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Chapter 2

Design Principles of Coil Systems in the
Stellarator and Heliotron

2.2 The Magnetic Surface and the Rotational Transform

Note that (W-2.3) is inconsistent with (W-2.4) because of the factor of 27 issue. I will use
+=1/(2m) which Wakatani often refers to as «.

2.3 The Magnetic Well and Magnetic Shear

Note that & = b - Vb (W-2.24) with b = B/|B| = B/B also has the form
k=b-Vb=—bx(Vxb) (2.3.1)

using A x (V x A) = V(42/2) — A - VA. And so (W-2.25)

~ ~

f@:b'Vb:—f)x(VXB):—BX(VXB/B):—BX(éVxBJrV%xB)

—1 R B- VB - V(B%/2) BVB-B(b- VB)
— E(B X (VxB)—bx(VBxB))= B2 + B3 (2.3.2)

[\ J/

—BxJ/B?
1

— = | V(B%/2) ~b(B- VB) +J x B|

and for J = 0 we then have (W-2.25). We have b+ k = 0 from
b-k=b-([Vxb xb)=—(Vxb)- (BXB) — (Vxb)-0=0 (2.3.3)
We have & in (1, 8, ¢) coordinates with Vi) x VG = B = V¢ then yielding

K = Ky VI + kg V3 (2.3.4)

since Vo o< b so that 0 = k + Vo = k4| Vo|? = B2k, = 0 and B? is not allowed to be zero.
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6 The Magnetic Well and Magnetic Shear

Using that J = 1/ V& x VE2. VE3

A=A VE + Ay VE? + A3 VED (
A =JA - VE2 x Ve (2.3.6
Ay = JA - VE x Ve (
A = JA - VE' x VE? (

This is seen simply by recalling V&7 x VEF isolates the correct component and the J normalizes
correctly. Thus using J = 1/B?,

1 1 N N
fy = pgh (VB x Vo) = Tk (VB x Bb)=—(bx V5-k)/B (2.3.9)
kg = én- (Vo x WVip) = ém . (Bbx W) = (bx V- k)/B (2.3.10)
Using (W-2.25) one can also find that
_10B 1 0B 1 0B Vo 0B OB OB
“= 5o Yt 5oV 5o Vo g |V (o W W g v (2311)
_ 10B 1 0B 1 0B VeoB-; [10B 1 0B ~
“Baw VT Bap er%gf{ ﬁé@gﬁ/B_ Baw VWt eas VP
SO Ky = %g—]i and kg = %g—g.
A simpler relationship for (W-2.29) is to just use the form directly
d¢ 10B d¢ 1 0B 0 1
__ 9 ja a
o) B
ds 0 d¢

Then note that because (« being the angle between V¢ and dx with | dx|sin(«) the distance along
a magnetic field line since V¢ = B)

d¢ = Vo - dx = | V¢| | dx|sin(a) = Bd/l (2.3.14)
B de

Note that because L = ¢o/B for these integrals, the factor of —1/2 in the integral with d¢ still
works out to the same as with the integral with d¢.

The condition (W-2.34) comes from using %;fpo = 0 with ¢9 > 0 and so

1 0 d¢
— P —<0 2.3.15
0V ] B ( )
0 44
—— <0 2.3.16
00 6 (2:310)
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Design Principles of Coil Systems in the Stellarator and Heliotron 7

de dt
aaw (ffB2BM> = %ff E_ <0 (2.3.17)
(B?)
0 1 -1 9, ,
@@:W% <B > <0 (2.3.18)
% (B?) > 0 (2.3.19)

with the definition
Q ]{ d/
= —= — 2.3.2
7{ Bdf 3 (2.3.20)

The book tries to be too clever, defining B¢ = B+ V¢ = 1/(2nJ) not 1/(J) based on (W-2.22).
What Wakatani has done, is used J = Vi x V3 - V¢ and then defined (/(27) = ¢, V( =27 V¢
so that 277 =27 Vi x VB . Vo = Vip x VB - V(= T.

It still follows that with J = R{>_, T MY

v /%dg/ 48 7 (2.3.21)

Cw = (2m)* o0 (2.3.22)

I have no idea what is meant by (W-2.40) with the comment about (W-2.7). We just showed that
(W-2.37) is exactly given by the m = n = 0 component only, so although the written form is
correct it seems somewhat odd to write out

/zﬂdc /%dﬁ SV +§R{Z /Qﬂdg /Z”dﬁ T 5= no} (2.3.23)

fogﬂfgwjoodﬁdC

So we then find for (W-2.41) with 5 = By + +(¢)( that passes through 5 = 5y and ¢ = 0 with
N circuits around the torus. Wakatani seems to have normalized by N, the number of toroidal
circuits. I am unsure why he chose this definition, as it is unusual for flux tube specific volume.
Also, (W-2.41) and (W-2.42) are inconsistent, but I am pretty certain there is not supposed to be
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8 The Average Magnetic Surface

the factor of 1/(27) in (W-2.41).

dé 2N dC 2rN 2n N Zm .
U, fo) = N/ -5/ &/ 2wjdc:2w/0 R Joae 19}

o [N 21 N ) )
=¥ : %{ZJ i(m(Bo++¢)—nC) bd¢ = v %{Z jm7n62m6062(mt—n)é)}d<

ot ] 27N ]
_=n imp i(mt—n)()
_ N;R{;jm,ne /0 e dc}

Z p 1(mt7n)g 2N
= (27)°Joo + R jmnezmo—
i(me—n)|,

2nNi(mt—mn) _ 1

2w N
0

i(mt—n)

p 27er(mt n) __ 1
= 5 R m,n #mfo
+ Z Imne i(m+—mn)

= (271')2‘7070 + §R {Z /jm,neimﬁo

dV 27er(mt n) __ 1
= T + Z jm nelmﬂo
dep 27TN )Joo | = ~ i(mt —n)
(2.3.24)
In the case that + = 7’;—%, N = ng then we would find
% 2 , .
(w ﬁo) |:1 &% {jmo,nermO/BO + jm07n0€zmoﬁo}‘|
dip (QWno)joo (2.3.25)
dVv o
= — |14+ —%R jmo e etmobo +J S —imoBo ]
dyp [ «70 0 { J
2.4 The Average Magnetic Surface
% = fu(zi, 1, ) (W-2.45)
Tr = & + €qie(&, b, @) + Egon (&t ) + - - (W-2.47)
d
Sk haul 1)+ eharl€ 1) + honlE 1) + (W-2.48)

Note for (W-2.45) through (W-2.49) that what we are using is

d

T [k + egun(&it, @) + E€gar(&ista) + -+ | = ful& + €gui(§.t, @) + Ega(&j t,a) + -+t a)
(2.4.1)

d 0 Oa 0 ox; 0 o 10 0& 0

TR T T T el T iy (242)
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Design Principles of Coil Systems in the Stellarator and Heliotron 9

where we are using that for each - that we have gy (&, t, @) and that we have
dé§; 9§,
dt ot

So that we in fact have suppressing variable dependencies g, = ¢.¢(&s,t, @), hy e = hy 1(&5,1) and

fk = fk(ghtaa)

(2.4.3)

d 0
O [fk + €91k + € gor + € gz + - ] = {fk(&) + (Egu + o + - - ) (9?:
1 0
+§ (Egu—i-ﬁzgzri-'”) (691j+€292j+“') axing +}
(2.4.4)
déy, Ogir  d& Ogux 991k > [ 092 d& gar 39% 2093y,
dt+€(8t M TS o T\t Tt ot ) 00 T a T (2.45)
e My 0 L O *
k g1i 85 92i 851 2 glzglja (9
891k 991k g1, 89% 892k gar, agSk
2 2 ZJek
hor + €hi + € hzk+€<6t (h02—|— hh) 651)4— 90 +e€ 8t + hoi——— 26, +e€ %0 + € 804 + -
Ofw Ofk 3fk
= fr+ 6911‘8—& + €% g2 26, + E 9119138 01,
(2.4.6)
991k 991 Ogir | Ogok 91k 59% 9ok 393k
<h0k + D ) (hlk + — ot ~+ ho; De, + 0 hop + hyj—— 6, + ~+ ho; 96, +
o af 2 8fk fk
fk + €g1i ag@ + € ( 92i = a€Z + glzglja 8mj +
(2.4.7)
Or collecting like powers of €
0
hor + glk = Jfr
0 0 0 0
hik + g;k + hoi ag; + ﬂ = G a{f (W-2.49)
aglk ag2k 89% 993k, 0 fr 1 0 fr
h h i +h i a_ i
2 i em "5 T oa e LT 5,07,
Note that with f = f + fvand applying averaging to both sides again.
F=F+f=F+f=F+f (2.4.8)
0=f (2.4.9)

However, the note below (W-2.51) that ?: Jy da’ f(a/) = 0 is clearly false. First, let’s change
this into a better looking formula by exchanging the integral order and changing dummy variables

f= / do’ fla/) = o / " do / do’ f % /0 4o /a IZﬂda fla) (2.4.10)

R (2 W—a)f(a'):%/o da (zw—a)ﬂa):%_a_f' (2.4.11)

27T
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10 The Average Magnetic Surface

Now as a counterexample, take the periodic function f = 1+ sina (or f = sin« if you prefer).
Then f =1 (or f =0), f—smaandso

2T 27 1 2T
= 27/ do / da’ sind/ —/ da (—cosa')y —%/g da (1 —cosa)=1 (2.4.12)
— -10 1 0 [sin(ta)\”"
af = o / da asin(a) = o 8t/0 da — cos(ta) = 37 B (T)

)l

a=0 (2.4.13)
1 0 (sin(27t)\  27tcos(27t) — sin(2nt) ]
T 2ot t B 2mt? B
If instead we choose f = f;o da/ f(a) so that we get the indefinite integral (i.e. if g(c = [da fla

then g(ap) = 0 and so f= g(c)) this then works. This is equivalent to choosing the C to be O
for each integration in a Fourier series. To prove this, we recognize that the periodic function can
be expanded in a Fourier series, with the m = 0 component being f so that (with the ’ indicating
skipping m = 0)

= 3%{ i’fme—ima} (2.4.14)

m=—00

and so using that we’'ve chosen «q such that the constant of integration is zero we then have

la) :/ado/ %{fome—ima'} _ {Z 7 __m} _ {Z it _Zma} (2.4.15)

m

Note then that this is in fact a new Fourier series with h,, = ¢ fm /m, and that taking o — a+ 27 M
for M an integer gives the same answer. So then f(«) is a periodic function with period of 27 as
well.

Now if we average this

S 1 27 U’Fm L / me e—im(2m) _ o—im(0)
(a) = 27?/ %{Z € } - %{Z 2rm “im =0 (24.16)

as e~ _ e=m0) — 1 _ 1 = 0 and there is no m = 0 component by definition. This actually
leads to a rather nifty identity.

\h

We use
?:/aodaf QW/doz/daf [/da/daf /da/daf ]
(2.4.17)
r [ %s) . 2 - g - 2m ~
= % —/0 o fa) +/ do’ (27 — o/)f(o/)} = % {—/0 o f(a) +/ do/ (27 — o/)f(o/)}
) i i (2.4.18)
= % _27r /{:T do/ f(o!) — /{:r do/ o' f(o/) — /an o/f(o/)} = % |:27T]/C\(27T) — /027r da/ o/f(o/)}
(2.4.19)
= f2n)—o'f (2.4.20)
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Design Principles of Coil Systems in the Stellarator and Heliotron 11

Since this must equal 0, we find (using M € Z)

~ -~ ~ — 1 2m ~
f0)=f2r)=f(0+27M) =af = %/0 da af(a) (2.4.21)
Let us now prove
% (a@) —0 (W-2.56)

Remember that a%]?: f Now let’s just write out

% (&E) _ %/0 ﬂda %(a/l;) _ Zi(27r)b(27r2)7r— a(0)b(0) (2.4.22)

Now both @ and b are periodic with period 27 so that @(27) = @(0) and b(27) = b(0) so that
(W-2.56) indeed holds.

This then implies as

ab = —ab (W-2.55)
from
%(aﬁ) - %m ag—z —ab+ab = (2.4.23)
ab = —ab (2.4.24)
Now because b =b — b and @ = a — @ we see that
@b =ab +ab = W + ab (2.4.25)
ab = ab + ab = 7 + b (2.4.26)

and so we can exchange the @ — a and b — b in the above to get (W-2.55).

Let us get &£ (W-2.59) to give a flavor for the replacements to (W-2.62). First we note that

dr _ bbb 0 (b_) b 0 (b) by (W-2.59)

G B mte\5)E % \B) B
10 10by O,
V'b—;E(Tbﬁ—l-;%‘i‘ - =0 (2.4.27)

Note that V - b = 0 is tacitly assumed so that we can switch » — 7 without any higher order
terms. So then

ob, b, 19by b

o T a0 s

0 (2.4.28)

b, 9, b, (b 10by b,

——=—= | =+ == 2.4.29

B2 or Bg(r+r89+8z) ( )
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12

The reason we can replace

The Average Magnetic Surface

- with £ is because we view some function f(r (7,1, . ..

8f 87"8]‘
orF  orF Oor
8f or 3f

8T1k ale 67‘

etc., and because

=T+ erg + o+
dr = dF + edryy, + € drg, + - -

or_, o
or ’ Orix
we see that
of of of

or  or’ Oru

or 9
=€, — =€,
8T2k

of  of _ ,0f

= e =€
or’ Orop or’

(and similarly for 6 = 0 + €6y, + €209, + - +).

Taking the terms in order remembering that

B d
5~ 5a SO that

T2
rBg

from ﬁ = —E.
by problem setup)

b,b,

=0

da

b b b b bbb P _Bb
B}0x B;Ox: B° B? B}  B?
Thus,
dr 1‘ z br ab@ R /b\ﬁ abr
E 2 50 T A T =h2 s
dz /B2 B2 00 G TrB§ o0
_ l_ b by _ by 0b.
_b__"_i b > by +b ab’"
“ By B2\ 00 " "o0
b 1 O(bb,) b, 1 O(byb,)

B, 7B?

So then using ¥ = A,

DRAFT:Wakatani Notes
June 16, 2016

o9 By 7B 00

)) so that
(2.4.30)

(2.4.31)
(2.4.32)

(2.4.33)
(2.4.34)

(2.4.35)

(2.4.36)

(2.4.37)

Then leave the second term alone and use 2 = f (remembering that b, = 0

(2.4.38)

(2.4.39)

(W-2.64)
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Design Principles of Coil Systems in the Stellarator and Heliotron 13

Here we use that

= 10A. 10A., T0A, 10A,

r=b=00 T o0 rom oo (24.40)
We see that
dr 1104, 1 o@eb) 1 0 [ b
dz  Byr 00 7B 00 FByd0 |~ By (2.4.41)
1 oV
By 90
as desired.

If we assume W is a function of 7 alone we can simplify somewhat. We see that this yields from
our original equations (looking at g1, = fx) that

o~

b
= (2.4.42)
o— g4 Lo/r) (2.4.43)
By

But with our simplification that ¥ = W(7) then % = 0 and so 7 = C for some constant C' = 7.

Then using that r = 7, + % we see that

By
@/Bo i +O([b/Bof) | = b +O([b/Bo]*) = b +O([b/Bo]?) (2.4.44)
Bofc 'FCBO T’Bo
Calling %%—‘;’ — w which is independent of z then § = wz + C; where we choose C; = 0 for
convenience. Then
r=r.+ /b\—r
Bo (W-2.69)
0 =wz+ o
N TBO
In general we may of course write
_ & (W-2.70)
dé -
= w(7, 0, z)
with w the mean rotation angle of the line of force.
2.5 The Helically Symmetric Magnetic Field
Note that with Vo =B =V x A and
1 -
© = Byz + o ; by I, (nar) sin ng (2.5.1)
(=0—-az (2.5.2)
DRAFT:Wakatani Notes ©K. J. Bunkers
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14 The Helically Symmetric Magnetic Field

with a a constant and I,, a modified Bessel function that using A, = 0 as the gauge condition for
A yields

8_(,0 3A9

or 0z
10p oA, (2.5.3)
rod 0z

Let’s prove that ¢ satisfies VZp in (1,0, 2) coordinates. First note the identities (for n > 1)

I1(2) + 1, ,(2) = 2I}(2) (2.5.4)
2n
In1(2) = Insa1(2) = —IL,(2) (2.5.5)
I'(2) = L1 (2) — gzn@) (2.5.6)
I'(2) = Lyt (2) + g[n(z) (2.5.7)
We then have
1 [e.e]
© 0z + - Z (nar) sin(n(f — az)) ( )
v2 10 8@ +l8290+82g0—82¢ 18_(‘0+l62_¢+82_90 (259)
o Uor r200% 022 Or2  ror  r2002 022 o
1 o
= - Zl n*a?I(nar)sin(n(f — az)) + P~ Z bpnall (nar) sin(n(f — az))
U (2.5.10)
+ o Z I, (nar)(—n?) sin(n( — az) Z b ln(nar) a?)sin(n(f — az))
n2
—Zb sin(n() ( all! + I’ —2—In—n2aln> (2.5.11)
r2a
+ 1 1. L, 1
- Zb sin(n() L "+J + P+ Inoy) | ———all, (2.5.12)
2r e
n— 1]71 ] o n+ljn 3
_ Zb sin nC ( nar 1+ nar +1] + n(In-‘rl + I, 1) i n2 (L —_ Oé) In)
2 2r e
(2.5.13)
I, 1
—Zb sin(n() (M‘i‘— n-1— Iny1) M w ) 2<2__
rla
(2.5.14)
22
—Zb sin(n() (Z/Z ﬂ) (2.5.15)
a
_ (2.5.16)
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Design Principles of Coil Systems in the Stellarator and Heliotron 15

as desired. Note that for

@ = Boz + g[n(nar) sin (n[0 — az|) = Boz + g[n(now‘) sin n¢ (2.5.17)
Vo = bnl] (nar)sin(n[d — az]) Vr + %In(now“) cos(n[f — az])% + (By — bnl,(nar) cosn() Vz
A
=B, B B
Vr + 9|V9| + B, Vz
(2.5.18)
We see that this is a flux function through the use of
(=0—az (2.5.19)
V(= Vi —-aVz (2.5.20)
1
V| =[5 + a2 (2.5.21)
1
Vol =~ (2.5.22)
and so with B = B, Vr + BC% we find
A/ QY B¢
By=B = 2.5.23
TVC Ve V] (2:0:29)
VC OéBC
B, = B o Vi = — 226 2.5.24
V] d (2020
so that
_o*rBe B —r B¢ < 9 1) —rB¢ , OV
arB, — B = a4+ —= | = V(" = — 2.9.25
TG v v\ e T Y e B
—1 oV 1 By
B — (22 _ 4B, 92.5.26
= regor =T (7 - °B) (2520
Thus,
ow ov v¢-vg 0V ov
B.- V=052 B - B2 + B
V 8 Vr - Vr + §|VC|8C |V€|2 Tar-i- 48C|V§|
10V 3\If —1 oV ov
=—-—— 2.5.2
roC or TJ/VCT&” ¢ (25.27)
1 oV OV
Alternatively, one can use
With B, = 16‘2’ = i%—‘g = —%%—‘f and arB, — By = OJ%(TA@) + % = %—g’ with W = ardy + A, we
see that
oV  ByoVv oV 10V oV  Byov ov
B VU =5, B—=-——— aB,— 2.5.2
V=Bt e TP, T8C8r+7"8§" 3¢ (2:5.28)
10V oV 1 ov oV oV OV oV
- By — arB, = 2.5.2
=racar Ty BemarB)ge = (agar arag) 0 (2:5.29)
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16 The Magnetic Island and Destruction of the Magnetic Surface

2.6 The Magnetic Island and Destruction of the Magnetic
Surface

Given (note there is an error in the book in this equation)

d
Bzd—r = bnl! (nar) sinn

dg ) (W-2.118)
BZ& = —aBy+bn (a + W) I,(nar) cos(n()

2 (r,z). W

with the ” denoting differentiation with respect to nar and ¢ = 6 —az and B,(r,2) = 3~
2.118), Wlth

then can note that these look similar to a Hamiltonian, the integral of the above (W-

1 b
H = —a*r? — —arl! (nar) cos(n() (2.6.1)
2 By
For then
dH  OHdr OHd(
dz ~ Or dz * ¢ dz 0 (2.62)
H b b
%_r =o’r — B 3(7(:;?7“) 8(7?047”) (narl!) cosn¢ = a’r — go& cosnC (Il + narl!)
; p , X (2.6.3)
— o2 — goa(nar) cos n( (mz?“ + ]7’1’) = o’r — an(nar) cos n( (1 + W) I,
H
88_( = B%)narl (nar) sin(ng) (2.6.4)
So then
OH dr 5 b 1 bnl! (nar)sin n
R (a r— an(nar) cosng (1 + W) In) B 065
_ bnarl,(nar)sinng a— in a+ = I,,(nar) cosng B
N B, By ar2| ™"
b / ;
OH d¢ (B—Onar[n(nar) sm(n()) 1
5 & = B —aBy+bn | aBy + o I,(nar) cos(n() (266
_ bnar(nar)sinng b 1
=— B. a— Eon at—s I,(nar) cosng
Hence we see the easy cancellation. How would one ever guess this, though? One uses
d- B-Vr B"
- — = _ 2.6.
dz B-:-Vz B* (26.7)
d¢ B-V( B
dz B-Vz B (268)
with B" = B, and B?* = B,. We have
BS=B- V(= B, Ve Ve _ Be| v¢| (2.6.9)
| V(|
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Design Principles of Coil Systems in the Stellarator and Heliotron 17
with the B, we’ve used previously in (2.5.26). Thus we confirm that
—-10¥ B b
Bl=—""="0_4B, = —nIn(nar) cosn( — aBy + abnl,(nar) cos n
r or r 72
. (2.6.10)
= —aBy + bnl,(nar) cosng (Oz + —2)
ar
which reduces these previous equations to
d 1 10w 1 ov
dr 110V 1 0w (2.6.11)
dz B,rd( rB,d(
d¢ 1 -1 oV 1 oV
A2 = gy L9 2.6.12
dz  B.r|V(| or Al rB, Or ( )
To see how the Hamiltonian could be formed, choose a new t = z/(rB,) and then
dr 0¥
— == 2.6.1
dt  0¢ (26.13)
d¢ ov
— = —— 2.6.14
dt or ( )
Since
By 2b
U=_— P~ —arl] 2.6.1
50, {(on") B, arl] (nar) cos(n()} (2.6.15)
We see that U is the Hamiltonian in this case. Because with ¥ = H, 4 =0 then = 0. We also

v At

see that multiplying ¢ by a/By will not change that % = 0 and so calling the new Hamiltonian

‘H = aH/By we find
2,.2
b
a27“ - goarf (nar) cosn(

which is, of course, identical to the Hamiltonian given above.

H:

Now the book instead chooses tB, = z and simultaneously chooses p = %arz

L dp 1 dp
V2apdz 204%047’2 dz

coordinates first, using r = 1/2p/«. Then
1 dp

dr B \/3
dz dz a2.\/p dz

9 0pd
o or 3/) (9p

Thus, with the Hamiltonian H = H/By from before, we would then find

dr_dr_ 1dp 10¥
dz  dt ardt 7"8_(’
d¢ d¢  10¥ ay OV
*dz At ror  f Op
dp 0V

dat ~ “ac

d¢ oV

a - “op
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(2.6.16)

. Let us change to p

1dp

— (2.6.17)
(2.6.18)
(2.6.19)
(2.6.20)
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18 The Magnetic Island and Destruction of the Magnetic Surface

We easily see that H = a¥ would then do, but if we normalize by Bj again this will also do no
harm, and so the new Hamiltonian will be the same as H above, yielding with p

v 22 b
% = a2r - Ear[ (nar)cosnl = ap — —\/204 I! (n\/2ap) cosn (2.6.21)
0 0

H =

This, then, of course will yield

dp _ oM
dt — oC

i o (2.6.22)
dt — 9p

For the action-angle, use a type 1 generating function W (g, @) which in our case is W(q, Q) =
W(¢,0) [Iuse (p,q) — (P,Q) which in our case yields (p,() — (J,0)]. Then using

oW
W = 50+ aQ W50

—p(5q — P0Q = pé¢ — JoO

(2.6.23)

Now we are periodic in ¢ with period 27 so that W must be periodic. Note also that in these new
action angle coordinates, that the Hamiltonian H is independent of the action angle © (that is,
we select W in such a way that H is now independent of © and see if this is in fact possible). So
then H = H(J) and J must be independent of © as well. If we integrate through one period we

find
j{dW:O:j{pdC—]{JdG):j{pdC—%TJ (2.6.24)

1
d 2.6.2
J= 5 pdC (2.6.25)

Now the new Hamiltonian equations say

dJ O0H
de o0H

So then J is a constant of motion. Since H = H(J), then H is a constant of motion, and so is
91 — 3 (J) = aw(J). This implies an integration of © with respect to ¢ yields

8T
© = aw(J)t + constant (2.6.28)
de
- = aw(.J) (2.6.29)

with the constant simply setting the zero for this coordinate.
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Design Principles of Coil Systems in the Stellarator and Heliotron 19

AW = [ pd¢— [ JdO = [ pd¢ —JO (2.6.30)
Jaw=foac- [ra0= |

We can also see that

W:/pdC—J@ (2.6.31)
——
=S
W ( S
== 2= (2.6.32)
oS
- = 2.6.
0= (2.6.33)

2.7 The Magnetic Surface by Line Tracing Calculation

Let’s convince ourselves of the

R(V,0p, ) = ZRmn )eimon=nén) (W-2.169)

conversion to

(m[ ol -+ n[tor)ego + (mt — n) Qﬂx
R(T, 0 Rmn P W-2.173
via
X = 50 (LiexfB + I50105) (W-2.171)
Up = +¢p + o (W-2.172)
This implies that
2wy
E toreB = po](bB (271)
27
01¢B X tortgbB toreBO (2.7.2)
2 Ji 0
110 tor/ B0
= H#o 2.7.3
¢B Ieol + t]’gor ( )
So then
mlp — nép = medg +mo _nw
B B = B B0 Ie R
ot — IO 0 X — TioOp0
=Mt——————— +m —pt —
Ieol + Itzor b [eol + t[tlor (2 7 4)
(mlI¢, + med — med + nll )0po + (Mt — n)ir—ox o
- I;ol + t]‘gor
(m[e |+ nll )00 + (me —n) ZZX
a Ie ol + tltlor
as desired.
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Chapter 3

A Description of Magnetically Confined
Plasmas

3.3 The Vlasov Equation for Describing Incompressible
Phase Fluid and Moment Equations

A quick proof from (W-3.36) to (W-3.37). using

n(Q) E/ dv, Qf (3.3.1)
Q=(Q) +Q (3.3.2)
(@) = {(Q) + (0Q) = (@) + (6Q) (3.3.3)
(6Q) =0 (3.3.4)
ay =% (¢E+qv xB) =qF, + qu,B, — qu.B, (3.3.5)
* af o [~ 0
/OO dv, Ve = 5 /OO v f = 5% (n(vy)) (3.3.6)
20 _ O 2p_ O 2
/OO dv, vZ %~ Do /OO dv, vif 5 /OO dv, ((vg) + 0v,)*f
a [~ 0
_ %/ dve (02 + 2480 T + (00 f] = o (et n (50,)2))
0 0
= o (0 (02)) + o (n{(00:)7))
(3.3.7)
> of o0 > dagv, [ _
/_OO dv, azvxa—% —M‘_OO — /_Oo dv, f oo, —/_OO dv, a,f = —n{a,) (3.3.8)
Where the last follows because a, has no v, dependence. (So technically n (a,) = a,).
In general, noting that %—f; = (0 and that
0
GilkBka_vl = € Broyi = eux By, = 0 (3.3.9)
(%
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22 The Vlasov Equation for ...

we have

o0 8 oo o0 a i
/ d3vva-a—f:/ d?’vvjalafz —ood3 [8 (vjaif) — (;zf)f}

M / d*v dya;f — / v ngaz

- —/ d3v ajf — q/ d3v v; aa [E; + eaxvi B f (3.3.10)

:—/ dsvajf—W

:—/_Ood3vaf:—n(a>

[e.9]

Where the cancellation on the d?v term is because nvja; = v - a — 0 at the surface at infinity.
So we see in general we do get the (a) term, although in one dimension this is trivial.

Thus, putting it all together

[ o2 2 o] o o
0 0 2 9 2 _
3_5 (n(vy)) + g (na<vw) )+ P (n <(8(51)m) ) —nfa,) =0 (3.3.11)
5 (mn (v,)) = B (mn (vm)Q) = (mn {(6v;)?)) +mn (a,) (W-3.37)

as required.

Let’s now do the ¢ = 2 moment equation ourselves piece by piece. (Use X?=X-X=X ]2 = X;X;
for short hand). Wakatani seems to prefer a mixed vector, index notation, while T will just use a
pure index notation (although with (X;)* = (X;) (X))

o 1 0 1 0
/_oo d §m028_{ a §mat/ d®v ((v5) = (vj) + 2L~B05 + dv; - 6vy) f 5512)
1 9 -
= §m§ (n (vj> +n <5vj2>)
> 1 0 1 a [~
/_OO d?v —mvzvzai; 5 axz /_OO d*v ((vj)2 +2(vj) 6V + 007) ((v) + v;) f 519
= %mai (n W) (v) +n (6v3) (vi) +n (v;)? (§vz~> + 1 (v;) + (6v;0v;) + n (603 bv;))
/_oo d3 2mv E (E + EzlkUlBk) gi = %/_OO d3’U f (’U q (E + ezlk’lek:)>

1
— —/ o f 2fuja q (E; + €qxvBy) + ’U qé; k.
2/ o dv; “ov; (3.3.14)
0 v-(vxB)=0 0
= / d*v f(Uz‘qEz‘ +%WTBZ> = qu/ d*v v, f

=qn(v;) E; = qn(v)-E
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So we yield the same result. Wakatani’s discussion leading to (W-3.46) is sufficiently clear to me
that it needs no further explanation here. Just note that all of his identities for averages of dv; ’s

are due to choosing the Maxwellian as the distribution function.

3.4 Magnetohydrodynamic Equations

We have
4 (Pm;") =0 (3.4.1)
dt !
d
— (Pn,”) = 3.4.2
dt( ne ) ( )
Using quasineutrality n. = Zn; = n then
d d
—(Pn")= — (PZ'n7") = A.
g (Pn") = g (BZ7n77) =0 (3.4.3)
d
— (Pn™7) =0 3.4.4
a ) (3:44)
Thus, when we sum for two species we find
d _ _ d _ N d _ _
0=—(Pn;,"+Pn.")=— (PZ'n "+ PFPn")=— (P(Z"=1)n"" + Pn7")
d d o
— Z’Yﬁl — — PZ - —_— P ) = 0
( a7+ g ()
d _
" (Pn™7) =0 (3.4.6)
We get Ohm’s law through
dv,
meneg =—VP, +n.q.(E+v. xB)+ R (W-3.53)
and with % < 1 (negligible electron inertia with
J =neqeve + niqivi
= NeGe +niq; = 0
Pg = Nele T Thid (3.4.7)
Nede = —N54;
J = niqivi = negeve
with v; & v (remembering n.q. = —ne so n;q; = ne) or Then
0=-VP.+n.qgE+ (J—nqv;)) x B+R (3.4.8)
0=—-VP.—necE+JxB—-nevxB+R (3.4.9)
ne(E+vxB)=—-VP,+JxB+R (3.4.10)
1
E+vxB=—(JxB- VP +R) (3.4.11)

ne
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24 MHD WaveS

Note that a better way of using notation for conserving phase space “volume” for 2D is to simply
say 2mSvdv = 2mSyvg dvg and so (both S and Sy are independent of velocity so we can move them
around at will when integrating and Sy is a constant whereas S can be thought of as a function of
t, but independent of v)

Svdv = Syvg dug (3.4.12)
/SU dv = /Sovo dwy (3.4.13)

SU2 . S(ﬂ)g
2 2
Sv? = Syv2 = constant (3.4.15)

(3.4.14)

and for 1D to say ¢dv = £y dvg so that vf = constant. With T} vﬁ and T, o v? and S oc L?
and ¢ oc Ly we find

1

1
T, xv] S X7 (3.4.16)
1
1 1
Tj o vﬁ X 5 L_ﬁ (3.4.17)
And so then discover
T?T) o< LT Lif oc n? (3.4.18)
because n o< LIQLF. So then
n*TiT)
S X 1 (3.4.19)
PP
;5 1 (3.4.20)
PP
% = constant (3.4.21)

as said in the book, reproducing (W-3.87).

3.5 MHD WaveS

Let’s go through linearization here. Our beginning MHD equations (taking the ideal case)

d
d—f 4PV v =0 (W-3.73)
d
pd—‘t’ —_VP+JIxB (W-3.74)
dP
o HPVev=0 (W-3.75)
E+vxB=0 (W-3.76)
0B
— =-VxE W-3.77
5 X ( )
10J =V x B (W-3.78)
DRAFT:Wakatani Notes ©K. J. Bunkers

June 16, 2016



A Description of Magnetically Confined Plasmas 25

and so, linearizing (W-3.73) first, (the zeroth order equation %2 + pV « vy = 0 must be satisfied
hence the cancellation)

%(Po+ﬂl)+(ﬂo+/)1)v‘(V0+V1) =0 (3.5.1)
%—FW‘FMV'VO‘FPOV'W:O (3.5.2)
O (ot V)« VotV Vo V- () = 0 (3.5.3)
%vao- Vor+p1V v+ Ve (ppvi) =0 (3.5.4)
OV - (povs +pive) = 0 (3.5.5)

Wakatani assumes a zero background flow velocity (although does not explicitly state this) so that
vy = 0 and we retrieve

0
% + V- (povi) =0 (W-3.89)
Now, let’s do (W-3.74) (the zeroth order equation equation is — VP, + Jo x By = 0, noting that

IU()JO:VXBO:O)

dv
(ot 1)~ == V(Po+ P) + (Jo+J1) x (By + By) (35.6)
3V1

poE:%— VP, + JoxBo + 3¢ x By +J; x By (3.5.7)
po% = Jl X BO — VPl (358)

Now for (W-3.75), (zeroth order is 42 = 0)

dP
d_tl +9(Py+ P)V vy =0 (3.5.9)
P

% + APV e vy =0 (3.5.10)

Now for (W-3.76) (zeroth order is Eq = 0)
E1 + vy X BO =0 (3511)

And the rest are trivial with these previous calculations.

Wakatani doesn’t explain why he neglects the complex conjugate parts when he writes out his
primed equations. Here he is tacitly assuming that we take the real part of whatever is left at the
end of equations, and hence that is why we can set these quantities so simply.

Using 2 =b -V x v; and so Q) = b - ik x v, we then find when taking b - ik x (W-3.90") that

—iwpoibk X v, = ib + k x (J; x By) — iPuik XK (3.5.12)
Qp
wpoQly, = iib « (T (k - By) — Bo(J - k) (3.5.13)
J,-B
0
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Now using podi = tk x By we find
J.-B B
wposdy = —(kB—O)(k Bo) + 0k 3 (3.5.15)
0 Ho
J.-B
By
The rest falls out simply from the manipulations that Wakatani describes
3.6 The Drift-Kinetic Equation
(3.6.1)

Let’s prove that (vg +vg) « (0 VB + ¢ V¢) =0 (with E = — Vo)
ExB
"q Vo

ExB

v uVB+vg:-qVp = 32 VB + I
BZVB Ex B+ ;(“E-EXB

(3.6.2)

2
"iB x VB.qV

mv
VG VB4 vg-qVp = —— 'MBZQQBs
_Mp B VB——%E-BX VB

T oBs

And because VB -E x B =E B x VB we see that we get perfect cancellation
i Vo = %V X f))
(W-3.112)

Let us derive (W-3.120) and hence (W-3.121). We begin with (
—UHb—i-VE—'—VG—FVC

dt
Then using (W-3.117) with v\/Z/K — uB — q¢
(W-3.117)

dv” . —1 dB dqb 1/2
TG ( E+th) (K — puB —q¢)
1 dx 1
= ——— (= (uVB+qV 3.6.3
ot CRACRRA) Pt 363
S ((UHB+VC) (VB +qVe) + (v + v +qVq§)) (3.6.4)
- (B+ V—C> : (—ﬁ VB + ivgb) (3.6.5)
U” m m
We see
bxr=bx (b Vb) — b x (—Bx (Vv ><b)> “B(b-V xb)— (Vxb)b--b) (3.66)
— BBV Xb) +Vxb=Vxb (3.6.7)
Here we use Bb = B with V x B = 0 so that
B b .
(—M+ V— x B) 5 VBxb=0 (3.6.8)
©K. J. Bunkers

b-Vxb=b-V x (B/B) =
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3.7 The Averaged Reduced MHD Equations

First, let’s get the metric coefficients. The given system is (r, 0, () where Ry > 0 is a constant with

r= \/ \/1’2+y — Rp)? + 22 (3.7.1)
tanf = (3.7.2)
Va2 +y? — Ry
¢ = —Rpatan(y/x) = tan(—(/Ry) = y/x (3.7.3)
Thus we find
9 . R 2zdx+2ydy 2-d 2 2_R rdx+ydy d
o 2(y/ 22 + y? \/—)—l— zdz  (V/(2*+y 0)(\/W)+Z z

2\/ Va2 + 4% = R)? + 22 \/(\/W—Ro)2+22

)(xda:+ydy) + zdz

¢<¢m e
(3.7.4)
(1- T
(g_r) N — (1 T ) (3.7.5)
L)y \/ /l‘2+y —I—Z2 \/T

ay T,z \/ /I2+y _|_22 \/1'2 T

or
(o) - _: a1

,y (Va2 +y?>—Rp)2+ =2
9 . P rdz+ydy 2 o P rdz+ydy
) \/l‘ +y Ro dZ \/m ) \/l’ +y R() dz — \/Ty
sec”0df = = df = cos“ 0
(Vx?4+y? — Ryp)? (V2?2 +y? — Ry)?
(3.7.8)
(@) - zx cos?(6) (3.7.9)

0),. " PP oy T
(@) - 2y cos?(0) (3.7.10)

Y ) .., V22 + y2 (/22 + y? — Ry)? o

a0 cos*(0)

— = 3.7.11
( Z)x,y \/I2+ 2_R0 ( )
¢ . —d¢ xdy—yd:c ¢ \yde —axdy

seCQ(—R—O) Ry o = d¢ = Ry cos (RO)T (3.7.12)
2
Y,z
_ 2
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28 The Averaged Reduced MHD Equations

¢ _
(&) N -0 (3.7.15)

We form the Jacobian matrix and remember the form of the metric tensor

() o)
Cor o or 2y 2y P
o) 0 2]
8(7“707{) . 8_5 a_?é 3_5 . . mzcrosQ(G) . ychOSQ(G) cosg(e)
— 2 = = 2 2
A,y z) %o % Va2 (Va2 -Re) . a2 (VR -Re) VR Ro
| Oz Oy 0Oz RoyCOSQ(RLO) Rocos2<Rio> 0
Rz Tz
R R,
m(l z2+y2> y(li z2+y2) z
r r r

oY _ _Roz 0
L $2+y2 ZE2+y2
(3.7.16)
_ B -
x| 1-— 0 )
( z24y2 Tz Y

9z,y,2) _ O (3.7.17)

SRS
15—
g 5ok Bk (3.7.18)
Ox* Ox*

and remember (df)? = g;; d¢; d¢;. So we have

(d)? = g, (dr)? + goe( ) + gec(AC)? + (gro + gor) dr dO + (grc + ger) drdC + (goc + geo) dO dO
(3.7.20)

Remember that we have
r? = (Va2 +y? — Ry)? + 22 = 2® +y* — 2Ry + 2 + RS + 2 (3.7.21)
2 2_ R 2 2_ R
VEFY Z o VEEY (3.7.22)
VRN S

X

Let’s find the metric tensor components first

or\> or\? or\? Ry : 2% + 92 22
g’r"l‘ — _ + _ + _ — 1 — _|_ J—
oz oy 0z /22§ 42 r2 2
S TR L e (3.7.24)
Va2 2+ y?

r2 r2
? +y* + 22 2Ro\/2% + P N Ri _ 2+ 9’ —2Rp/w* +y? + Rj2®
r2 r2 -2

72

cosf =

cos((/Ry) = (3.7.23)

r2
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o _Or08 0o oron
C Oxdxr  Oydy 020z

(- Ry T —zx cos? 0
Vat+y2 ) T+ yr(Va? +y? — Ro)?

Ry Yy —zy cos? 6 cos? 0
+ 1=
V242 ) T2+ 22+ 1P — Ro)? \/:L'2+y — Ry (3:7.25)
_ (1 Ry —zcos? 0 (2 + y?) zcos? 0 -
Var+y2 ) ry/a? + (Va2 + 2 — Ro)? r(y/2? +y? — Ro)

—zcos? 6 2 cos?d
Vit+y? - R +
< e 0> r(v2? +y? — Ro)?  r(v/2? +y? — Ry)

—zcos? 6 zcos?d

\/$2+ —Ro \/$2+ Q—Ro)
or 8C or 8(’ or 8C
= + =+
Ox Ox dy 8y 9z 0z

_ (1 . \/:IJROTy ) : (yRocoiszo)) . (1 ) \/xROTy > v (—RoCOS;(C/Ro)) -

_ (1 B Ry ) yRocos*(C/Ry)[1 — 1] _0

99_%2+%2+%2
giax oy 0z

2222 cos* 0 22y% cos* 0 cos* 0

(22 +y?)(Va? +y* = Ro)? 1'2+y )(Vx? +y% — Ry)* \/:c2+ 2 _ Ry)?
4
(22 + y?)2% cos' 0 cos* @ coS 9[2 + (/22 + 12 — Ry) ]
(22 4+ y2) (2% + y? — Roy)* /932—i— — Ry)? /—x2+y Ry
r? \/$2+ _RO - 1

(Va2 +y? — Rp)? rd 2

oc _ 99 9¢ | 060¢  0909¢C
Ox Ox ay 83/ 020z
B —zx cos? 0 yRy cos?*(¢/Ro) —zy cos? 0 —Rycos*(C/Ry)
\/a:Q + yz(\/la + 12 — Ry)? 2 \/1.2 + y2(\/x2 + 92 — Ry)? T
2
. cos” 6 (0)
Va2 +y?— Ry

_ —cos*fcos?*((/Ry) [zy — zyl Ry

VR (Vat iyt = Ry)?

(3.7.26)

(3.7.27)

(3.7.28)
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30 The Averaged Reduced MHD Equations

o (9N, (06N, (96N _ y*Ricos'(¢/Ry) | Rycos'(C/Ro)
g = + + = + +0
ox dy 0z xt x?
0 5 . ) (3.7.29)
_Riy*+a%) 2* R
- 4 (3:2 +y2)2 ) + 92
Because the tensor matrix is diagonal, we see that g; = 1/¢" and so
grr =1 (3.7.30)
goo = 1° (3.7.31)
22 4+ ¢ x2+y2 /—332 Ty 9
9¢ = TR Rg R2 R2 R (Vor s~ o)
2 + 2 _R
_ e é’% o 112 (\/x2+y —R0>
(3.7.32)
2 (/22 + 12 — Ry)
:1+T—2( vy o) +—r<\/x2+y2—Ro)
R r Ry
2r r? r 2
=1+ R—OCOSQ—I— R cos?f = <1+EOCOS(9)
So we recover (W-3.144) with considerable effort, that is
2
(d0)? = (dr)? +r*(do)* + (1 + RL cos 9) (d¢)? (W-3.144)
0
Note the inconsistency of defining
e,
V, = -—(¢— W-3.149
=iy (W-3.149)
but assigning ‘a%‘/l Vi| ~ O(9). Because |V| = | — Ca_c| = ‘a%‘ this is a completely impossible

assignment. I believe that Wakatani meant |6%| = | V.| ~ O(0) and later = O(1), as this would
make sense.

We combine Ohm’s Law and the induction equation

OB
T —__VxE 3.7.33
T X ( )
E=-vxB+nJ (3.7.34)
B
%—t:—V X (—v x B+nJ)
—Vx(vxB)+-VxLVxB
Ho . (3.7.35)
=vV-B+B-W-BV.v-v. VB+M— [— V(v+B) + V°B]
0
—B.-W-BV.v-v-VB+ LVB
Ho
B 0B
B _ 9 +v-VB=B:.Vv-BV. var V’B + v ~VB
At ot Ho (3.7.36)
—B(V-v)+B- W+ -LVB
Ho
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We now take the é component of this equation so
.~ dB

2 EB(Vev)+E-(B- W)+ LE.viB (3.7.37)
dt Ho
d(¢-B) _ CB(V-v)+B-V(E¢-v)—v-(B-VO)+ Lv¢-B) —- IB. v (3.7.39)
dt Ho Ho
dBe _ —B(V-v)+B- Vo —v-(B- V) + & V?B; — 1. v¥¢ (3.7.39)
dt 1o 1o

Now, Wakatani claims that the terms involving B - V¢ and B - V2¢ are zero (at least implicitly).
This is not at all clear, and I believe it is an incorrect statement. It may be true that they are zero
to the order of accuracy we are looking for, although it seems a bit unlikely. We can calculate that

Y x
V( = RO—xQ e Vr — Ro—x2 Y Vy (3.7.40)
0(x2+y2)2 B 22 4 12 OR2
Va2 +y? y x Y x
ve/| Vel = YL (R —Ry5—— W)= —F—=Vo - ———
C/‘ C‘ RO ( OxQ + y2 Vr 0x2 + y2 Vy /12 + yQ vz 2 + y? Vy

= sin((/Ry) Va — cos(C/Ry) Viy = sin(¢/Ry)& — cos(¢/Ry)y = ¢

V(> =R (3.7.41)

(3.7.42)
Thus
B V(=B V({).x+B- V({),§ = B V(sin(¢/Ro))X — B+ V(cos(¢/Ro))¥
R() RO
_ Bcos(C/Ro) T Bsin(C/Ro) 2. (3.7.43)
B . -
= (cos(¢/Ro)X + sin(¢/Ro)¥)
V2 +y?
B { x Ry Tz Yy
=— 2L cos((/Ry) |- |1 - — | Vr — —— VO + =V
Var+y? (/80) r ( \/x2+y2> Vaz+y? Ry ‘
. Y Ry Yz T
+sin((/Ry) |=|1— —m—— | Vr - ————V0 — — V
cma |2 (1= ) v - )
B¢ { x x Ry Tz Yy
= Nl | Vr— ———Vh + =V
\/x2 + 92 \/a:2 +2 |7 ( /22 1+ y2> /22 1+ Y2 Ry ¢
s D " - N (3.7.44)
+— 21— |- — W - W }
/CU2 +y2 _7" ( /.T2 +y2) /CU2 +y2 RO C
B [ a2 i
S S I v VY 1— B )| >V
Va2 +y? T Var+y? )]
B . V2 +y?— Ry _Zh
2+ y? \/(\/W—Ro)2+22 r
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32 The Averaged Reduced MHD Equations

cosf z A cosf Z A
=B r— 0| =B | —1——0 3.7.45
C(\/:Ubry? rv/x? +y? ) C( R rR ) ( )
with R = /22 4+ y? as a definition.
Now if we wish to rid ourselves of the variable z, we could use
z= (/2?2 +y?> — Ry) tanf = tan v/ r? — 22 (3.7.46)
22 =tan® 0(r* — 2%) = 2*(1 + tan?0) = tan’ Or? (3.7.47)
tan 6 sin
z = r= r = sinfr 3.7.48
V1 + tan? 6 cos? ) + sin” ( )
So we find
2 cos sinf ~
B-V¢=8B r— 0 3.7.49
¢ (e 0) (3.7.49)
Note, that if we convert to a pure cylindrical system, (R, z,() (note that f = —¢ for normal
(R, ¢, z) coordinates) we find
r? = (R — Ry)* + 2* (3.7.50)
R — R() z .
Vr = " VR + ;Vz = cosf VR +sinf Vz (3.7.51)
tanészR0<:>COSQZ ;RO<:>sin0:§ (3.7.52)
R — Ry)Vz—2VR R — Ry z
0 — 2 0 ( 0 — _ R
Vo= s (R — Ry)? R+ (R-Rop+2"
(R—Ro)?/r? (3.7.53)
_ cosf Vs sin 0 VR
r
Thus, (VR = R)
B B 0 in 0
— (cos0Vr — 2 V) = = <cos9 [cosO VR +sinf Vz] — 2 |0 vz — 20 VRD (3.7.54)
r r
B
= EC (Vr [cos® 6 + sin® 6] + VO [sin 6 cos § — sin 6 cos §]) (3.7.55)
B¢ By
= —VR=—-—VR 3.7.56
I I ( )
in agreement with the plasma formulary for B - VA in cylindrical coordinates.
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A Description of Magnetically Confined Plasmas 33
Similarly,
Vi = V2<é>xx+ V2<c’> y
\ /x2 + y \ /x2 + y

AT
- Y [% (1_L> vr_x—v9+_vg

(22 4 2)3/2 ) + 42 ) + 32 Ry (3.7.57)
x Y Ry Yz
S A I . _ I _
+ (22 + y2)3/2 [T ( o y2> Vr e 2 Y e VC
. —(332 + y2) Ve — -1 éj RO
= RO (xQ N y2)3/2 - R0($2 + y2)1/2 \/m
1 A 1 4
N (932 @yt RS
“ —1 ~
v’ (—C) = ﬁ(—C)
1. (3.7.59)
Vi = ¢

and so we agree with the plasma formulary for cylindrical coordinates, as well.

Thus, in fact our equation should be

B B £
% = —B(V-v)+B: Vi —v- Pf (cos 6f — sin 99) + % V2B; — ;7 B- V¢  (3.7.60)
dB B B
_dtc =—B:(V-v)+B: Vo, — Ec (vrcost —vpsinf) + o VQB + ;70 Ré (3.7.61)

If we were to look at orderings after inserting (W-3.147), I believe that we would recover % =0
to O(6%).
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Chapter 4

The MHD Equilibrium of a Toroidal
Plasma in Three-Dimensional Geometry

4.2 The Generalized Grad-Shafranov Equation

We have with a = a(r) being a flux function so that

B:-Va=V-:(aB)=0 (W-4.5)
%-Va:VxB-Va:V%BXV&)Zo (W-4.6)

0
V.B=0 (W-4.7)

We can choose a = ¥ the poloidal flux function. We note that as we are on a particular magnetic
surface, so that the derivatives are only along the poloidal and toroidal directions, and not the
“radial” direction.

So we then find (assuming p = p(¥))

JxB=W (4.2.1)
JxB- VU =Vp. VU (4.2.2)
(VxB)xB-: VU = §—$| ik (W-4.10)
[(V¥)B — B(WVW)]: VB = j—$| v |? (4.2.3)
with AB:CD = (A - D)(B- C).
If we take
B = VU x by + Fby (W-4.11)

with F' a poloidal current flux function and by and b, vectors on the magnetic surface (but with
no implied direction, as we will see).

So then
pod =V xB =V X [VU xby+ Fb:|=V x (V¥ x by) + FV x b+ VF x b, (W-4.12)
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36 The Generalized Grad-Shafranov Equation

Plugging these into our previous (W-4.7), (W-4.8) (B - V¥ = 0), and (W-4.9) (J. V¥ = 0) yields

V-B=V- (VU xby)+V-(Fb)

= by - Vx VU — V-V x by + VE-b;+ FV - b, (4.2.4)
=0
FV - b= VU-V x by (4.2.5)

where the % VU . V X by vanishing because VWU has no variation in either the ¢ or # direction
which is all that by has (with VF = £ V¥ since F is a flux function).

B. VU = (VU x by~ VU + Fb - VU

MR (4.2.6)
=0
b, V¥ =0 (W-4.14)
and

pod « VU = VU -V x (VU X by) + F V¥ - V x be + VF x b=V (42.7)
_ 2.
— V-V x (VU xby)=FV¥:V xb, (4.2.8)
VU - [V - (VUby — by V)] = FV¥ -V x b, (4.2.9)

where we have used
C-Vx(AxB)=(C-A)V-B-(C-B)V-A+C-(B:- VA)-C-(A:VB) (4.2.10)

C-Vx(AxB)=C-[V-(BA—AB)] (4.2.11)
(4.2.12)

V-V x (VU xby)=(VU. VIV -by — (VI -by)V - VI + VT (by- VVI) - VT . (V.
= |VU|*V - bg + VU - (by - VVU) — VU . (VU . Vby)
= [PV =Dy + VU - [V - (by VI)| — | VEPV Dy — VI - (VT - Vby)
= VU - [V - (by VI)] — VU . [VIby] + VI-bg VT

= VU - [V - (by VI — Villby)]
(4.2.13)

Note that in our case we can use

VWU .V x (V\I/ X bg) = (8i‘11)e¢jk8jeklm(8l\ll)b9m = GijkEklm(ai\If)aj(al\If)bgm

= €;ik€kim [8] [bgm(al\ll)(al\p)] _ bem(alllf)aj@\lf] (4.2.14)

Now note that (first swapping the order of differentiation and then swapping order in the Levi-
Civita tensor. In the second, just exchanging dummy indices ¢ and j completely)

eijkeklmb@m(al\lf)aj&\lf = Eijkalmbgm(ﬁl\I/)aiaj\p = —ejikeklmbgm(ﬁl\ll)@@j\lf (4215)
e,-jkeklmbgm(alllf)aj&@ = ejikeklmbgm(ﬁlkll)@aj\lf (4.2.16)
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The MHD Equilibrium of a Toroidal Plasma in Three-Dimensional Geometry 37

and so

€;ik€kimbom (O V) 0;0; ¥V = —€;ik€ximbom (1Y) 0;0; ¥ (4.2.17)
€jik€ximbom (V) 0;0; ¥ = 0 (4.2.18)

Continuing, then we find

VW - V x (VW X by) = €51€11m [0 [bom (01 ) (0; V)] — by (39550, V]
= (60jm — Gim015)0;[bom (01 W) (0; V)]

(4.2.19)
= O [bom (W) (;W)] = V « (| VI |*by)
where bp;0; ¥ = VWU - by = 0 has been used.
Thus, collecting all we have
FV b= VU .V x by (4.2.20)
VU - b =0 (4.2.21)
VU - by =0 (4.2.22)
~V (| V¥*by) = FVV - V x b, (4.2.23)

Thus, I don’t believe that you can get (W-4.13), (W-4.15), (W-4.16), (W-4.17), and (W-4.18)
simply from these three relations. The choice of setting all the terms to zero individually will
certainly work, assuming that it is consistent to choose all these terms to be zero.

We see that this can work by choosing the relationship between by and b, as (W-4.19).

Vi x (Vh x V)

by =Db 4.2.24
0 ¢+ |V\I’|2 ( )
be = VI x VA (4.2.25)
We then see that (use f = Vh x V¥ so that (VU x f) x VU = f| VU|? — NVIf—TT)
Vi x (Vh x V¥)
by x V¥ = b, x VU + N x VU
(Vh x V)| V]2 (4.2.26)
=b G
¢ X VU + |V\1/]2

=b¢ x VU + Vi x VU

as required.

It then easily follows (from V - (Va x Vb) = 0) that (W-4.22) is true and (W-4.23) is simply the
rightmost relation in (W-4.22).
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38 The Averaged MHD Equilibrium Equation

4.3 The Averaged MHD Equilibrium Equation

First let’s show that [f, g] = Vf x Vg- ¢ is a Poisson bracket (note that [f, g] = Vf x - Vg =
—Vf x Vg - (¢ is also a good Poisson bracket). The required properties for a Poisson bracket are

[f9l=—1g, /] (4.3.1)
[f+g,h==[f,h]+][g, Al (4.3.2)
[fg.hl=—flg. R+ [f, hlg (4.3.3)
o lgs M+ g, [h, S+, [f, 9]l =0 (4.3.4)

Let us verify them for f, g, h.
[f.g]=VfxVg-{==Vgx Vf-$=~1g, f] (4.3.5)
[f4+g,hl=V(f+g) x Vh-(=Vfx Vh-(+ Vgx Vh-C=[f, bl +g, h] (4.3.6)

[fg, h] = V(fg) x Vh-{=fVgx Vh-{+ Vf x Vh-8g=flg, h]+[f, hlg  (43.7)
and finally

[folg, P +1g, (b, fII+ 1R, [f, 9]l =0 (4.3.8)
Vix V(Vgx Vh-C) - &+ Vgx V(Vhx Vf-&) -+ Vhx V(VFfx Vg-&)-E=0 (4.3.9)

Using Einstein index notation we see

Vi x (Vg x Vh+€) &= Geii(8;F)Ok[Cetmn(0mg) (0nh)] = Cicijh€imn (8, )Ok[C(Omg) (Bnh)]

(4.3.10)
= [51l<5jm5kn - 5jn(skm> - 6im(5jl5kn - 5jn6kl) + 5zn <5jl(5km - 5jm5kl)] C’Lajfak [Cl(amg) (anh>]

(4.3.11)
= G(On 00 G101 gOnh] = 00 O[O g0 = G (DS DulGiOmgOuh] = D fOUGOMGDML) o1

+ G0 f On[G10mgOnh] — O f OGO gOnh])
Looking at the first term in parantheses, we see (things in {} are not operated on by the differential
and GG =¢-¢=1)

GO f O — DS O) [} Db + {GDh}Dmg + {OmgBuh} G (4.3.13)
= QO [ QOmg0n0nh + GOn [ G0nN0n0mg + GO [ O gOnhOn(y

— (GO fGOmgOmOnh + COn f G0ph0:m0mg + GO fOmgO0nh0n )
= Vf-VgV2h+ (VhVf: VVq) + Vf- Vg(¢Vh: V)

~ [(9F Vig: YVB) + V- VBV + Vf - Vh(E Vg V)

(4.3.14)

(4.3.15)

The second term in parantheses is given by

(01 O — On fO1) {G1Omg}Onl + {G1O0nh}Ormg + {Omg0nh } ] (4.3.16)

= ((C: VYY) VPh+ - VI(EVR: VVg) + - Vg( VS Vh: V) s,
— & Vg(ViEs V) + Vf - V(e V) + (E - Vi) (V- )V -] -
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The MHD Equilibrium of a Toroidal Plasma in Three-Dimensional Geometry 39

and finally the third term in parantheses is given by

Ca(01f O — Om 1) [{Gi0m g} Onh + {01} Omg + {OmgOnh} ) (4.3.19)

= GnO1f QOmgOmOnh + CuOLf GO0 Omg + GOy f O gOnhOm G (4.3.20)
— (CaOm fCOmg010ph + (O f GO h010mg + CuOm fOmgOnhO1()

=+ VF(CVg: V) + ({2 Vf Vh) Vi + (- VA(Vf Vg: W) (4.3.21)

— | Vf - Vg(EEs VVR) + - Un(VFE: V) + (- VR)(VF - Vi)V - ]
So we would find altogether (using V - V( = 0) that we get (then using permutations of f, g, h)

[f [g, W] = Vf - Vg V?h+ (VhVf: VVg) + Vf - Vg({ Vh: VC)

— [(VfVg: VVR) + Vf- VRV + V- VR(E V- vé)}
+(¢¢: Vf Vg) VPh+ ¢+ VF(EVh: VVg) + ¢ - Vg(Vf Vh: V)
+ c Vg(VfE: VVRh) + Vf - Vh(CE: VVg)}

+¢ - Vf({Vg: VVA) + ({: VfVR) Vg + ¢ - Vh(Vf Vg: V)
| Vf - V(& wVm) + & In(VsE: V)|

lg, [h, fll = Vg VRV*f + (VfVg: VVh)+ Vg- VA Vf: V()

(Vg Vh: VVF) + Vg VIV 4+ V- VI(EVh: vé)}
—(¢¢: Vg V) V2 f + ¢+ Vg({Vf: VVh) + (- Vh(Vg Vf: V)
+ & Vn(Vgl: V) + Vg - VF(EE VYR

+¢ - Vg(E Vh: VVF) + ({: Vg Vf) VPh + ¢ - VF(Vg Vh: V)
~ | Vg Vn(EE: vr) + - r(Vel: V)|

[h, [f, g = Vh- VfVg+ (Vg Vh: VVf)+ Vh- Vf({ Vg: V()

(VR Vf: VVg) + Vh- Vg VEf + Vh- Vg(E VS vé)}
—(¢¢: VAVf) Vg + - VI(EVg: VVf) + ¢ - VF(VhVg: Q)
+ c Vi (VAhE: VVg) + Vh - Vg(EE: VVf)]

+¢ - VR(EVS: VVg) + ({C: VR V) VP f + ¢ - Vg(VRhVf: V)
— [V 9r(EE: VVg) + - Vg(é: VD)

We can now see the cancellation term by term. Remember that VfVg: VVh = VgVf: VVh.
Let’s mark similar terms with color to see it.
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40 The Averaged MHD Equilibrium Equation

Vf - Vg V?h + + Vf- Vg Vh: V)

— [(V/ Vg: VB + Vf - VRV + Vf - V(E Vg V)]

— [(6&: VF Vg) PP+ C - VIV V) + & Vg(VF Th: V)
4 [E Vg(VIE: VR + V- VR(EE: vvg)]
+ ¢ VF(EVg: VR + & Vh(Vf Vg: V)
= [ Vr- vg(éé: vom + |

+ +(VfVg: VVh) + Vg - Vh(EVSf: VE)

~ Y Vg VfVh+ V- Vi(E Vi vé)]

= [(€8: Vg un) V2r 4+ & Vgl Vs V) + & VR(Vg VS F)]
+ ¢+ V(Vgl: VVS) + Vg V(EE: TVR)]

¢ Vg(EVhs V) + (682 Vg V) VP + &+ VF(Vg Vh: V)
— [ Vg V(e vV + & VF(Vol: TR

+ Vh- Vf V% + + Vh- Vf((Vg: VE)

- - + Vh- Vg Vi V)]

- | +C - VE Vg V) + ¢ VI(VRVg: VE)
+ [+ V(VRE: V) + Vh- Yoz VIS

¢ 1 (8E5 VhVg) VEf + &+ Vg(Vh VS W)

[ Vh. VF@EE: VVg) + - Vg(VAE vw)}
The sharp-eyed will notice that there are terms of the form (I have left all of these in black)
¢ Vh(VgVf:VE) =& V(Y Vg: V) (4.3.22)

which do not obviously cancel each other.Using é = k V( with k some function, then Vé =

Vi V( + k VV(. We then have

- VbV VI TVNG) — - VB(VFVgTVVC) + &+ Vh(Vg VS Vi V) — &+ Vh(Vf Vg: VK VC)

(4.3.23)
= ¢+ Vh([Vf - Vk]|[Vg- V(] = [Vf - V(][Vg- Vk]) (4.3.24)

Thus we see in general that the only way for cancelation is that f - Vh =0 (or that £ = constant).
This is in fact implied with f, g, h being independent of ¢ so that V(f,g,h) ¢ = 0. Thus, we see
that all these types of terms are in fact zero.

Where (W-4.32) comes from is a bit of a mystery. Given our previous statements on the definition
of a Poisson bracket we might expect

B-Vf=[f, V] +g—£ (4.3.25)
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rather than Wakatani’s

B-Vf=[V, f]+ g—g (4.3.26)

based off of (W-3.198)
B.v= Boa% VU x (- (W-3.198)
B-Vf:Bog—‘ngV\I/xf-Vf:Bog—ngfo s (4.3.27)

Wakatani’s definition is fine, although a bit non-standard. Even taking Wakatani’s defintion as
given, though, it is still a good bit mysterious how one can obtain

d - __df 9 of af| o
SB-VH-B-VZL=21w - |v, L SN - W, f]] - ¥
AR R O L R T BT RACH LIS B A
(4.3.28)
From now on, we will use [r,s] = Vs x Vr ¢ = Vr x &+ Vs as our definition for the Poisson
bracket. As one would expect
d - d dof
E(B‘Vf)—a[‘l’,f]Jr&a—c )
_[dT df d¢ dof -
- {dt ’f] * [\IJ dt} TV VI T qac
_ df df 0 df
B Vo= [\If dt} *ad (4.3.30)
So that
d - __df [dv dé dof o df
~—(B- _B.Vv2ZL = |—— U x — . v o2l 22 )\ 2
a (B V) Var {dt’f]Jrv T Vf+%ﬂ+dta¢ {Viﬂ+a¢dt
dv d¢
= [E,f]—FV\I/xE-Vf—l—D_f
(4.3.31)
Unfortunately, if we use the approximation that follows, we find that
dof 0df
—— - — = =D_ 4.3.32
dt o¢ oC dt /70 (4.3.32)

This approximation is that & = 2 +u+ V and further that u- Vf = Vu x ¢ Vif (W-3.165)

[also noting that V| f = Vf for f independent of ( and that the i—f term is zero when expanded
this way] we find

d - _ df [0V A oV
E(B° Vf)-B- VE_ o T Vu x - V\I/,f] +D_f= {E_[\P’u]’f} +D_f
(4.3.33)
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where we have used Wakatani’s reversed Poisson bracket definition.

We find
0 |0 0 2
D_f = %+Vu ¢ Va—g—a—C%Jr—C(Vuxc-Vf)]

0
o (4.3.34)
:—Va—cxc Vf — Vu><aC Vf:{, C]

(again using Wakatani s reversed Poisson bracket) because Vu x Vf should be purely in the é
direction and has no component in the C direction.

Further noting that ¥ = A + ¥, with 8‘1/’1 = (0 we find

d = df [0A  Ou
d = _ df [0A  Ou
(4.3.37)
Note that this is rather different than what Wakatani actually obtains,
d _ df 0A  Ou
" (B- Vf) — BV = [W “a [u, 9] , f} (W-4.34)

A simpler method of getting this is through approximating immediately that
Vg

d 0 0
d—f ai b Vuxé-Vig = a—j ~Ju, g] (4.3.38)
or using his reverse Poisson bracket definition
dg _ dg
= + [u, g] (4.3.39)
So that what is found is
d d do
GB V) =G
9 9 of of (4.3.40)
S At )+ 2 [ 2
df aof B of] , a9f )
BV =B V(O f1) = v S O A ] (s
This is a bit suspect compared to our earlier exact answer, but we now find
d df 0 99 af
G BBV = S g g2 O
ofl o 5 (4.3.42)
- ([q, o) +9—(%+[\D, . 1+ 2l f])
0 ) 0 0
== v Sl S S A e - ]
(4.3.43)
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So the mystery is demystified. In any case, applying the Jacobi identity for the Poisson bracket,
we find

(W, Ju, fl]=—[u, [f, Y]] = [f, [V, ul] (4.3.44)
Thus,
[u7[@’f]]—[w,[u’f]]:[u,[@ ) ,\IJH—F[f,[\D,u]]:—[[\ll,u],f] (4'3'45)
Thus,
(551 -1
:%[\1/, - {qf %} + [u a—ﬂ —%[u, =19, 4, f] (4.3.46)
ov  Ou
= |:E — 8_< — [\II’ u] , f:| (4347)
0A Ou
- [W -5~ f} (4.3.48)

again different from Wakatani declares.

Thus, my two methods agree and Wakatani most likely has a sign error on his [V, u] , f] term.

4.4 A Three-Dimensional MHD Equilibrium Calculation
based on the Variational Principle

Let’s show how one gets (W-4.78-79) from the linearized equations. Using @ = Qo + @, where )
is independent of time (but not necessarily of spatial coordinates) and v = v. We have to first
order

g—f+ V- (po¥) =0 (44.1)
0B ~
5 = V x (v x By) (4.4.2)
with v = % and £(x,0) = 0 = B(x,0) and p(x,0) = 0. Thus, integrating
- ~ ! 0
=507 ==V - [ A0 e ==V (e =) = <V (€)  (443)
and
~ D ' / 86
B(x,t) — B{x;0) = =V x {BO X / dt —] =V x (€ x By) (4.4.4)
. o

just as described.

Note that in this case the adiabatic law being followed can be put as

dP 0P
= - . = — . 4.4.
T o +v- VP yPV v (4.4.5)
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44 A Three-Dimensional MHD Equilibrium Calculation based on the Variational Principle

which will yield Py = p} then we see that we can get with Py independent of time that

opP L 0% ¢
o T VA= 7RV (4.4.6)

t OP 3 ot 23
/0 d’ %+ / dt' =5+ VP = /0 At — APV -2 (4.4.7)
P(t) - PO) + £(t) - VR = -1 RV -£(1) (4.4.8)
ﬁ(t):—f(t)'vpo—’ypov'f(t) 4.4.9

just as described in (W-4.81).

With
P B-B P
W = /d3 <— +—) = /d3x ( + ) 4.4.10
2410 -1 20 -1 ( )

B P
W = /d3 ( 0 + i ) (4.4.11)
v—1
For our small perturbations 0B = B and 0P = P so that
Ho v—1
We then use that
B-Vx(&xBy)=B-(&V-B;j—B¢: VB +BBj: VE-B-B)V - ¢ (4.4.13)

If we only take to first order then we see that the B — By and thus we find

B.-V x (f X Bo) = —B0£ VB() + BoB(] Vﬁ BO BOV £ (4414)
= ¢ V(B3/2) +ByBy: V&€ — B2V - £ (4.4.15)

So combining, we would find

W= — / & (E- V(B§/2) —~BoBy: VE+ BV £ £ VR +1RV - E) (4.4.16)
Ho v—1
2 2
SW :—/d?’x (5- V(B3/2) ~BoBo: V& & VR V-g[—0+ 7P D (1.4.17)
o T po v —1

We can use that aV - € = V - (a€) — Va - € and that the V - (a€) term disappears due to the
boundary condition n - & = 0. Thus,

B AP B AR B AP
[arv e 2] = [arv. (S 2 e) - [arv[Zy 20
po v —1 po v —1 po  v—1

(4.4.18)
B2 P,
- fatn ({E T - [ v [ 2
(4.4.19)
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We have then found

. 2 _— . . .
W = —/d% (g V(By/2) = BoBo: V€ | & VR —&- V(B2 /o) — 18- Vi VPO) (4.4.20)
Ho -1 71
. 2 . _ .
:/dgx (5 V(Bj/2) + BoBo: V€ n (v —1)¢& VPO) (4.4.21)
Ho y—1
. 2 M
= / B (5 V(By/2) + BoBo: VE | VP-g) (4.4.22)
Ho
They find that
W = —/d% F-¢ (4.4.23)
) _ 2
F:i(VxB)xB—VP:B vB v(B/Q)—VP (4.4.24)
Ho Ho
We also can now use that
BDBO: VE = BO . V(BO . E) - EBO: vB=V. (BOE . Bo) — 5 . [BQ . VB()] (4425)
Again, we can use the divergence theorem on the first term with By - n = 0 to find
/d% BB, : vg:/d%v-(Bog-Bo)—/d% By - VBy] - &
(4.4.26)

~ [ o nBig By - [ & Be- VB¢
Thus, we have

SW :/d3x (E'V(B§/2)+BOBO=V€+VP) :/d% (V(Bg/Q)—BO'VBoJFVP).g

Ho Fo
_ _/dgx (BO' VBo — V(B3/2) vp) i
Ho
= — /d3a: F-¢
(4.4.27)
p_ Bo-Bo— V(5;/2) VP — i(v x By) x By — VP (4.4.28)

2 Ko

which we note (taking the quantities to be their equilibrium values) matches Wakatani’s (W-4.82)
and (W-4.83).
4.5 The Solov’ev-Shafranov Equation

Lots of math, but seems straightforward.
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4.6 The Pfirsch-Schliitter Current, and Equilibrium with
Rational Magnetic Surfaces

We use
JxB=Vp (4.6.1)
JIxB=W (4.6.2)
V.J=0 (4.6.3)

Using J, = —b x b x J with b = B/|B}, so that, if we solve for J, via

Bx(J,. xB)=Bx Wp (4.6.4)
_B% x (6 X JL) —Bx W (4.6.5)
Bx V
(J)e = =75 (4.6.6)
B x Vp B x W&
R (4.6.7)

Thus, we find with Jy =B that V-J =0—-V .J; = -V .J, that

B x VY&
V-[oB]=-V- % (4.6.8)
dP B x VW dP B x W d?P B
B. VO’ = —V . {@T} = —WV . |i 32 } + T (469)

We use a B given in a coordinate system (V, 0, () so that
BY=B-W=B-e"=0 ( )
B'=B-VW=B-é (4.6.11)
B =B-V(=B-¢e ( )
B =By VWV + By Vb + B: V(¢ ( )

We can also write

By=B-JVOx V(=B-ey (4.6.14)

BQZB'jVCX WEB'G@ (4615)

BC:B°jWX VQEB'GC (4616)
with 7 =1/(VV . V8 x V() the Jacobian for this system.
With

dP B x W

B Vo —WV { Je } (4.6.17)

It is simple to see
V- (Vax Vb)=Vb-V x Va— Va-V x Vb=0 (4.6.18)
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for any a and b. Thus, V - (eg/J) = V - (e;/J) = 0. Thus, using the covariant representation of
B we find

B x VW (By- VY + B:V( + By V) x VY
B2
Bgeg/j — Bgeg/j Bgeg/j Bgec/j
_Beg (EY Lo g (B Doy (e &L g
= BQV 7 + 7 V<B2> BQV 7 7 V<B2) (4.6.22)
1 B By
We can further simply by the following steps.
B x VW BY BC B¢ Bg
V. ( B2 ) = jBeea -V (ﬁ) — ﬁeg -V <§) (4624)
B BB 1
_ R ¢ ¢
—Bee'v(jBeBg>_ 32 ee°v<ﬁ>
B BB ] (4.6.25)
— Ble, . 4 0 . —
Bec v(ngBZ)+ B2 €¢ V(jBC>
B B
:B"eg-v( - )—BCeC-V<—0)
B?B? B¢ B?
J J (4.6.26)

ByB¢ 1 BB, 1
T pe eg-v(ch)— B % V|75,

We can note that JB? = 20 4nq 7B¢ = 2 o that V[(TB%)™] = (57319)2 V(dLe) =

av av av
2 .
[dd;lj” (%)2] VY and similarly for JB¢. Thus, (using e; - €/ = d;;)
1
e+ v(ﬁ) xe - VW=e-e =0 (4.6.27)
1
€9 v(ﬁ) X €q - W:eg-evzo (4628)
So these terms vanish and we are left with
V‘<T>—BGQ'V(jB9B2>—B eC-V W (4629)

Now we can construct this as B+ term in two different ways. First let’s do it based off of the B8,
term.

B x VW . BC ¢ BC _nC Bg
LIS B O T e

B : BB + ByB’

DRAFT:Wakatani Notes ©K. J. Bunkers
June 16, 2016
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We can use that B> = ByB? + B;B¢ (due to e; - € = §;;) with our identities for JB? = W},(V)
and J B¢ = W/,.(V) so that we can write

- B . J
B v(j3932> Bfe, v<—%%> (4.6.33)

Similarly we can construct a B+ term off of the B%&; term.

V.(—BXW):—B.V( al >+Baé9.v< al )+B"é9-V< s ) (4.6.34)

B? J B¢ B? J B¢ B? J BY B2
By , BB + ByB’

Once again, we can use that B> = ByBY + B;B¢ (due to e; - € = §;;) with our identities for
JBY = ¥L(V) and J B¢ = ¥/.(V) so that we can write

Bx VW) By ) B?
- By 9 7
_ B v<jBCBQ) + Ble, v(%%) (4.6.37)

Now we can take —-%2—(4.6.33) and add this to --%—(4.6.37) for another expression for V- (B x %)
given by

B x VW (6%) BC (0%) j
. = B. — Be. - v
v ( B2 > ot Y <jB9B2) et Y (\IIP\IJT)

aq By ay 0 J
B-V B V| ——-
ag + o (JBCBQ) * ag + o eg (\I’/P‘I’/T)

B [ @z B¢ o1 By } V( J ) a1 Bleg — ayBle,

(4.6.38)

o1 + as JBYB? JB¢B2 LR a1 + g
(4.6.39)
We can note that
J J(Wpy) VI

=———" = —_— 4.6.40
“(w;) = Ty V' w 4640)

so that the V) term vanishes when dotted into ey or e, and we in fact have

B B B, B V. Bley — ayBS
v. x VYV _ . Qo D¢ _ a1 Dy / j/ . (05} (S77] Qo e (4641)
B2 ag + as JBYB?2  JB¢B2 AR a1 + s
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Thus, when we substitute we find

B
B.Vo=-PV- {XTQW} (4.6.42)
B OéQBC Cleg VJ alB(’eg — O{QBCGC
B-Vo=-P . — . 4.6.43
7 lal + a {jBGBQ jB<B2] <\IJ’P\II’T> a1 + a (4.6.43)
B —P,OQBC —P,OélBg f VJ a139e9 — agBCeC
B- = . — -P . 4.6.44
Vo {al + o { T JBB | SR a1 + az (4.6.44)
(4.6.45)
and so
(6%) _P/BC (03] —P/Bg 1 P’ [ aq 0 (67) ]
B-V]|o— — = - Bley — —B‘ec| - V.
{0 (al BB ot mdBB )| T 0w lm e O alY
(4.6.46)
(03] Bg [6%) BC 1 P [ aq 0 (6) ]
B.-Vi|c— P - = — Bey — —Bte| - V.
{U (a1 Y TBB? an+ s jB@B?)_ S i e
(4.6.47)
Here oy and ay are weight factors free except for a; + ag # 0.
If we take Hamada coordinates then J =1 = V.7 = 0 and so we find
(7] Bg (6] BC B
Jy=0B=PF — — — | = V)B 4.6.48
= |:@1+OZQB< 051+OCQBG:| B2+7( ) ( )
where (V) is the integrating factor. We can write this instead as
By B
Jy = P’B—zﬁ +7(V)B (4.6.49)
B9 B Qo BQ BC
. l__ _ /
=P B B2 P po—— [BCBQ + S B++(V)B (4.6.50)
so that it is simple to see
(6] BQBQ + BcBC
= 4.6.51
nV) = (V) + (16.51)
(6] 1
_ ' B 4.6.52
(V) + o BB ( )
Note that the toroidal current contained within a flux surface can be written as
% 27
It = / dv’ / do J- V(¢ (4.6.53)
0 0
It is not actually clear that this implies
(V) = J(V) (4.6.54)

because it is not obvious that I+ = Ir(V) or [df J- V¢ = J%(V) is a true statement (where the
factor of 27 has clearly been suppressed).
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50 The Pfirsch-Schliiter Current, and Equilibrium with Rational Magnetic Surfaces

A better way of seeing the truth of this statement is using that

_ V€ p_ _
IT_/ 95 B_/STdSn B (4.6.55)

We can use that
polene = / dSn-B (4.6.56)
S

It is clear from this that I.,. = Ir for our situation and that I.,. can only depend on the flux
surface you are on (it can have no 6 or ¢ dependence in our case). Thus Iy = Ir(V) is proven.
Now, we have

% 27
:/ dv’/ 49 J - V¢ (4.6.57)
0 0

So if we take z7; we easily see
2
(V) = / do J- V¢ (4.6.58)
0

Unless J¢ = J - V( is independent of # the only thing we can take from this is that J¢ = J¢(V,9).
Luckily, we know that in Hamada coordinates we have that B? and B¢ are flux coordinates and
so using

JxB=Vp (4.6.59)
J°BS — JBY = p (4.6.60)

We use that V-J =0 = 8‘]0 + aa? =0 and so

o [p BG 0J¢
— 4.6.61
50 { A } ac =0 (4.6.61)
B9 0
— ¢ —
[BC 50 aC} J>=0 (4.6.62)
0 0
B'— +B—|J =0 4.6.63
5] R
B- VJ =0 (4.6.64)
so that J¢ = J¢(V) is indeed a flux surface function.
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Chapter 5

MHD Instabilities in Heliotrons
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