
Kyle Bunkers 2a ≈ 10b Explainer

1 Problem Statement

It is well-known that 210 = 1024 is nearly 103 = 1000. What other powers of 2 are surprisingly
close to a power of 10? That is, for 2a ≈ 10b, what are the a and b? To start, find a power of
2 that is a better approximation than 210 ≈ 103 where “better” means the relative error is less.
(The relative error is |210 − 103|/(103) = 0.024 or 2.4%.)

2 Answer

We wish to minimize the relative error. We can then minimize the absolute error, of course. What
we want is

2a = 10b (1)

We can rewrite the left hand side as

2a = (10log10 2)a = 10a log10 2 (2)

with log10 meaning the base 10 logarithm. Then we have

2a10−b = 10a log10 2−b = 1 = 100 (3)

Taking base ten logarithms of both sides we are left with the equation for the exponents of

a log10 2− b = 0 (4)

a

b
=

1

log10 2
(5)

(6)

Now log10 2 is not a rational number, but it is well-known that continued fraction representations
give the most accurate representations for equations of the form (4).

To find a continued fraction representation of a number, you change it into the form [a0; a1, a2, . . .]
which means

a0 +
1

a1 + 1
a2+

1
a3+···

(7)

Given a representation of a number, it is actually fairly simple to find the continued fraction
representation. Given a number b, we first truncate it to its nearest integer. That is a0. Then
then we find b1 = 1/(b − a0). Truncate this to its nearest integer and that is a1. Then we find
b2 = 1/(b1 − a1). Truncate this to the nearest integer and we ahve a2. Continue this process with
bn = 1/(bn−1−an−1) and an = floor(bn) with the floor function doing the truncation of the integer.

As an example consider b = 5.43. Then a0 = 5, b1 = 1/(0.43) ≈ 2.3256, a1 = 2, then b2 =
1/([1/.43] − 2) ≈ 3.07143 so a2 = 3 and b3 = 1/(b2 − 3) = 14, and the algorithm ends. The
continued fraction is then [5; 2, 3, 14]. His forms better and better fraction approximations as

©K. J. Bunkers 1 of 4 Explainer



Kyle Bunkers 2a ≈ 10b Explainer

follows

[a0] = 5→ |5.43− 5|
5.43

≈ 0.079 (8)

[a0; a1] = 5 +
1

2
=

11

2
→ |5.43− 5.5|

5.43
≈ 0.013 (9)

[a0; a1, a2] = 5 +
1

2 + 1
3

=
38

7
→
|5.43− 38

7
|

5.43
≈ 0.00026 (10)

[a0; a1, a2, a3] = 5 +
1

2 + 1
3+ 1

14

=
543

100
(11)

These are called convergents, as they converge to the number we are representing.

It is easy to create an algorithm to do this. Because floating point arithmetic often fails to get the
answer exactly correct, it will spuriously continue after a perfect approximation, but, in practice,
this is not so difficult to avoid. You can simply check that the denominator is not bigger than the
rational approximation you initially feed in (so we would ignore any answers with denominators
bigger than 100 for 5.43).

Now we can apply this to a ≡ log10 2 = ln(2)/ ln(10). We find the approximation is [0; 3, 3, 9, 2, 2, 4, 6, 2, 1, . . . ]
and it continues forever. This gives as fractional approximations

a0 =
0

1
→ |2

1 − 100|
100

≈ 1 (12)

a1 =
1

3
→ |2

3 − 101|
101

≈ 0.2 (13)

a2 =
3

10
→ |2

10 − 103|
103

≈ 0.024 (14)

a3 =
28

93
→ |2

93 − 1028|
1028

≈ 0.0096 (15)

a4 =
59

196
→ |2

196 − 1059|
1059

≈ 0.0043 (16)

a5 =
146

485
→ |2

485 − 10146|
10146

≈ 0.0010 (17)

a6 =
643

2136
→ |2

2136 − 10643|
10643

≈ 0.00016 (18)

a7 =
4004

13301
→ |2

13301 − 104004|
104004

≈ 6.4× 10−5 (19)

a8 =
8651

28738
→ |2

28738 − 108651|
108651

≈ 3.54× 10−5 (20)

a9 =
12655

42039
→ |2

42039 − 1012655|
1012655

≈ 2.8× 10−5 (21)

And so we see that the next best approximation is 1028 and 293 after 210 and 103.

Note that if we were solving (5) we would need to worry about numbers with denominators in-
between those listed above. That is, we would have to try changing the ai in our continued fraction
representation to ensure we are getting the best approximations. However (4) removes this difficulty
because then the continued fraction representation is basically always the best approximation. I

©K. J. Bunkers 2 of 4 Explainer



Kyle Bunkers 2a ≈ 10b Explainer

have checked the other best fraction representations to make sure this is all we need, but you can
try it yourself if you are not convinced. Look up semiconvergents to see the methods.

The difference between

a

b
= ca− bc = 0 (22)

comes from what we consider a “best approximation”. In the first, we desire our best approximation
of c as a/b to satisfy ∣∣∣c− a

b

∣∣∣ ≤ ∣∣∣∣c− a′

b′

∣∣∣∣ (23)

for all rational numbers with a′ and b′ different than a and b with 0 < b′ ≤ b.

In the second case, we desire

|bc− a| < |b′c− a′| (24)

for all rational numbers with a′ and b′ different than a and b with 0 < b′leb.

You may think there is no difference, but suppose we divided through by b in the second case.
This would mean ∣∣∣c− a

b

∣∣∣ < ∣∣∣∣b′cb − a′

b

∣∣∣∣ (25)∣∣∣c− a

b

∣∣∣ < b′

b

∣∣∣∣c− a′

b′

∣∣∣∣ (26)

Remember that b ≥ b′ so b′/b ≤ 1 and so these are in fact two different criteria. The |bc − a|
criteria is stricter because it is more restrictivesince b′/b ≤ 1.

The program below calculates continued fraction representations, outputs the convergents, and
can evaluate the convergents decimal approximations.

PowerTwoPowerTen.py
1 import numpy as np
2 # This i s f o r Riddler Express March 13 , 2020
3
4 # use 2=10ˆ(np . l og (2 ) /np . l og (10) )
5 # we then want 2ˆa/10ˆb l e s s than 0 .25 f o r i n t e g e r a and b
6 # ins t ead we r ewr i t e and want the exponent near ly equal to zero
7 # so then we want b/a=np . l og (2 ) /np . l og (10)
8 # ( or b/a=np . log10 (2 ) )
9 # use a cont inued f r a c t i o n r ep r e s en t a t i on f o r c l o s e s t a and b

10
11 # takes in number z and number o f terms to compute with s i z e
12 # outputs cont inued f r a c t i o n in standard form as l i s t
13 # [ a 0 , a 1 , a 2 , . . . , a s i z e ]
14 de f c on t f r a c ( z , s i z e =4) :
15 #c r ea t e l i s t f o r f r a c t i o n in standard
16 # form [ a 0 ; a 1 , a 2 , . . . , a s i z e ]
17 confac =[ ]
18 #i n i t i a l t runcat i on
19 x=in t ( z )
20 # put t runcat i on in
21 confac . append (x )
22 # prepare remainder
23 y=np . f l o a t ( z )−x

©K. J. Bunkers 3 of 4 Explainer



Kyle Bunkers 2a ≈ 10b Explainer

24 i f y==0:
25 # we f i n i s h e d
26 re turn confac
27 # otherwi se
28 f o r i in range ( s i z e ) :
29 # inv e r t remainder
30 z=1/y
31 # truncate t h i s
32 x=in t ( z )
33 # prepare next remainder
34 y=z−x
35 # put truncated part in
36 confac . append (x )
37 i f y==0:
38 # we f i n i s h e d
39 re turn confac
40 re turn confac
41
42 # takes in cont inued f r a c t i o n in standard form
43 # and outputs a l l the convergents ( the f r a c t i o n s )
44 de f r a t i o c o n t f r a c ( confac ) :
45 # e a s i e r to work with r eve r s ed cont inued f r a c t i o n
46 bconfac=confac [ : : − 1 ]
47 out =[ ]
48 s i z e=len ( confac )
49 f o r i in range ( s i z e ) :
50 # wr i t e 1/ a i as f a r 1 to s t a r t with i t h truncated
51 # cont inued f r a c t i o n
52 f a r 1 =[1 , bconfac [ i ] ]
53 f o r j in range ( i , s i z e −1) :
54 # add the a i+1/a { i +1}
55 f a r 2 =[ bconfac [ j +1]∗ f a r 1 [1 ]+ f a r 1 [ 0 ] , f a r 1 [ 1 ] ]
56 # f l i p numerator and denominator f o r next add i t i on
57 f a r 1=fa r 2 [ : : − 1 ]
58 i f i==s i z e −1:
59 # in t h i s case the re i s no adding
60 out . append ( f a r 1 [ : : − 1 ] )
61 e l s e :
62 out . append ( f a r 2 )
63 #r ev e r s e so worse approximations come f i r s t
64 re turn out [ : : − 1 ]
65
66 # takes in l i s t o f convergents in f r a c t i o n form
67 # outputs a l i s t o f t h e i r decimal va lue s
68 de f r a t i o ou t ( outconfac ) :
69 out =[ ]
70 f o r i in outconfac :
71 # sp i t out decimal form from f r a c t i o n form
72 out . append ( i [ 0 ] / np . f l o a t ( i [ 1 ] ) )
73 re turn out
74
75 # takes in l i s t o f convergents in decimal form
76 # conver t s i n to our o r i g i n a l problem and
77 # computes the r e l a t i v e e r r o r
78 de f errorpowertwoten ( outconfac ) :
79 out =[ ]
80 f o r i in outconfac :
81 # wr i t e out the e r r o r in terms o f powers o f 10
82 out . append (np . abs (10∗∗ ( np . l og (2 ) /np . l og (10) ∗ i [1]− i [ 0 ] ) −1.) )
83 re turn out

©K. J. Bunkers 4 of 4 Explainer


	Problem Statement
	Answer

