution. This arises from the fact
that F can be rewritten into a simple function of t and parameters τi as

F(X(t− τ1, t− τ2, . . .), t− τ1, t− τ2, . . .)→ G(t, τ1, τ2, . . .) (1.1.4)

because we know the form of X(t) for times in the past.2

The biggest difference between the ODE and DDE is that one must supply a history function
instead of an initial condition. This is so that the beginning of the integration can actually be
done. Typically, people use constant beginning history functions, and I will not deviate from that
here. In principle, one could use a history function based on the actual history of the epidemic, but
usually a constant history function gives results fairly similar to a more realistic history function
so long as the delay is not large and the constant history function is not vastly different from the
actual history.

1.2 SIR Models

I will use the SIR model as the basis for these investigations. This model uses a fixed population
of N people divided into three groups in its most basic form. They are S(usceptible), I(nfected),
R(emoved). The S represents those who are susceptible to getting the disease, the I are those that
are currently infected and can spread the disease and R are those that have had the disease but
can no longer infect others (so either dead or recovered). Then S + I + R = N is a constant for
this model, because this exhausts all possibilities for all of the people. I will normalize all of these
equations (by dividing by N) because there is no actual reason for including N . Then S̃ = S/N ,

Ĩ = I/N and R̃ = R/N are the proportion of the population in each category. I will remove the
tildes for convenience from now on. Then the new equations become

dS

dt
= −β(t)S(t)I(t) (1.2.1)

dI

dt
= β(t)S(t)I(t)− γ(t)I(t) (1.2.2)

dR

dt
= γ(t)I(t) (1.2.3)

d(S + I +R)

dt
= 0 (1.2.4)

where the last equation shows us that N (1 in our normalized case) remains invariant through
time.

Note that β−1 represents the typical time between contact of people in the S and I group and γ−1

represents the typical time that a person remains infectious (remains in the I group). Simplistic
models leave β and γ as constants. A somewhat useful figure of merit for an epidemic is β/γ,
or the reproduction number, which can be interpreted as the number of people typically infected
by an infectious person as it is the typical time a person remains infections over the typical time

2As an aside, one could consider ADEs or “advance” differential equations, which would require knowledge of
the future rather than the past, but physical systems rarely, if ever, exhibit this feature.
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Setting Up the DDE Model 7

between contacts (or the number of people a person contacts while being infectious). This number

at its initial value is typically denoted R0 = β(0)
γ(0)

= r0 and used to parameterize how infectious the

disease is.3 The reproduction number r = β(t)
γ(t)

can change dramatically as an epidemic progresses,
however, it is a useful theoretical concept. Because the progress of the epidemic depends sensitively
on r, one should approach with caution any model’s predictions that use r explicitly in modeling

This simple model gives us some useful predictions, but when using real data, fitting an exponential
will cause us problems if we put a lot of confidence in noisy data.

A more interesting model is the SIRDC model, which affords us a few more groups. The S and
I groups remain the same, but R changes to R(esolving and not infectious) into either D(ead)
or C(ompletely recovered and non-spreading).4 We introduce the parameters θ and δ where θ−1

represents a typical time a person is in the R(esolving) time (how long they are sick but not
infectious) and δ is the proportion of the R dying, or the death rate.

The equations then become

dS

dt
= −β(t)S(t)I(t) (1.2.5)

dI

dt
= β(t)S(t)I(t)− γ(t)I(t) (1.2.6)

dR

dt
= γ(t)I(t)− θ(t)R(t) (1.2.7)

dD

dt
= δθ(t)R(t) (1.2.8)

dC

dt
= (1− δ)θ(t)R(t) (1.2.9)

d(S + I +R +D + C)

dt
= 0 (1.2.10)

1.3 Combining Ideas

Now the previous SIR models are all ODEs, and we would like to introduce some delays. There
are many possibilities available for introducing delays with varying degrees of realism. One could
suppose that I actually depends on the number of susceptible S at an earlier time (τ before), for
example, in which case one could try

dS

dt
= −β(t)S(t)I(t) (1.3.1)

dI

dt
= β(t)S(t− τ)I(t)− γ(t)I(t) (1.3.2)

dR

dt
= γ(t)I(t)− θ(t)R(t) (1.3.3)

dD

dt
= δθ(t)R(t) (1.3.4)

dC

dt
= (1− δ)θ(t)R(t) (1.3.5)

3It is somewhat unfortunate since R is a group in the above, and so we must keep these variables separate and
not confused. I will use r0 to prevent any confusion from now on.

4If you prefer, ReCovered.
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8 Combining Ideas

Note that a core assumption of the model is now broken, however. S+ I +R+D+C is no longer
necessarily a constant. One way to avoid such a problem is to replace (1.3.1) with

dS

dt
= −β(t)S(t− τ)I(t) (1.3.6)

which is more consistent with the idea that I depends on the previous number of susceptible
people. For we are now saying that it is that group of “delayed” people interacting with the I
group that drives the dynamics.

This model is fine, but one can easily question whether it is really offering us any further insight
into the problem. First, it is questionable that this sort of delayed time dependence is physically
reasonable. Second, and perhaps more importantly, we have not changed β(t) which would appear
to be the most influenced by delays. For it is not the population of people who are delayed, but
their choices, which are based on information from the past. This because the β parameter is
related to how well people isolate from each other, among other things. The other parameters are
mostly determined by the disease itself, and so should not necessarily be delayed, and one might
guess should remain mostly constant barring health care advances or evolution of the disease.

The SIR model is extremely well-known in the epidemiology literature. The SIRDC model comes
from Jones and Villaverde via John Cochrane (aka, the Grumpy Economist), which feature good
discussions of the problem and insights into what we can glean from these models.

I will use a RK4 (Runge-Kutta, 4th order) integrator for the DDEs. A description of the algorithm
is exactly the same as for ODEs, except that the right hand sides include delayed functions. This
only requires a little more machinery (interpolation of our solution function into the past) to
correctly program.
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Chapter 2

SIRDC DDEs

We will here only consider changing β(t) into β(t− τ), and so will use the equations

dS

dt
= −β(t− τ)S(t)I(t) (2.0.1)

dI

dt
= β(t− τ)S(t)I(t)− γ(t)I(t) (2.0.2)

dR

dt
= γ(t)I(t)− θ(t)R(t) (2.0.3)

dD

dt
= δθ(t)R(t) (2.0.4)

dC

dt
= (1− δ)θ(t)R(t) (2.0.5)

We would like to set the values in rough accordance with the covid-19 epidemic, which has been
given rough values of γ = 0.2 days-1, θ = 0.1 days-1 and r0 = 5 which implies that β(0) = 1 days-1.
This corresponds to a time between contacts of 1/β(0)−1 or 1 day, an infectious period of 1/γ or
5 days, and a time in the hospital of 1/θ or 10 days. The death rate is roughly given by δ = 0.008
or 0.8%.1

He proposes a mechanism by which as more deaths occur people change their behavior, making β
smaller (that is, making times between contact longer) such that one goes to r → 0.5 which means
β → 0.1. His proposal is that the behavior matches one of the following

βI(t) = β0 exp(−αII(t)) (2.0.6)

βD(t) = β0 exp(−αD
dD

dt
(t)) (2.0.7)

One then chooses αX such that when X(t) (equal to I(t) or dD
dt

) is a certain number, we approach
the desired r. For example, we could choose αI = 5× 10−3 and αD = 5× 10−5 day-1 so that

0.1 = β0 exp(−αII(t)) = exp(−αI [5× 10−3]) (2.0.8)

αI = − ln(0.1)

5× 10−3
≈ 460.5 (2.0.9)

1All the numbers are taken from Cochrane.
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and so

0.1 = β0 exp(−δD
dD

dt
) = exp(−αD[5× 10−5 day-1]) (2.0.10)

αD = − ln(0.1)

5× 10−5 day-1 ≈ 4.6× 104 day (2.0.11)

Convergence of this model should require a small enough time step, but not drastically smaller
than a day. My testing (not presented) has shown that a time step of a 0.1 day is sufficient for
convergence, but that 1 day is sometimes not converged.

Let’s start our calculations by looking at ODEs, or without any time delays. We use the numbers
provided above and find that for an initial infected proportion of 10−6. We find the results are
given in Figure 2.1.

Figure 2.1: This shows the solutions for I(t) and dD
dt

for αI dependent on the current infection
population with αI ≈ 460.5 corresponding to r = 0.5 for I = 5× 103/106, β0 = 1 day-1, γ =
0.2 day-1, r0 = 5, θ = 0.1 day-1, and the figure uses dt = 0.1 day.

We can then do a calculation based on the death rate which is shown in Figure 2.2 with an initial
sick proportion of 1× 10−6 again.
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SIRDC DDEs 11

Figure 2.2: The solutions for I(t) and dD
dt

are shown for αD dependent on the current death rate
with αD ≈ 46 050 day corresponding to r = 0.5 for dD

dt
= 50/106, β0 = 1 day-1, γ = 0.2 day-1,

r0 = 5, θ = 0.1 day-1, and the figure uses dt = 0.1 day.

We can now think about taking delays. We will use the 0.1 day as our time difference, which as I
previously stated, I have checked to be converged. Clearly, if we use a large time delay, then it is
as if β is constant for its early evolution and so we will see barely any change from doing a regular
ODE solution with a constant β. It will eventually show some oscillations later on, but after it
has settled down to a near steady state value. We can see this by looking at I(t) for various τ .
These are shown in Figure 2.3 and 2.4. The peak death rate when monitoring the infected actually
“only” grows by a factor of about seven. In addition, a delay actually leads to less oscillations in
the long run in the death rate, but the diminishing oscillations hardly make up for the increased
number of deaths.
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12

Figure 2.3: This shows the solution for I(t) with αI dependent on the infected population with
αI ≈ 460.5 corresponding to r = 0.5 for I = 5000/106, β0 = 1 day-1, γ = 0.2 day-1, r0 = 5,
θ = 0.1 day-1 with a various delays τ for β(t − τ) given in units of days. We see that the longer
the delay, the more people get infected.
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SIRDC DDEs 13

Figure 2.4: These figures show the solutions for dD
dt

and D(t) for αI dependent on the infected
population with αI ≈ 460.5 corresponding to r = 0.5 for I(t) = 5000/106, β0 = 1 day-1, γ =
0.2 day-1, r0 = 5, θ = 0.1 day-1 with a various delays τ for β(t− τ) given in units of days. The left
figure shows the death rate and the right figure the cumulative total of deaths. The death rate
simply gets worse as we include delays. The oscillations seem to die down a bit in the long run,
but at the cost of a far worse peak.
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Now we can consider a delay based on the death rate of previous days. Longer delays seem unlikely
(people will know the rate fairly accurately within the last couple of days, I would think), but it is
worth seeing the behavior regardless. We can see this by looking at I(t) for various τ . These are
shown in Figure and . The peak death rate when monitoring the infected actually “only” grows
by a factor of about seven. In addition, a delay actually leads to less oscillations in the long run
in the death rate, but the diminishing oscillations hardly make up for the increased number of
deaths.

Figure 2.5: This shows the solution for I(t) when αD is dependent on the current death rate with
αD ≈ 46 050 day corresponding to r = 0.5 for dD

dt
= 50/106, β0 = 1 day-1, γ = 0.2 day-1, r0 = 5,

θ = 0.1 day-1 with a various delays τ for β(t− τ) given in units of days.
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SIRDC DDEs 15

Figure 2.6: These show the solution for dD
dt

and D(t) when αD is dependent on the current death
rate with αD ≈ 46 050 day corresponding to r = 0.5 for dD

dt
= 50/106, β0 = 1 day-1, γ = 0.2 day-1,

r0 = 5, θ = 0.1 day-1 with a various delays τ for β(t− τ) given in units of days. The figure on the
left shows the death rate while the figure on the right shows the cumulative dead. We see that
each delay leads to more deaths happening more quickly.

2.1 Random Additions

There are two other concerns I initially had with this model. One is that people are more likely
to underestimate r (in a worst case scenario) and so we might expect some random noise above
the actual value if people are too willing to underestimate the infectiousness of the disease. Using
random number generation to add some number between 0 and 1 onto β(t− τ) will allow us to see
if random shifts will induce terrible shifts in the numbers. First let’s look at what happens when
we use the infectious population to determine β. We see in Figures 2.7 and 2.8 that adding this
random factor is essentially the same as increasing R0 and so we simply see the result asymptote
to an r > 1 value, which modestly raises the number of infected and dead.
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16 Random Additions

Figure 2.7: This shows the solution for I(t) when αI is dependent on the infected population
with αI ≈ 460.5 corresponding to r = 0.5 for I = 5000/106, β0 = 1 day-1, γ = 0.2 day-1, r0 = 5,
θ = 0.1 day-1 with a various delays τ for β(t − τ) given in units of days and a random number
added to β at each time step between 0 and 1. The results are fairly similar to the cases with no
randomly larger β.
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SIRDC DDEs 17

Figure 2.8: Both dD
dt

and D(t) are shown for αI dependent on the infected population with αI ≈
460.5 corresponding to r = 0.5 for I = 5000/106, β0 = 1 day-1, γ = 0.2 day-1, r0 = 5, θ = 0.1 day-1

with a various delays τ for β(t − τ) given in units of days and a random number added to β at
each time step between 0 and 1. The results are fairly similar to the cases with no randomly larger
β.
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18 Random Additions

We can perform the same random addition of a number between 0 and 1 to the β value now using
the death rate sensitive β. This yields Figures 2.9 and 2.10 which again simply shows a modest
increase due to us artificially increasing the r with the random number. This seems to support
that so long as people are even somewhat sensitive to the reproduction number of the disease,
when r is near 1 there is not too much more death.

Figure 2.9: The solution of I(t) is shown for αD dependent on the current death rate with αD ≈
46 050 day corresponding to r = 0.5 for dD

dt
= 50/106, β0 = 1 day-1, γ = 0.2 day-1, r0 = 5,

θ = 0.1 day-1 with a various delays τ for β(t − τ) given in units of days and a random number
added to β at each time step between 0 and 1. Again, the results are not substantially different
than the model without randomness.
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SIRDC DDEs 19

Figure 2.10: This shows the solution for αD dependent on the current death rate with αD ≈
46 050 day corresponding to r = 0.5 for dD

dt
= 50/106, β0 = 1 day-1, γ = 0.2 day-1, r0 = 5,

θ = 0.1 day-1 with a various delays τ for β(t − τ) given in units of days and a random number
added to β at each time step between 0 and 1. The results are not highly impacted by the artificial
increasing of β, other than by increasing the effective r.

2.2 Response Functions

Finally, and what I would worry most about is the response function. We have been assuming

β = β0 exp (−αXX(t)) (2.2.1)

for X(t) = I(t) and X(t) = dD
dt

. This means people are adjusting their behavior exponentially to
the changes, which might be unrealistic. I am not sure if the literature has a good model for this,
but it is definitely worth exploring some other functional dependences. Let’s try

β = max

(
β0(1− CX [X(t)−X0]), 0

)
(2.2.2)

β = max

(
β0(1− EX [X(t)−X0]

3), 0

)
(2.2.3)

β = β0[AX +BX tanh(FX [X(t)−X0])] (2.2.4)

The first two are testing more gradual responses while the last tanh function tests a rapid shift in
response only near the position.

Let’s set it so that once again we want β∗ = 0.1 when I = 5000/106 and dD
dt

= 50 day-1/106 so
simply use Xs for this value. We also want β to be β0 when X(t) = 0. This means X0 = 0 for all
of them (we’ll treat the tanh separately, however) so that initially we get β = β0.

β = max

(
β0(1 + CXXs), β

∗
)

(2.2.5)

β = max

(
β0(1 + EX [Xs]

3), β∗
)

(2.2.6)
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20 Response Functions

or

CX =

(
β

β0
− 1

)
1

Xs

(2.2.7)

EX =

(
β

β0
− 1

)
1

X3
s

(2.2.8)

The tanh takes a little more thought. It makes more sense to say that β0 is the value at one end
of the tanh and that there is a cutoff point for some X value, beyond which we rapidly change
behavior towards a new β value, say β∗. We can set X0 so that at X0 = Xs in previous values we
get the halfway point. We also want BX = β∗−β0

2
. Then AX = 1 +BX so that we retrieve β0 when

X(t)� −1. Thus

β = β0

[
1 +

β∗ − β0
2

(1 + tanh(FX [X(t)−Xs]))

]
(2.2.9)

Now we want X(t) = 0 to yield tanh(·) < −0.99 which implies that FX > tanh−1(0.99)/Xs ≈ 2.65
Xs

.
So FI > 530 and FD > 53000.

I will use β∗ = 0.1 for all the rest of the calculations.

2.2.1 Linear

Linear is surprisingly fairly similar to the exponential behavior when β depends on the infected
population I(t). See Figures 2.11 and 2.12. The shape of the number of infected is perhaps a bit
narrower, but the overall trends are pretty similar to the exponential model.
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SIRDC DDEs 21

Figure 2.11: This shows the solution for I(t) when using the linear model with CI dependent on
the infected population and CI ≈ −180 corresponding to r = 0.5 for I = 5000/106, β0 = 1 day-1,
γ = 0.2 day-1, r0 = 5, θ = 0.1 day-1 with a various delays τ for β(t− τ) given in units of days. We
see a linear response is fairly similar to our previous exponential response model.
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22 Response Functions

Figure 2.12: Both dD
dt

and D(t) are shown for CI dependent on the infected population with
CI ≈ −180 corresponding to r = 0.5 for I = 5000/106, β0 = 1 day-1, γ = 0.2 day-1, r0 = 5,
θ = 0.1 day-1 with a various delays τ for β(t − τ) given in units of days. The figure on the
right simply shows the number of dead. We see that each delay leads to more dead total until
the epidemic slows down. We see a linear response is fairly similar to our previous exponential
response model.
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SIRDC DDEs 23

We can investigate a linear response on the death rate dD
dt

and find Figures 2.14 2.14 with similar
interpretations to our other linear cases. However, we do see significantly more deaths at small
delays with the linear response to the death rate, just as we did for the exponential cases.

Figure 2.13: This shows the solution for I(t) for CD dependent on the death rate with CD ≈
−18 000 corresponding to r = 0.5 for I = 5000/106, β0 = 1 day-1, γ = 0.2 day-1, r0 = 5, θ =
0.1 day-1 with a various delays τ for β(t − τ) given in units of days. We see a linear response is
fairly similar to our previous exponential response model.
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24 Response Functions

Figure 2.14: This shows the solutions for dD
dt

and D(t) when CD is dependent on the infected
population with CD ≈ −18 000 corresponding to r = 0.5 for I = 5000/106, β0 = 1 day-1, γ =
0.2 day-1, r0 = 5, θ = 0.1 day-1 with a various delays τ for β(t− τ) given in units of days. We see
a linear response is fairly similar to our previous exponential response model.

2.2.2 Cubic

The cubic cases with β dependent on I(t) are shown in Figures 2.15 and 2.16. This is fairly similar
to the cubic cases, but with an even more peaked looking shape.
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SIRDC DDEs 25

Figure 2.15: This shows the solution for I(t) when EI is dependent on the infected population
with EI ≈ −−7.2× 1012 corresponding to r = 0.5 for I = 50/106, β0 = 1 day-1, γ = 0.2 day-1,
r0 = 5, θ = 0.1 day-1 with a various delays τ for β(t− τ) given in units of days.
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26 Response Functions

Figure 2.16: Both dD
dt

and D(t) are shown for EI dependent on the infected population with
EI ≈ −−7.2× 106 corresponding to r = 0.5 for I = 5000/106, β0 = 1 day-1, γ = 0.2 day-1, r0 = 5,
θ = 0.1 day-1 with a various delays τ for β(t − τ) given in units of days. The figure on the right
simply shows the number of dead. We see that each delay leads to more dead total until the
epidemic slows down. We see a linear response is fairly similar to our previous response model.

DRAFT:DDE Epi.
May 7, 2020

c©K. J. Bunkers



SIRDC DDEs 27

The cubic cases with β dependent on dD
dt

are shown in Figures 2.17 and 2.18. Other than looking
a bit more narrow in I(t) the general trends are similar to those for the linear and exponential
cases.

Figure 2.17: This shows the solution I(t) for ED dependent on the death rate with ED ≈
−7.2× 1012 corresponding to r = 0.5 for dD

dt
= 50/106, β0 = 1 day-1, γ = 0.2 day-1, r0 = 5,

θ = 0.1 day-1 with a various delays τ for β(t− τ) given in units of days.

DRAFT:DDE Epi.
May 7, 2020

c©K. J. Bunkers



28 Response Functions

Figure 2.18: These show the solutions for dD
dt

and D(t) when ED is dependent on the death rate
with ED ≈ −7.2× 1012 corresponding to r = 0.5 for I = 5000/106, β0 = 1 day-1, γ = 0.2 day-1,
r0 = 5, θ = 0.1 day-1 with a various delays τ for β(t− τ) given in units of days.

2.2.3 Tanh

Finally, we look at the tanh case. This shows the same characteristics as all other response func-
tions. This suggests that so long as the response function is fairly reasonable, then the conclusion
that people changing their behavior will lead to a lessening of deaths and possibly an oscillation
in the infection or death rate.
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Figure 2.19: This shows the solution for I(t) dependent on the infected population with FI ≈ 530
corresponding to r ≈ 0.5 for I = 5000/106, β0 = 1 day-1, γ = 0.2 day-1, r0 = 5, θ = 0.1 day-1 with
a various delays τ for β(t− τ) given in units of days. We see a linear response is fairly similar to
our previous response model.
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Figure 2.20: The solutions dD
dt

and D(t) dependent on the infected population with FI ≈ 530
corresponding to r ≈ 0.5 for I = 5000/106, β0 = 1 day-1, γ = 0.2 day-1, r0 = 5, θ = 0.1 day-1 with
a various delays τ for β(t− τ) given in units of days.
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The tanh cases with β dependent on dD
dt

are shown in Figures 2.21 and 2.22.

Figure 2.21: This shows the solution for I(t) dependent on the death rate with FD ≈ 53 000
corresponding to r ≈ 0.5 for I = 50/106, β0 = 1 day-1, γ = 0.2 day-1, r0 = 5, θ = 0.1 day-1 with a
various delays τ for β(t− τ) given in units of days.
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Figure 2.22: The solutions dDt and D(t) dependent on the death rate with FD ≈ 53 000 corre-
sponding to r ≈ 0.5 for I = 50/106, β0 = 1 day-1, γ = 0.2 day-1, r0 = 5, θ = 0.1 day-1 with various
delays τ for β(t− τ) given in units of days.

2.2.4 Narrowness of Tanh

Let’s consider the most oscillatory case τ = 5 day for the I(t) dependent β case. We show the tanh
functions themselves in Figure 2.26 for various F = FI values. We then scan the narrowing factor
FI from 530 to 5300 to see how this affects the epidemic breakout. We see the results in Figures
2.24 and 2.25.
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Figure 2.23: These show the tanh profiles for cases with β dependent on I(t) and with τ = 5 day.
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34 Response Functions

Figure 2.24: The solution I(t) dependent on the infected population with F = FI varied corre-
sponding to r ≈ 0.5 for I = 5000/106, β0 = 1 day-1, γ = 0.2 day-1, r0 = 5, θ = 0.1 day-1 with
τ = 5 day. We see that the narrower the tanh (the greater F ), the more infected in each cycle.
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Figure 2.25: This shows the solutions for dD
dt

and D(t) dependent on the infected population with
F = FI varying but corresponding to r ≈ 0.5 for I = 5000/106, β0 = 1 day-1, γ = 0.2 day-1, r0 = 5,
θ = 0.1 day-1 for τ = 5 day. So we find that the narrower the tanh (the greater F ), the more deaths
there are though not substantially different.
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Let’s consider the most oscillatory case we have previously looked at, τ = 1 day for the dD
dt

depen-
dent β case. We then scan the narrowing factor FD from 53 000 to 530 000 to see how this affects
the epidemic breakout. We can see the profiles in Figure 2.26. We see the results in Figures 2.27
and 2.28.

Figure 2.26: These show the tanh profiles using dD
dt

for τ = 1 day.
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Figure 2.27: This shows I(t) dependent on the death rate with F = FD varied corresponding to
r ≈ 0.5 for dD

dt
= 50/106, β0 = 1 day-1, γ = 0.2 day-1, r0 = 5, θ = 0.1 day-1 with τ = 1 day. Again,

we find narrower tanh (greater F ) corresponds to more infected.
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Figure 2.28: The solutions dD
dt

and D(t) dependent on the infected population with F = FD varied
corresponding to r ≈ 0.5 for dD

dt
= 50/106, β0 = 1 day-1, γ = 0.2 day-1, r0 = 5, θ = 0.1 day-1 with

τ = 1 day are shown. Once again, narrower tanh (greater F ) indicates more overall deaths.
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2.2.5 Cross Comparison

Let’s now compare the different response functions for I with time delay τ = 5 day. We find that
the less gradual the response function (for similar parameters), the smaller the death rate and so
number of deaths.

We can start by looking at what responses I have allowed. These are shown in Figure 2.29. The
solutions are shown in Figures 2.30 and 2.31.

Figure 2.29: These show the tanh profiles using I(t) for τ = 5 day for various response functions.
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Figure 2.30: This shows the solution I(t) dependent on the infected population for all the various
response models corresponding to r = 0.5 for I = 5000/106, β0 = 1 day-1, γ = 0.2 day-1, r0 = 5, θ =
0.1 day-1 with τ = 5 day and the tanh max corresponding to F = 5300 and tanh min corresponding
to F = 350. We see the more gradual the response function, the fewer infected and dead.
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Figure 2.31: This shows the solutions for dD
dt

and D(t) dependent on the infected population for all
the various response models corresponding to r = 0.5 for I = 5000/106, β0 = 1 day-1, γ = 0.2 day-1,
r0 = 5, θ = 0.1 day-1 with τ = 5 day and the tanh max corresponding to F = 5300 and tanh min
corresponding to F = 350. We see the more gradual the response function, the fewer infected and
dead.
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Similar conclusions for when based on death rate. The response functions are shown in Figure
2.32. The solutions are shown in Figures 2.33 and 2.34.

Figure 2.32: These show the tanh profiles using dD
dt

for τ = 1 day for various response functions.
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Figure 2.33: This shows the solution I(t) dependent on the death rate for all the various response
models corresponding to r = 0.5 for dD

dt
= 50/106, β0 = 1 day-1, γ = 0.2 day-1, r0 = 5, θ = 0.1 day-1

with τ = 1 day and the tanh max corresponding to F = 530 000 and tanh min corresponding to
F = 35 000.
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Figure 2.34: This shows the solutions for dD
dt

and D(t) dependent on the death rate for all the
various response models corresponding to r = 0.5 for dD

dt
= 50/106, β0 = 1 day-1, γ = 0.2 day-1,

r0 = 5, θ = 0.1 day-1 with τ = 1 day and the tanh max corresponding to F = 530 000 and tanh min
corresponding to F = 35 000. We see the more gradual the response function, the fewer infected
and dead.
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Chapter 3

Conclusions

The main takeaways from these investigations is that the response function can make a difference
with the more sensitive people are to a specific death rate leading to fewer deaths. If it is essentially
a switch, then a great deal more deaths will occur. We also see that the larger the delay in the
information, the more people get infected and die. For behavior based on the perceived number
of infected, it is important that the delay not be much beyond 5 day or else there is a much larger
number of deaths, before hitting an equilibrium. For behavior based on the death rate, every day
of delay in response rapidly increases the number that die. Thus, if one is using the death rate,
the more up-to-date the information, the better the response in this model.

There are a number of limitations. The assumption that everyone in a population of S, I, R,D,C
act exactly the same is completely unrealistic. It is known that super spreaders may be the largest
problem for disease spread. One can argue with whether the response functions chosen are the
best to compare against, but that can be easily fixed by implementing any response function
suggested. Finally, using continuous variables for a discrete problem will create some errors,
but probably won’t strongly affect the model so long as the population being modeled has over
hundred thousand people or so. In addition, the code used to model everything has not been
extensively benchmarked. It is converging with expected characteristics, but there could still be a
bug somewhere in the code.

I will emphasize again that this is simply a toy model that helps us understand how possible
different behavioral responses could affect the spread of a disease. It is a very simplistic model
and so any difficult to understand results should be tested against more advanced models.
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Chapter 4

Python Code

SIRDC DDE Solver
1 #/bin /env python3
2
3 import numpy as np
4 import s c ipy . s p e c i a l as scsp
5 import matp lo t l i b . pyplot as p l t
6 import s c ipy . i n t e r p o l a t e as s c i n
7 import numpy . random as npr
8
9 # se t seed to be r ep roduc ib l e

10 npr . seed (1 )
11 ############################################################
12 # l i n i n t e r p func t i on : l i n e a r i n t e r p o l a t i o n
13 # input :
14 # y : ( two r e a l s ) pa i r o f va lue s o f s o l u t i o n
15 # ( to be i n t e r p o l a t ed )
16 # t : ( two r e a l s ) t imes f o r both y va lues
17 # tdes : ( r e a l ) time to be i n t e r p o l a t ed to
18 # output : ( r e a l ) i n t e r p o l a t e d value
19 ############################################################
20 de f l i n i n t e r p (y , t , tdes ) :
21 y0=y [ 0 ]
22 y1=y [ 1 ]
23 t0=t [ 0 ]
24 t1=t [ 1 ]
25 re turn ( y0 ∗( t1−tdes )+y1 ∗( tdes−t0 ) ) /( t1−t0 )
26
27 ############################################################
28 # cub i c s p l i n e i n t e r p func t i on : s p l i n e i n t e r p o l a t i o n
29 # input :
30 # y : ( two r e a l s ) pa i r o f va lue s o f s o l u t i o n
31 # ( to be i n t e r p o l a t ed )
32 # t : ( two r e a l s ) t imes f o r both y va lues
33 # k1 : ( r e a l ) d e r i v a t i v e o f y [ 0 ]
34 # k2 : ( r e a l ) d e r i v a t i v e o f y [ 1 ]
35 # tdes : ( r e a l ) time to be i n t e r p o l a t ed to
36 # output : ( r e a l ) i n t e r p o l a t e d value
37 ############################################################
38 de f c u b i c s p l i n e i n t e r p (y , t , k1 , k2 , tdes ) :
39 y0=y [ 0 ]
40 y1=y [ 1 ]
41 t0=t [ 0 ]
42 t1=t [ 1 ]
43 s=(tdes−t0 ) /( t1−t0 )
44 a=k1 ∗( t1−t0 )−(y1−y0 )
45 b=−k1 ∗( t1−t0 )+(y1−y0 )
46 re turn (1− s ) ∗y0+s ∗y1+s∗(1− s ) ∗( a∗(1− s )+b∗ s )
47
48 ############################################################
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49 # herm interp func t i on : g ene ra l hermite i n t e r p o l a t i o n
50 # input :
51 # c : ( l i s t ) l i s t o f po in t s where we want
52 # in t e r po l a t ed va lue s
53 # t : ( l i s t ) l i s t o f data po in t s we have
54 # y : ( l i s t ) d e r i v a t i v e o f y [ 0 ] ( same s i z e as t )
55 # yp : ( l i s t ) d e r i v a t i v e o f y [ 1 ] ( same s i z e as t )
56 # output : ( l i s t ) i n t e r p o l a t ed va lue s
57 ############################################################
58 de f herm interp ( c , t , y , yp ) :
59 n=len ( t ) # number o f i n t e r p o l a t i n g po in t s
60 k=len ( c ) # number o f d i s c r e t e data po in t s
61 l i=np . ones ( ( n , k ) ) # Lagrange ba s i s po lynomia l s
62 a=np . z e r o s ( ( n , k ) ) # ba s i s po lynomia l s alpha (x )
63 b=np . z e r o s ( ( n , k ) ) # ba s i s po lynomia l s beta (x )
64 H=np . z e r o s ( ( 1 , k ) ) # Hermite i n t e r p o l a t i o n polynomial H(x )
65 f o r i in range (n) :
66 d l =0; # de r i v a t i v e o f Lagrange ba s i s
67 f o r j in range (n) :
68 i f j != i :
69 d l=dl+1/( t [ i ]− t [ j ] )
70 l i [ i , : ]= l i [ i , : ] ∗ ( c−t [ j ] ) /( t [ i ]− t [ j ] ) ;
71 l 2=l i [ i , : ] ∗ ∗ 2
72 b [ i , : ] = ( c−t [ i ] ) ∗ l 2 # ba s i s polynomial alpha (x )
73 a [ i , : ]=(1 . −2∗ ( c−t [ i ] ) ∗ dl ) ∗ l 2 # ba s i s polynomial beta (x )
74 H=H+a [ i , : ] ∗ y [ i ]+b [ i , : ] ∗ yp [ i ] # Hermite polynomial H(x )
75 re turn H
76
77 ############################################################
78 # rhs func t i on : r i g h t hand s i d e o f equat ion
79 # input :
80 # t : time
81 # c o e f f s : array o f c o e f f i c i e n t s f o r DDE
82 # beta0=c o e f f s [ 0 ]
83 # gamma=c o e f f s [ 1 ]
84 # theta=c o e f f s [ 2 ]
85 # de l t a=c o e f f s [ 3 ]
86 # S : non delayed So lu t i on s l i s t
87 # Sd : de layed So lu t i on s l i s t
88 # ad=0 : c o e f f i c i e n t f o r va r i ous beta models
89 # i n f e c t e d=True : determines i f beta depends on
90 # i n f e c t e d populat ion or death ra t e
91 # randomR0=None : whether to add random no i s e to the
92 # model
93 # spread=0 : c o e f f i c i e n t f o r tanh beta model
94 # t r a t e=0 : c o e f f i c i e n t f o r tanh beta model
95 # beta model : determines how beta i s determined
96 # see RK4 ddesolve comments
97 # be ta s t a r =0.1 : c o e f f i c i e n t f o r beta model
98 ############################################################
99 de f rhs ( t , c o e f f s , S , Sd , ad=0, i n f e c t e d=True , randomR0=None , spread=0, t r a t e =0, beta model=None , be ta s t a r

=0.1) :
100 # SIRDC equat ions
101 # dS/dt=−beta ∗ I ∗S/N
102 # dI/dt=beta ∗ I ∗S/N−gamma∗ I
103 # dR/dt=gamma∗ I−theta ∗R
104 # dD/dt=de l t a ∗ theta ∗R
105 # dC/dt=(1−de l t a ) ∗ theta ∗R
106 # S i s number su s c ep t i b l e ,
107 # I i s number i n f e c t e d
108 # R i s number r e s o l v i n g / i n f e c t i o u s
109 # D i s number o f dead
110 # C i s number o f r ecovered and immune
111 # N i s sum of the se
112 # I normal ize a l l by N, which i s constant
113 # R0=beta /gamma i s ba s i c r eproduct ion number
114 # my beta∗∗−1 i s the t yp i c a l time per contact
115 # my gamma∗∗−1 i s the t yp i c a l time i n f e t i o u s
116 # my theta∗∗−1 i s the t yp i c a l time be f o r e death or non−i n f e c t i o u s
117 # my de l t a i s the death ra t e
118 S , I ,R,D,C=S
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119 Ss , Is , Rs , Ds , Cs=Sd
120 beta0=c o e f f s [ 0 ]
121 gamma=c o e f f s [ 1 ]
122 theta=c o e f f s [ 2 ]
123 de l t a=c o e f f s [ 3 ]
124 # f o r i n f e c t i o n s use i n f e c t e d
125 # f o r death ra t e use DE to get death ra t e
126 i f i n f e c t e d : der=I s
127 e l s e : der=de l t a ∗ theta ∗Rs
128 # balanced around R0
129 # i f randomR0==None or randomR0==0: randfac=0
130 # e l s e : randfac=max(2∗ ( npr . random ( ) −0.5) ∗( randomR0) ,−1)
131 # unbalanced around R0
132 i f randomR0==None or randomR0==0: randfac=0
133 e l s e : randfac=npr . random ( ) ∗randomR0
134 i f beta model==None :
135 beta=beta0
136 e l i f beta model==’ exponent i a l ’ : # s e t new beta , exponent i a l
137 beta=(1+randfac ) ∗np . exp (np . l og ( beta0 )−ad∗der )
138 e l i f beta model==’ l i n e a r ’ : # l i n e a r
139 beta=max( beta0∗(1+ad∗der ) , b e ta s t a r )
140 e l i f beta model==’ cubic ’ :# cubic
141 beta=max( beta0∗(1+ad∗der ∗∗3) , b e ta s t a r )
142 e l i f beta model==’ tanh ’ : # tanh
143 beta=beta0∗(1+ad∗(1+np . tanh ( spread ∗( der−t r a t e ) ) ) )
144 e l s e : # de f au l t to None model
145 beta=beta0
146 # pr in t ( f ’ spread={spread : . 2 e } , beta={beta } , der={der : . 2 e } ’ )
147 c1=−beta ∗ I ∗S
148 c2=beta ∗ I ∗S−gamma∗ I
149 c3=gamma∗ I−theta ∗R
150 c4=de l t a ∗ theta ∗R
151 c5=(1.− de l t a ) ∗ theta ∗R
152 # c1=np .maximum( c1 , 0 )
153 # c2=np .maximum( c2 , 0 )
154 # c3=np .maximum( c3 , 0 )
155 re turn np . array ( [ c1 , c2 , c3 , c4 , c5 ] )
156
157 #Use RK4 to s o l v e
158 ###############################################################################
159 # RK4 ddesolve func t i on : Runge−Kutta 4 th order DDE so l v e r
160 # input :
161 # h i s t f un c : (numpy array ) the ” i n i t i a l c ond i t i on ” f o r a DDE
162 # delay : ( r e a l ) the de lay in time un i t s
163 # stpde lay : ( i n t e g e r ) the de lay in number o f p o s i t i o n s in an array
164 # # Thus dt=delay / s tpde lay always f o r t h i s
165 # tmin : ( r e a l ) what time to s t a r t the c a l c u l a t i o n from
166 # tmax : ( r e a l ) when to end the c a l c u l a t i o n
167 # c o e f f s : ( l i s t ) l i s t o f nece s sa ry c o e f f i c i e n t s f o r rhs
168 # delayon=True : ( boolean ) i f True a DDE, i f False , changes to
169 # an ODE f o r delayon=False , dt=delay / s tpde lay and the
170 # h i s t f un c should be a numpy array with the i n i t i a l
171 # cond i t i on s repeated twice ( so i f i n i t i a l c ond i t i on i s y0 ,
172 # then numpy . array ( [ y0 , y0 ] ) should be the h i s t f un c input )
173 # i r a t e=0 : ( r e a l ) t h i s s e t s where the s e n s i t i v i t y i s f o r the
174 # beta model ( so behavior based o f f or sw i t che s
175 # when near t h i s va lue )
176 # i n f e c t i o n b e t a=True : ( boolean ) This determines i f the beta model i s
177 # dependent on the i n f e c t e d populat ion ( t rue )
178 # or the death ra t e ( f a l s e )
179 # randomR0=None : whether to add random no i s e to the model . I f i t i s
180 # None then no random no i s e . I f i t i s a r e a l number
181 # i t adds a random value between 0 and the r e a l g iven
182 # Ffactor=0 : ( r e a l ) c o e f f i c i e n t f o r tanh beta model , determines the
183 # width o f the tanh func t i on
184 # beta model=None : ( s t r ) determines which model o f beta to use
185 # p o s s i b i l i t i e s i n c lude X( t ) i s e i t h e r I ( t ) or dD/dt ( t ) :
186 # None : beta i s not time dependent
187 # beta=beta0=c o e f f s [ 0 ]
188 # ’ l i n e a r ’ : beta depends l i n e a r l y on X( t ) , but can only go
189 # as low as be ta s t a r
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190 # beta=max( beta0∗(1+ad∗der ) , b e ta s t a r )
191 # ad=(be ta s t a r /beta−1)/( i r a t e ∗ s o l [ 0 , 1 ] )
192 # ’ exponent i a l ’ : beta depends exponen t i a l l y on X( t )
193 # beta=np . exp (np . l og ( beta0 )−ad∗X( t ) )
194 # ad=(−np . l og ( be ta s t a r /beta ) ) /( i r a t e ∗ s o l [ 0 , 1 ] )
195 # ’ cubic ’ : beta depends c ub i c a l l y on X( t )
196 # beta=max( beta0∗(1+ad∗der ∗∗3) , b e ta s t a r )
197 # ad=(be ta s t a r /beta−1)/( i r a t e ∗ s o l [ 0 , 1 ] ) ∗∗3
198 # ’ tanh ’ : beta depends on X( t ) v ia the hype rbo l i c tangent
199 # beta=beta0∗(1+ad∗(1+np . tanh ( spread ∗( der−t r a t e ) ) ) )
200 # ad=(betas tar−beta ) /2
201 # spread=np . arctanh ( 0 . 9 9 ) /( i r a t e ∗ s o l [ 0 , 1 ] )
202 # or
203 # spread=Ffactor i f F fac tor i s not None
204 # t r a t e=i r a t e ∗ s o l [ 0 , 1 ]
205 # be ta s t a r =0.1 : c o e f f i c i e n t f o r va r i ous beta model
206 # output :
207 # l i s t o f numpy arrays , ( time , s o l u t i o n [ 0 ] , s o l u t i o n [ 1 ] , e t c . )
208 ###############################################################################
209 de f RK4 ddesolve ( h i s t func , delay , stpde lay , tmin , tmax , c o e f f s , delayon=True , i r a t e =0, i n f e c t i o n b e t a=True

, randomR0=None , F fac tor=None , beta model=None , be ta s t a r =0.1) :
210 nparams=len ( c o e f f s )
211 nvars=nparams
212 p r i n t ( ” S ta r t i ng with h i s t o r y func t i on o f s i z e ” , h i s t f un c . shape )
213 i f ( h i s t f un c . shape [ 0 ] != stpde lay+1) :
214 p r i n t ( ” h i s t o r y func t i on must be ”+s t r ( s tpde lay+1)+” long array . ” )
215 re turn −1
216 i f ( h i s t f un c . shape [ 1 ] != nvars ) :
217 p r i n t ( ” h i s t o r y func t i on must have {} components . ” . format ( nvars ) )
218 re turn −1
219 beta=c o e f f s [ 0 ]
220 gamma=c o e f f s [ 1 ]
221 theta=c o e f f s [ 2 ]
222 de l t a=c o e f f s [ 3 ]
223
224 # se t up
225 dt=delay / s tpde lay
226 s o l s i z e=np . c e i l ( ( tmax−tmin ) /dt )
227 t o t a l s i z e=in t ( s tpde lay+1+s o l s i z e )
228 p r i n t ( ” t o t a l s i z e o f array ” , t o t a l s i z e )
229 s o l=np . z e r o s ( [ t o t a l s i z e , nvars ] )
230 # assume h i s t f un c has i n i t i a l time at tmin and tmin−dt
231 s o l [ 0 : s tpde lay +1 ,:]= h i s t f un c
232 t=np . l i n s p a c e ( tmin−delay , tmax , t o t a l s i z e )
233 bdelay=stpde lay+1
234 # f o r i n f e c t i o n s and death ra t e c a l c u l a t i o n s
235 i f beta model==’ exponent i a l ’ :
236 ddrate=(−np . l og ( be ta s t a r /beta ) ) /( i r a t e ∗ s o l [ 0 , 1 ] )
237 ddrate2=0.
238 ddrate3=0.
239 e l i f beta model==’ l i n e a r ’ :
240 ddrate=(be ta s t a r /beta−1)/( i r a t e ∗ s o l [ 0 , 1 ] )
241 ddrate2=0.
242 ddrate3=0.
243 e l i f beta model==’ cubic ’ :
244 ddrate=(be ta s t a r /beta−1)/( i r a t e ∗ s o l [ 0 , 1 ] ) ∗∗3
245 ddrate2=0.
246 ddrate3=0.
247 e l i f beta model==’ tanh ’ :
248 # out o f order so we can reuse ddrate3
249 ddrate=(betas tar−beta ) /2
250 ddrate3=i r a t e ∗ s o l [ 0 , 1 ]
251 i f F fac tor==None : ddrate2=np . arctanh ( 0 . 9 9 ) / ddrate3
252 e l s e : ddrate2=Ffacto r
253 e l s e : # de f au l t to exponent i a l model
254 ddrate=(−np . l og ( be ta s t a r /beta ) ) /( i r a t e ∗ s o l [ 0 , 1 ] )
255 ddrate2=0.
256 ddrate3=0.
257 # we f i r s t go through the h i s t f un c dependent part
258 f o r i in range ( bdelay , bdelay+stpde lay ) :
259 i f ( delayon ) :
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260 S1=[ s o l [ i−1−stpde lay , j ] f o r j in range ( nvars ) ] # s e t up de lay
261 e l s e :
262 S1=[ s o l [ i −1, j ] f o r j in range ( nvars ) ] #remove de lay on S
263 k1=dt∗ rhs ( t [ i −1] , c o e f f s , s o l [ i −1 , : ] , S1 , ad=ddrate , i n f e c t e d=in f e c t i o n b e t a , randomR0=randomR0 ,

spread=ddrate2 , t r a t e=ddrate3 , beta model=beta model , b e ta s t a r=be ta s t a r )
264 # only use l i n e a r i n t e r p o l a t i o n on our constant h i s t o r y func t i on
265 i f ( delayon ) :
266 Ss=[ l i n i n t e r p ( [ s o l [ i−stpde lay −1, j ] , s o l [ i−stpde lay , j ] ] , [ t [ i−stpde lay −1] , t [ i−s tpde lay ] ] , t [ i

−1]+0.5∗dt−delay ) f o r j in range ( nvars ) ]
267 # se t up de lays f o r eva lua t i on
268 Ss1=Ss
269 Ss2=Ss
270 e l s e :
271 Ss1=[ s o l [ i −1, j ]+0.5∗ k1 [ j ] f o r j in range ( nvars ) ] # remove de lay on S
272 k2=dt∗ rhs ( t [ i −1]+0.5∗dt , c o e f f s , s o l [ i −1 , : ]+0.5∗k1 , Ss1 , ad=ddrate , i n f e c t e d=in f e c t i o n b e t a ,

randomR0=randomR0 , spread=ddrate2 , t r a t e=ddrate3 , beta model=beta model , b e ta s t a r=be ta s t a r )
273 i f ( not delayon ) :
274 Ss2=[ s o l [ i −1, j ]+0.5∗ k2 [ j ] f o r j in range ( nvars ) ] # remove de lay on S
275 k3=dt∗ rhs ( t [ i −1]+0.5∗dt , c o e f f s , s o l [ i −1 , : ]+0.5∗k2 , Ss2 , ad=ddrate , i n f e c t e d=in f e c t i o n b e t a ,

randomR0=randomR0 , spread=ddrate2 , t r a t e=ddrate3 , beta model=beta model , b e ta s t a r=be ta s t a r )
276 # se t up de lays
277 i f ( delayon ) :
278 Ss3=[ s o l [ i−stpde lay , j ] f o r j in range ( nvars ) ]
279 e l s e :
280 Ss3=[ s o l [ i −1, j ]+k3 [ j ] f o r j in range ( nvars ) ] # remove de lay on S
281 k4=dt∗ rhs ( t [ i−1]+dt , c o e f f s , s o l [ i −1 ,:]+k3 , Ss3 , ad=ddrate , i n f e c t e d=in f e c t i o n b e t a , randomR0=

randomR0 , spread=ddrate2 , t r a t e=ddrate3 , beta model=beta model , b e ta s t a r=be ta s t a r )
282 s o l [ i , : ]= s o l [ i −1 , : ]+1/6 .∗ ( k1+2.∗( k2+k3 )+k4 )
283 i f (np . min ( ( s o l [ i , : ] ) )<0) :
284 # Force a l l negat ive va lue s to zero
285 masker=s o l [ i , : ] <0
286 s o l [ i ] [ masker ]=0
287 # now use va lue s from h i s t f un c or s o l u t i o n
288 f o r i in range ( bdelay+stpde lay , t o t a l s i z e ) :
289 # se t up de lays
290 i f ( delayon ) :
291 S1=[ s o l [ i−1−stpde lay , j ] f o r j in range ( nvars ) ]
292 e l s e :
293 S1=[ s o l [ i −1, j ] f o r j in range ( nvars ) ] # remove de lay on S
294 k1=dt∗ rhs ( t [ i −1] , c o e f f s , s o l [ i −1 , : ] , S1 , ad=ddrate , i n f e c t e d=in f e c t i o n b e t a , randomR0=randomR0 ,

spread=ddrate2 , t r a t e=ddrate3 , beta model=beta model , b e ta s t a r=be ta s t a r )
295 # se t up c o e f f i c i e n t s f o r Hermite i n t e r p o l a t i o n
296 i f ( delayon ) :
297 # support i s the number o f data po in t s to be supp l i ed
298 # f o r the Hermit cubic i n t e r p o l a t i o n support=3
299 support=3
300 ISs=[np . ones ( support ) f o r j in range ( nvars ) ]
301 Ssp=[np . ones ( support ) f o r j in range ( nvars ) ]
302 t e e s=np . ones ( support )
303 o f f s e t=1
304 f o r j in range ( support ) :
305 Sspt=rhs ( t [ i+j−o f f s e t−s tpde lay ] , c o e f f s , s o l [ i+j−o f f s e t−stpde lay , : ] , s o l [ i+j−o f f s e t −2∗

stpde lay , : ] , ad=ddrate , i n f e c t e d=in f e c t i o n b e t a , randomR0=randomR0 , spread=ddrate2 , t r a t e=ddrate3 ,
beta model=beta model , b e ta s t a r=be ta s t a r ) #f o r de lays on S

306 f o r k in range ( nvars ) :
307 Ssp [ k ] [ j ]=Sspt [ k ]
308 ISs [ k ] [ j ]= s o l [ i+j−o f f s e t−stpde lay , k ]
309 t e e s [ j ]= t [ i+j−stpde lay−o f f s e t ]
310 tdes=np . array ( [ t [ i −1]+0.5∗dt−delay ] )
311 Ss=[ herm interp ( tdes , tees , ISs [ j ] , Ssp [ j ] ) [ 0 ] [ 0 ] f o r j in range ( nvars ) ]
312 # # could a l s o use l i n e a r i n t e r p o l a t i o n
313 # i f ( delayon ) :
314 # Ds=l i n i n t e r p ( [ s o l [ i−stpde lay −1 ,0 ] , s o l [ i−stpde lay , 0 ] ] , [ t [ i−stpde lay −1] , t [ i−s tpde lay ] ] , t [ i

−1]+0.5∗dt−delay )
315 # Ss=l i n i n t e r p ( [ s o l [ i−stpde lay −1 ,1 ] , s o l [ i−stpde lay , 1 ] ] , [ t [ i−stpde lay −1] , t [ i−s tpde lay ] ] , t [ i

−1]+0.5∗dt−delay )
316 # se t up de lays
317 i f ( delayon ) :
318 Ss1=Ss
319 Ss2=Ss
320 e l s e :
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321 Ss1=[ s o l [ i −1, j ]+0.5∗ k1 [ j ] f o r j in range ( nvars ) ] # remove de lay on S
322 k2=dt∗ rhs ( t [ i −1]+0.5∗dt , c o e f f s , s o l [ i −1 , : ]+0.5∗k1 , Ss1 , ad=ddrate , i n f e c t e d=in f e c t i o n b e t a ,

randomR0=randomR0 , spread=ddrate2 , t r a t e=ddrate3 , beta model=beta model , b e ta s t a r=be ta s t a r )
323 i f ( not delayon ) :
324 Ss2=[ s o l [ i −1, j ]+0.5∗ k2 [ j ] f o r j in range ( nvars ) ] # remove de lay on S
325 k3=dt∗ rhs ( t [ i −1]+0.5∗dt , c o e f f s , s o l [ i −1 , : ]+0.5∗k2 , Ss2 , ad=ddrate , i n f e c t e d=in f e c t i o n b e t a ,

randomR0=randomR0 , spread=ddrate2 , t r a t e=ddrate3 , beta model=beta model , b e ta s t a r=be ta s t a r )
326 i f ( delayon ) :
327 Ss3=[ s o l [ i−stpde lay , j ] f o r j in range ( nvars ) ]
328 e l s e :
329 Ss3=[ s o l [ i −1, j ]+k3 [ j ] f o r j in range ( nvars ) ] # remove de lay on S
330 k4=dt∗ rhs ( t [ i−1]+dt , c o e f f s , s o l [ i −1 ,:]+k3 , Ss3 , ad=ddrate , i n f e c t e d=in f e c t i o n b e t a , randomR0=

randomR0 , spread=ddrate2 , t r a t e=ddrate3 , beta model=beta model , b e ta s t a r=be ta s t a r )
331 s o l [ i , : ]= s o l [ i −1 , : ]+1/6 .∗ ( k1+2.∗( k2+k3 )+k4 )
332 # change to zero i f we get negat ive numbers
333 i f (np . min ( ( s o l [ i , : ] ) )<0) :
334 masker=s o l [ i , : ] <0
335 s o l [ i ] [ masker ]=0
336 return [ t ]+[ s o l [ : , j ] f o r j in range ( nvars ) ]
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