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Chapter 1

A first course in functional analysis

A nice introduction to what and why we are doing things.
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Chapter 2

Old ideas in new contexts

Note for the first exercise given in the text (unnumbered) that the certain equation is z(z*—3) = 0

that yields

3
2z

Tyl = ———
BRI
I used python to program this iteration

chapter2 /iteration.py

#!/usr/bin/env python2
import numpy as np

# Solve a certain equation iwth x_{n+1} = 2x.n"3/(3(x-n"2-1))
def iterate(xin,tol=le—6,maxitercount=1le5):
itercount=0
xg2=xin
xgl=xin+2xtol
while ((np.abs(xg2—xgl)>tol)and(itercount<maxitercount)):
xgl=xg2
xg2=2/3.xxgl**3/(xgl*x2—1)
itercount+=l1
return xin ,xg2,itercount

print iterate (0.81)
print iterate (0.78)
print iterate (0.779)
print iterate (0.775)
print iterate (0.7747)
print iterate (0.77462)
print iterate (0.7746)
print iterate (0.77)

And the output is given by table 2.1
Where we note that v/3 ~ 1.7320508075688772.

2.1 Exercise 1

(2.1)

Prove that the ¢; and /., definition in two dimensions do satisfy the distance axioms (1) and (5).
(1) The distance from A to B is measured (in some suitable unit) by a real number d(A, B). (5)
d(A,C)+d(C,B) > d(A, B) (Triangle inequality)
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10 FExercise 1

input output iterations
0.81 -1.7320508075688772 12
0.78 1.7320508075688774 15
0.779 -1.7320508075688772 12
0.775 1.7320508075688772 8
0.7747 -1.7320508075688772 12
0.77462 1.7320508075688774 20
0.7746 -1.7320508075692274 15
0.77 -1.1526368786890824 x 101 7

Table 2.1: Input and Output for iteration.py.

l distance is given by xg,z1,%0,11 € R, d = max{|x; — z¢l, |y1 — yo|} whereas ¢, is given by
d = |z1 — wo| + [y1 — ol

Solution:

First, for (1), the operations given will never yield anything but real numbers given real numbers
as inputs. That is max and | - | only yield real numbers as output when given real numbers as
input.

Consider distinct points (if they aren’t distinct, the proof is trivial) A = (zo,y0), B = (z1,41) and
a third point C' = (z2,y2). Then, for (., we have

d(A,C) +d(C, B) = max{|zo — 22, [yo — y2|} + max{[zs — z1], [y2 — w1} (2.2)
d(A, B) = max{|zo — 21, [yo — 11[} (2.3)
We can use |z + y| < |z| + |y|. Rewrite
d(A, B) = max{|zo — x1]|, |[yo — 11|}

= max{|zg — 2+ T2 — 1|, |yo — Y2 + y2 — 1|} < max{|xo — xo| + |ra — x1], |Y0 — Yo| + |¥2 — v1|}
< max{|zo — T2, |yo — Y|} + max{|ry — z1], |y — 11|} = d(A,C) + d(C, B)

(2.4)
where we have used (for a,b,c,d > 0)
max{a + b, c + d} < max{a,c} + max{b,d} (2.5)
For ¢, we instead have
d(A,C) +d(C, B) =[x — 2| + [yo — y2| + [22 — 21| + [y2 — 01| (2.6)
d(A, B) = |zo — 1| + |yo — 1| (2.7)

We now use that |z + y| < |z| + |y| so that using z¢g — z1 = (29 — 22) + (x2 — x1) we find

d(A, B) = |(xo — x2) + (x2 — 1) + | (o — v2) + (2 — 11)| < |zo — 22| + |22 — 21| + |yo — Yol + |y2 — v1]
— d(A,C) +d(C, B)
(2.8)

proving (5).
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Old ideas in new contexts 11

2.2 Exercise 2

For the ¢, definition of distance in two dimensions, properties (1) to (4) are easily seen to be true,
and we know property (5) as a theorem in geometry. It must be possible to prove property (5)
from the definition above purely by means of algebra, but it is not bovious how to do so. Conisder
this problem.

Solution:
This is easy if we allow ourselves to define an inner product and use the Cauchy-Inequality, but
otherwise we run into problems due to

(z+y)* £ 2® +y° (2.9)

Later in the book we will figure this out via Minkowski’s inequality, which is certainly not a trivial
proof.

2.3 Exercise 3

A signal sent by telegraph or fed into a computer may be represented by a series of noughts
and ones. 0 indicating no pulse and 1 denoting a pulse. In the study of errors that may arise
in transmission the Hamming distance is defined as the number of errors in the first signal that
would be required to turn it into the second signal. For instance the distance between the signals

(2.10)

S = %

0
0

S = %
— O %

1
1

is 3; the signals differ at the points marked *. We will assume that all signals are of length 5 as in
the example above.

2.3.1 Axioms of Distance
Does the Hamming definition satisfy the axioms of distance and so define a metric space of signals?

Solution:

(1) Clearly, we will only ever get non-negative integers out, which are real numbers so (1) is
satisfied.

(2) We only get non-negative integers so (2) is satisfied.
(3) The only way to get a distance of 0 is when the two signals are the same, so (3) is satisfied.

(4) The order of evaluating the number of “errors” makes no difference for the distance as defined.
Thus (4) is satisfied.

(5) If we consider three signals, a, b, ¢, that are distinct from each other then we need to show

d(a,b) <d(a,c)+d(c,b) (2.11)

Sawyer Notes ©K. J. Bunkers
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12 Exercise 3

(if any of a, b, ¢ are non-distinct then it clearly follows because one of the distances on the right-side
will be zero, and we can replace the appropriate variable so that both sides are identical).

Consider this bit by bit. If d(a;,b;) < d(a;,¢;) + d(c;, b;) for every bit, then clearly d(a,b) <
d(a,c) + d(c,b) will be true. We have a few cases:

a; = b;: d(a;,b;) = 0 and so clearly the right hand side will be greater than or equal to this
as our distances must be positive.

e a; # bj,a; = ¢; (s0 b; # ¢;): Now d(a;,b;) = 1, and d(a;, ¢;) = 0 but d(b;, ¢;) = d(b;,a;) =1
and so the inequality holds.

® a; # b;j,a; # ¢; (so b; = ¢;): Now d(a;,b;) = 1. Note that as a; # ¢; then ¢; = b;. Therefore
d(a;,¢;) =1 and d(b;, ¢;) = d(b;, b;) = 0 and so the inequality holds.

This exhausts all cases, and because the bit-wise triangle inequality applies, we have the triangle

inequality applying to the entire thing, because d(a,b) = >, d(a;, b;). Thus,

= d(ai,b;) Z (a;,¢;) + d(ci, b)) = d(a, ¢) + d(c, b) (2.12)

Note we could generalize the proof for signals with more than just 1’s and 0’s by extending the cases
above, and come to the same conclusion. We would simply add the case a; # b;,a; # ¢;,b; # ¢;
where d(a;,b;) = 1 and d(a;,¢;) = 1 and d(b;,¢;) = 1 so that we would still have the triangle
inequality satisfied bitwise.

2.3.2 Number of Signals
Let @ = 10101. How many signals are there in S(a,2)? in B(a,2)?

Solution:

(Note for such a small space we could actually just list the possibilities, but let’s use some combi-
natorics to lessen the task.)

For S(a,2) these are the number of signals with exactly two differences. So choose 2 out of the 5,
or (5 choose 2) in standard notation given by

5 51 5(4
(2) 2B -2) (2) =10 (2.13)

where as B(a, 2) will be given by

ZZ;(?):(g)+(?)+(?>:1+5+10=16 (2.14)

Summarizing, S(a,2) = 10 and B(a,2) = 16.
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Old ideas in new contexts 13

We can note that there are 25 = 32 total signals in our space. Thus, we check (using that
B(a,5) = 32 is the entire space)

=3 ()-( (- 0-0+ ()0 () en

=1+45+10+10+5+1=32 (2.16)

2.3.3 Spheres
What is S(a,5)?

Solution:

This is every possible signal except the one which has an error in every single digit. There are 31
of them from the calculation above, and the only signal not in it would be b = 01010.

2.4 Exercise 4

What point (x,y) on the line with equation 2z + y = 5 is nearest to the origin in the metric {7
— in metric 37 — in metric ¢17 What are the distances in these three metrics? When these
distances are arranged in order of magnitude does there appear to be any connection with the
order of the numbers 1,2,007

Solution:

For /, we need the (z,y) that is the minimum of the maximum distance, i.e.,
dy. = min {max (|z[, [y[)} (2.17)

for all possible values of x and y consistent with equation 2z 4+ y = 5 Note that y = 5 — 2x so we
would take the maximum of |z| and |5 —2z|. We see that the distance function has discontinuities.
We can see that between 5/3 < o < 5 that |z| is larger than |2z — 5|. We want the place where
the maximum of these two is smallest, so we look for the place where |z| = |5 — 2z| (which we did
above) and evaluate, since these are the points that have the smallest possible distance.

Clearly 5/3 is smaller than 5, so that d,,, = 5/3 &~ 1.66 is the minimum value, obtained at
(z,y) = (5/3,5/3).
For {5 we can use that the distance formula (from the origin) is given by

= Va2 492 = /224 (5 — 2x)2 (2.18)

We can minimize this (as it is continuous and nice) by taking the derivative and setting it to zero.
We can also minimize d2, because that will clearly minimize d,

dd?,
3 —2 =2r4+4(2x —5) =10 —20=0 (2.19)
x
r=2y=1 (2.20)
Sawyer Notes ©K. J. Bunkers
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14 Exercise 5

So that the distance is /22 + 12 = v/5 &~ 2.23 at (z,7) = (2, 1).
For /1 we can use the distance formula and minimize again.
doo, = || + 15 — 22| (2.21)

We note that this has discontinuities at = 0 and x = 5/2. Thus, the minima will have to be at
one of these two points. WE see dy, (¢ = 0) = 3 while dw, (x = 5/2) = 5/2. Thus, at the point
(z,y) = (5/2,0) we have the minimum distance of 5/2 ~ 2.5.

Altogether,
dy.. = 5/3 ~ 1.667 (2.22)
dy, = V5 ~ 2.236 (2.23)
dy, =5/2~2.5 (2.24)

So we see that /., gives the smallest distance, with ¢; giving the largest.

2.5 Exercise 5

If the surface of the earth is regarded as a perfect sphere of radius R, distances are measured by
the shoretst routes on the surface (not by chords through the earth), and N represents the North
Pole, what are the usual geographic names of the following?

2.5.1 a
S(N,mR/2)

Solution:

This is two dimensional, so S is a circle. Thus at 7R/2 we are at the equator, as we are a quarter
of a circle around the earth (from the North pole).

2.5.2 b
B(N,7R/2)

Solution:

This is the Northern Hemisphere, not including the equator. This is because it is the “ball” for
the top half of the Earth, but is not closed.

2.5.3 c¢
B(N,7R)

Solution:

Sawyer Notes ©K. J. Bunkers
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Old ideas in new contexts 15

This is the entire surface of the Earth, because it includes every point since 7w R is where the South
pole is located.

254 d
B(N,7R)

Solution:

This is everywhere on Earth but the South pole via the same reasoning as above.

2.5.5 e
S(N,7R)

Solution:

This is the South pole, as this is the only point at this distance from the North pole. It can be
viewed as a degenerate circle.

2.6 Exercises Set 11

State which of the following are vector spaces, the operations of addition and multiplication being
defined in the natural way. For those which are not vector spaces, state an axiom that fails to be
satisfied.

2.6.1 Exercise 1
The set of all quadratic expressions, Q(zr) = ax?® + bz + c.

Solution:

This is a vector space, when you add quadratics they remain in the quadratics, and when you
multiply by scalars and add they remain in the quadratics.

2.6.2 Exercise 2
The set of all quadratic expressions, Q(x), having Q(0) = 0.

Solution:

This is also a vector space, because adding two elements from the space will still have Q(0) = 0.
Note that this just sets ¢ = 0 so that Q(x) = ax?® + bz.

Sawyer Notes ©K. J. Bunkers
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16 Exercises Set 11

2.6.3 Exercise 3
The set of all quadratic expressions, Q(z), having Q(0) = 0 and Q(1) = 0.

Solution:

This is still a vector space as it simply requires a = b, and so we have Q(x) = ax? — ax as our
space. When we add and multiply by scalars, this will still always be true.

2.6.4 Exercise 4
The set of all quadratic expressions, Q(x), having Q(0) = 0 and Q(1) =0 and Q(2) = 0.

Solution:

Now we have restricted Q(x) = a(z? — z) = az(z — 1) such that a = 0 only. That is there is only

one polynomial that satisfies all of these, and that is the zero polynomial. This is technically a
vector space given our axioms, but it is a trivial vector space consisting of a single element.

2.6.5 Exercise 5
All the expressions z2 + bx + c.

Solution:

This is not a vector space, consider adding two elements of this space together. (22 + bx + ¢) +
(2?2 + dx +¢e) = 222 + (b+ d)x + (¢ + €). This is not in the vector space despite both elements
being in the vector space.

2.6.6 Exercise 6
All polynomials with degree not exceeding 5.

Solution:

For the same reason as the quadratics were a vector space, this is also a vector space.

2.6.7 Exercise 7
All polynomials.

Solution:

This system satisfies all the vector space properties we have required.

Sawyer Notes ©K. J. Bunkers
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2.6.8 Exercise 8
All functions defined on [0, 1] with real values.

Solution:

This should be a vector space. By saying they have real values, I am assuming that they are not
bounded, though, given the next exercise. If you add any two real-valued functions in the interval.
We also clearly have a scalar identity and function that corresponds to zero.

2.6.9 Exercise 9

All bounded functions [0, 1] — R. This means that for each function f, there is a number M such
that |f(z)] < M for 0 <z < 1.

Solution:

This is a vector space. If we add any two functions with some bounds, M and N, then that
function will be bounded by at least M + N.

2.6.10 Exercise 10
All functions [0, 1] — R with the bound M = 100.

Solution:

Take f(x) =99 and g(z) = 2 then f(x) 4 g(z) = 101 > 100 so this is not a vector space.

2.6.11 Exercise 11
All continuous functions [0, 1] — R.

Solution:

This is a vector space. When you add two continuous functions, the result will be continuous.

2.6.12 Exercise 12
All continuous functions [0, 1] — R with f(0.5) = 0.

Solution:

This will be a vector space because when you add any two they remain in the space and we have
the zero vector.
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18 Question

2.6.13 Exercise 13
All continuous functions [0, 1] — R with f(0.5) = 2.

Solution:

This is not. If you add the function f(z) = 2 to g(x) = 2(1—xz) then f(0.5)4+¢(0.5) = 24+2—2(0.5) =
3 # 2. Also there is no zero vector.

2.6.14 Exercise 14

All functions, f, with f, f/, f” continuous, [0,7] — R with f satisfying the differential equation
f"(z) + f(z) = 0 and the end conditions f(0) = f(7) = 0.
Solution:
The differential equation’s solution is
f(z) = Acos(z) + Bsin(x) (2.25)
and the boundary conditions impose
f(z) =Acos(m)=0=A=0 (2.26)

So we then have (we also of course have f(z) = 0 as a solution)

f(z) = Bsin(x) (2.27)

This should be a vector space as if we add any two functions satisfying the above conditions, they
will still be in the same space.

2.7 Question

: We assumed M (0) = 0. Does this follow from M being additive, or does it require a separate
assumption?

Solution:

This follows from additivity. Consider the zero vector 0 and some other vector v in the space. We
require

M(v) = M(v+0)= M(v)+ M(0) (2.28)

The first equality comes from the definition v = v + 0. Thus, if M (v) = M (v), then M (0) = 0.

Sawyer Notes ©K. J. Bunkers
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Chapter 3

19

Iteration and contraction mappings

3.1 Exercise

Let g,(z) = (n%z)"e ™%, Make a table to show how g, behaves in [0,1] for n = 10. Estimate

fol g10(z) dz. Do the same two things for g.

Solution:

Here is the code for generating the graphs.

chapter3/gn.py

#!/usr/bin/env python2

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace (0,1,1001)

def gn(x,n):
gn = (n*%2%X)**n*np.ek*(—Nxx2%x)
return gn

y:gn(x,20)

fig = plt.figure()
ax = fig.add_subplot(111)

ax.plot (x,y)

plt.setp(ax.get_yticklabels (), fontsize=20)
plt .setp (ax.get_xticklabels (), fontsize=20)
ax.set_xlabel (’$x$’,fontsize=30)
ax.set_ylabel ("$g_{20}(x)$’,fontsize=30)

#ax.set_ylabel (’$g_{10}(x)$’,fontsize=30,rotation="horizontal’)

#plt.title (r "Real$(n)$ ")

plt.tight_layout ()
plt.savefig(’g20plot.png’,bbox_inches="tight )

Let’s just graph it, this gives a better indication of behavior than a table.
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20 Exercise

500000

400000¢
~— 300000¢
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S 200000}

1000007

80 02 04 06 08 10
T

Figure 3.1: A graph of gjo(x) on [0, 1].

To estimate the integral, use y = n?z so dy = n? dz and we find

1 n? n?
1 1
/ (an)"e’"Qm dr = —2/ yleVdy = — —ye’y|g2 — n/ —y" eV dy
0 n=Jo n 0
" (3.1)
— i oMY n—1_-—y - n—2_-—vy
= ({=ye =y e 4n(n—1) [yt e dy
0
We can clearly repeat this process until we get to n — ¢ = 0. Thus,
/1< 2 )n —n2z d 1 i n! n—i_—y " (n — ]_)' —y " yn—i "
n-x)"e r=—|— — e = — e
0 n? — (n—i)!y - n —~(n—9!|
, y=0 y=0 (3.2)

2 A
n 7!
1=0

_ 1 [(n)!e_y Y y—Z]n

y=0
where in the last line I have simply rearranged the sum. We can use the identity
s—1 i

['(s,z) =(s—1)le”® Z T (3.3)

7!

for the incomplete Gamma function and say

! _ 1 2 I'(n+1,0)—T(n+1,n?
/ (7121')”6 n2zx dr = _ﬁ [F(n + 1’y)]y20 — ( ) ( )
0

(3.4)
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Iteration and contraction mappings 21

Thus, we estimate fol dx gio(x) ~ 36288.

Similarly, for geo(x) we find

2 5 lel?

2.0(
N 1.5_
s

X
=)

1.01

0.5}

08 0.2 0.4 0.6 0.8 1.0
x

Figure 3.2: A graph of goo(x) on [0, 1].

and fol dz goo(x) ~ 6.08 x 10%.

WE can see that as n — oo that the integral grows without bound, despite a narrower and narrower
region becoming nonzero, so that g,(z) — 0 as n — oo.

3.2 Exercise 1

Find the norm of the function f in C[0, 1] corresponding to each of the following expressions for
f(@).

(Note that all the functions given are continuous, so we need only test the extrema and the
endpoints to find the largest excursion from 0.

3.2.1 (a)
3xr+4

Solution:

There are no extrema, so we need only check [3(0) +4| = 4 and |3(1) + 4| = 7. Clearly 7 is larger,
so |3z + 4| =7.
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3.2.2 (b)
2 —x

Solution:

Here we have an extrema at x = 1/2, so

(0)* = (=0)] =0 (3.5)
(1)* = (@) =0 (3.6)
057~ 05) =171 =5 (37)
Thus ||2? — z|| = 1.
3.2.3 (c)
S5t — 3
Solution:

There are no extrema, so we need only check |[5(0) — 3| = 3 and |5(1) — 3| = 2. Clearly 3 is larger,
so ||bx — 3| = 3.

3.2.4 (d)
2+

Solution:

Now we have an extrema at = ' which is outside of the interval of interest. Clearly, |12+ 1| = 2
is greater than |02 + 0| = 0 so ||z? + z|| = 2

3.2.5 (e)
sin(7x)

Solution:

We have £ — 7 cos(rz) = 0 implying o = L as the only extremum in our interval. sin(0) =

dx

1
2
sin(m) = 0 whereas sin(7/2) = 1 so [|sin(7z)|| = 1.

3.2.6 (f)
—224+2—02

Solution:
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We have an extremum at —2z + 1 =0 or = 1/2. Thus

| —0°+0—-02]=02 (3.8)
|-12+1-02]=02 (3.9)
5 10 4.1
—(05)*405-02]=]——+———|—==0. 1
| —(0.5)"+ 0.5 —0.2] 20—1—20 5020 0.05 (3.10)
Thus, |—z* +z — 0.2|| = 0.2.
3.2.7 (g)
—22+2-0.1
Solution:
This is the same as before, but with 0.1 instead of 0.2, so
|—0*+0-0.1]=0.1 (3.11)
|-1*+1-01]=0.1 (3.12)
5 10 2 3
— (0540501 =] ——=+=———|—==0.1 1
| —(0.5)°+0.5—-0.1] = | 50+ 20 ~ 20l90 0.15 (3.13)
So that we find ||—2% + 2z — 0.1]] = 0.15.
3.2.8 (h)
(22 — )10
Solution:
Finding the extrema, we see
d
J;(x) = 0=10(2? — 2)°(2x — 1) = 102°(z — 1)°(2z — 1) (3.14)
x

Thus, we have extrema at x = 0, x = 1, and = = 1/2. We need to check the first two because they
are the boundaries of the interval anyway.

(0> —=0)'° =0 3.15)
(12 - 1) =0 3.16)
1 1\" ~1\" 1 1
0.5)2—05)" =~ — = = — =-— = ~9.53 x 1077 3.17
((0:5) )l (4 2) ‘ < 1 ) 410~ 1048576 8 (3.17)
Thus, ||(z? —2)|| = 1/4" ~ 9.53 x 107".
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24 FExercise 2

3.3 Exercise 2

In C[0,1] let p denote the function z — z and ¢ the function  — 1 —z. A function is known to
belong to B(p,0.5) and B(q,0.5). Sketch the region in which the graph of f must lie. Can any
function belong both to B(p,0.5) and B(g,0.5)?

Solution:

We see that there are no functions that lie in B(p,0.5) and B(q,0.5) because at the boundaries
the shaded regions just touch each other, so there is no way for a function to be guaranteed not to
lie at this boundary which neither open ball contains. The function lies in the below graph where
the two shaded regions overlap.

Below is the code for the graph

chapter3/pgshade.py

#!/usr/bin/env python2

import numpy as np
import matplotlib.pyplot as plt

np.linspace (0,1,1001)
x+0

1—x

ke
1

qu=1-x40.5
ql=1-x—-0.5

fig = plt.figure()
ax = fig.add_subplot(111)

ax.plot(x,p, b’ ,label=r $p=x$’)

ax.plot(x,q, r’,label=r’$q=1-x$")

ax.fill_between (x,pl,pu, facecolor="blue’ ,;alpha=0.5)
ax.fill_between (x,ql ,qu, facecolor="red’,alpha=0.5)

plt .setp (ax.get_yticklabels (), fontsize=20)

plt .setp (ax.get_xticklabels (), fontsize=20)

ax.set_xlabel ("$x$’,fontsize=30)

#ax.set_ylabel (7$g_{20}(x)$’,fontsize=30)

#ax.set_ylabel ("$g_-{10}(x)$ ,fontsize=30,rotation="horizontal ’)
ax.legend (loc=2,prop={’size ":15})

#plt.title (r 'Real$(n)$ )

plt . tight_layout ()
plt.savefig(’gpplot.png’,bbox_inches="tight ")
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—0.3.0 0.2 0.4 0.6 0.8 1.0
£

Figure 3.3: A graph of p and ¢ on [0, 1].

3.4 Exercise 3

The functions f and g in C[0, 1] are defined by f(z) = a and g(x) = 2°(1 — x)*. For what value
of a is the distance of f from g the least? What is then the value of this distance? Can we reduce

this distance by allowing f to be given by f(x) = a+ bx and choosing the most suitable values for
a and b?

Solution:

Take h(z) = f(x) — g(z). Then h(x) = a — 2°(1 — 2)! and

dh(x)
dz
112°(1 — 2)' = 92%(1 — 2)"

=—0z%(1— )" —112°(1 — 2)°(=1) =0 (3.18)
(3.19)
11z =9(1 — x) (3.20)
(3.21)
(3.22)

200 =9
x=9/20
We note that g(z) = 0 at its endpoints, so if we place a halfway between g(z) at its most extreme

point and 0, we minimize the distance.

For x = 9/20 we see that g(x) ~ 1.054 x 107 so if we place a = ¢(9/20)/2 ~ 5.27 x 107" we get
the minimum distance, equal to ¢(9/20)/2.

If we allow f(x) = a+ bx we can not improve on this, because g(z) is symmetric about = = 0.5 on

this interval and goes to zero at the endpoints. So it looks very much like a parabola. The best we
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can do with a linear function is have it tie our straight line across approximation (by subsuming
it).

3.5 Final Exercise of Chapter

Let K(z,y) give a continuous function, defined for 0 < x < b, 0 <y < b, with |K(x,y)| < M. T
is defined by T'g = h where

) = [ Kol dy (3.23)
0
and v, = T"vy where vy = C[0,b]. Show that
2 a?
vi(@) < Mlwllz,  va(z) < Mool 5
and generally that

CL,TL
n(2) < M" o]

Deduce that, however large b may be, the iteration g¢,.1 = vy + T'g, with gy = 0 is convergent.
Does it make any difference if some other continuous function is chosen for the initial g,?

Solution:

Let’s look at v,, for the first couple.
" :/ dy K (2,30 g/ dy M |[vo| = M |[vo| = (3.24)
0 0

T T T 5(72
Vg = / dy K(z,y)v; < / dy K(z,y) [M ||vo|| x] < / M? ||vo|| > = M2§ (3.25)
0 0 0

Let’s prove this by induction, now. Assume it is true for kth case so that vy (z) < M* ||| %, then

T T N l‘k . xk-&-l . xk’—i—l
= dy K < dy MM = Mt — = M —_—
wn = [y Ky < [y Myt ol 3 ol ool G
(3.26)
and so the k + 1 case is true, and we have proved this by induction.
Thus, for g,.1 = vy + T'g,, with gy = 0 we see that
Ini1 = Vo + 19, = vg+ Tvg + Tan_l = vy + ZTi'UQ (3.27)

=1

n .l’i
[gn+1l < [lvoll (1 +ZM15> (3.28)
i=1 '
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We note that as n — oo that the sum becomes an exponential, and so
im [ gns1]l < [lvoll €™ (3.29)
n—oo

Thus, we see that no matter how large b becomes g, will be less than or equal to a constant,
which can be quite large, but is bounded.

We can also take

n—+p n—+p
19n+1 = gnr1spll = 26+ Tgn — 26— Tgnspll = ZT% - ZT”}O > Thwl|  (3.30)
i=n+1
n+p n+p
; Mx Mx
< 3wl < ool 32 P < g 4 z (3.31)
i=n-+1 i=n—+1 i=1
(M2)" rpa (Mb)"
< JJvoll =" < oo =™ (3.32)
n! n

Now, no matter how large b becomes, because of n! we can get this to be as small as we please
because z"/n! — 0 as n — oo. Thus this will converge. If gy # 0, then we simply modify the
argument, and we get

n n+p
lgn i1 = gns14nll = |20+ ZT% + T gy — v — ZTZ — T g, (3.33)
L
_ ZT%}O — ZT%} + THlgy — TPy, (3.34)
n—+p
= ||T" " go — T"*Pgy — > T'ug (3.35)
i=n-+1
n-+p A
S HTn+1+p90_Tn+1QOH + Z HTZUOH (336)
1=n—+1

We can note that via the same argument we find T"gy < M ||go|| 2" /n! so that (with k(z) =
max{(Mz)"*"/(n + 1)!, (Mx)"7*1 /(n +p + 1)1})

(M)t (Mﬁ"“’“} -
lonss = groaoll < G+ (s pr ) Mool 2 17wl (3.57)
n+p )z
2 go]| + o] Y (3:38)
i=n-+1
. (Ma)" §~ (M)’
< 26"k |goll + oo Y 02— (3:39)
=1
Max)"
< 26 ol + g} L2 e (3.40)
MD)"
< 26(b) g + [y LT o0 (3.41)

and so both terms will get arbitrarily small because x acts the same as (Mb)"/n! in the limit
n — oo. It doesn’t affect the fact that we convergence, it just changes how quickly.
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Chapter 4

Minkowski Spaces

A chapter explaining the proof that confuses so many.
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Chapter 5

Linear operators and their norms

5.1 Exercises on linear functions

In the following situations say whether the function specified is linear or not.

5.1.1 1
Projection R? — R; (z,y,2) — =

Solution:

Take two objects u = (x1, 41, 21) and v = (2, Y2, 22) in the space. Then

L(u+v) = L(xy + 22,91 + Y2, 21 + 29) = 21 + 22 = L(u) + L(v)
L(ku) = L(kxy, ky, kz1) = kxy = kL(u)

and so it is linear.

5.1.2 2
R — Rz — (v, 7,2):

Solution:

Take two objects u and v in the space. Then

Liu+v)=(u+v,u+v,u+v)=(u,u,u)+ (v,v,v) = Lu+ Lv
L(ku) = (ku, ku, ku) = k(u,u,u) = kL(u)

and so it is linear.

5.1.3 3
R—-Rx—ax+1:
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32 Exercises on linear functions
Solution:

Take two objects u and v in the space. Then
Llu+v)=u+v+1=Lu+Lv—1%# Lu+ Lv (5.5)

and so it is not linear.

5.14 4
Rotation R? = R%; (z,y) — (—vy,x):

Solution:

Take two objects u = (x1,4;) and v = (x2,ys) in the space. Then

L(u+v) = L(x1 + 22,11 + y2) = (= — y2, 21 + 22) = (—y1, 1) + (—Y2, 22) = L(u) + L(v)

(5.6)
L(ku) = L(kxy, ky1) = (—kyr, kx1) = k(—y1, 1) = kL(u) (5.7)
and so it is linear.
5.1.5 5
Cl0,1] = R; f — f(0):
Solution:
Take two objects u = f and v = ¢ in the space. Then
Lu+v) = L(f +9) = (f +9)(0) = f(0) + 9(0) = L(u) + L(v) (5-8)
L(ku) = L(kf) =kf(0) = kL(u (5.9)

and so it is linear.

5.1.6 ©6
R? - R; (x,y) — /22 + y*
Solution:

Take two objects u = (x1,y;) and v = (29, y2) in the space. Then

L(u+v) = L(z1 + 22,51 + 42) = V(21 + 22)2 + (41 + 10)? # \/x% +yi 4+ /25 + 5 = L(u) + L(v)
(5.10)

and so it is not linear.
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5.1.7 7
ClO, 1} = R; f =[£I

Solution:

Take u = f in the space. Then
L(ku) = \kfI| = k[ If]] = [k L(u) # kL(u) (5.11)

and so it is not linear (k can be negative).

5.1.8 8
R® = R; (z,y,2) = (2,9, 2) [l

Solution:

For the same reason that 7 doesn’t work, this doesn’t work. (namely, that norms cannot be
negative, whereas k can be).

5.1.9 9
R3 — R; (;L‘,y,Z) — ”(xaya Z)Hl:

Solution:

For the same reason that 7 doesn’t work, this doesn’t work.

5.1.10 10
R} - R;(z,y,2) > x+y+ 2

Solution:

Take two objects u = (x1, 41, 21) and v = (29, Y2, 22) in the space. Then

L(u+v) = L(x) + T2, Y1 + Y2,21 + 22) = T1 + Ta + Y1 + Y2 + 21 + 22

(5.12)
=21+Yy1+ 21+ T2+ Y2+ 22 ZL(U)—FL(U)

L(ku) = L(kxy, ky1, kz1) = kxy + kxo + kyp = k(x1 + 31 + 21) = kL(u) (5.13)
and so it is linear.
5.1.11 11
Cl0,1] = C[0,1]; f — g, g(x) = [f(2)]*:
Solution:
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34 Exercises on linear functions

Take two objects u = f and v = ¢ in the space. Then

) = (f +9)(0) = f(0) + 9(0) = L(u) + L(v) (5.14)

L(u+v)=L(f+
kf)=Fkf(0) ==kL(u) (5.15)

L(ku) = L(

and so it is linear.

5.1.12 12
€0, 1] = C[0.1]: f — g, g(z) = f(?):

Solution:

Take two objects u = f and v = ¢ in the space. Then

and so it is linear.

5.1.13 13

C[0,1] — RS; f — v, where v is the vector [f(0), f(0.2), £(0.4), £(0.6), £(0.8), f(1.0)]. (This corre-
spondence is involved when we deal with a function specified by a table.:

Solution:

Take two objects f and g in the space (with corresponding vectors v and v). Then

L(f+g)=u+v=L(f)+ L(g) (5.18)
L(kf) =ku=kL(u) (5.19)

and so it is linear.

5.1.14 14

Cl0,1] = R; f — fol f(z)dx — 0.5[f(0) + f(1)] (This has to with the error when the area under a
curve is estimated by the trapezium rule):

Solution:
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Take two objects f and g in the space. Then

L(f+9) = /0 [f(x) + g(x)] dz = 0.5[f(0) + g(0) + f(1) + g(1)]

= [ ) ae = 05070+ 7]+ [ g(0) ds = 0505(0) + (1) (5.20)
= L(f) + L(9)
L(kf) = /0 kf(x)de — 05[kf(0) + kf(1)] =k {/0 f(z)dz — 0.5[f(0) + f(l)]} = kL(f)
(5.21)

and so it is linear.

5.1.15 15
Difference operator. f — g where g(z) = f(z + h) — f(x):

Solution:

Take two objects f and ¢ in the space. Then

L(f+9) = [z +h) + g(z +h) = f(z) = g(x) = f(x + ) = f(2) + g(z + h) = g(z) = L(f) ZrL(!;)
5.22

L(ku) = kf(x + h) — kf(x) = k[f(z + h) — f(2)] = kL(u)
(5.23)

and so is linear.

5.2 Exercise in Matrix Norm

In the plane S (O, 1) is a circle when the ¢, metric is used, a square with horizontal and vertical
sides when the /., metric is used, and a tilted square when the ¢; metric is used. Find and draw the
figures to which these ‘spheres’ are mapped when the matrix A = [(1) ;] acts on them. For each

space, draw the appropriate S(O,r) which is just large enough to contain all the output points.
Deduce the value of || A|| for each of the three cases.

Solution:

We are being asked how x and y are changed for each of these metrics. Note

1 1 |z| |z+y
o o )14 62
For /5 we had
Pyt =1 (5.25)
5.26)
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as our defining equation. Thus, for our list of points, given an (z,y) have it go to (x + y,2y) so
that we get an elongated ellipse instead of a circle.

To find the maximum distance this gets from the origin, we use

d:\/(x+y)2+(2y)2:\/(x+\/1—7x?)2+4(1—x2):\/x2+2xm+5(1—x2)

(5.27)
dd  2x+2v/1—22+ 222 10z
= o =0 (5.28)
Solving for x we find:

2 2

8z +2v1— a2 — % ) (5.29)
— X
2
V1I—a?— \/% = 4 (5.30)
4
2 2 _ 2
(1—2°)—2z +1—x2_16$ (5.31)
I4 2
I+ =19 (5.32)
(1—2%) +2* = 192% — 192" (5.33)
20z* — 202° +1 =0 (5.34)
1
rt— 2%+ 50~ 0 (5.35)
1 1 1 1 1
2oy o — =2y .

T T2 Vi 20 27 Vs (5.36)

11
Y 5.37
o 2 \/; (5.37)

If we look back at our original equation, we know that only two of them can actually satisfy the
equations, and so we find the x’s that are good are

1 1 1 1
— - S 5.38

Let’s use the latter value for a test, as both should give equivalent answers, then

1 1
r=&= |- ——==~0.2297 5.39
=5 (5.39)
1 1 1 1
=yp=y/l—--+—=4/-+—=~0973 5.40
y=1 RV RV (5.40)
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Thus, the maximum distance will be

= V(E+¥)2 + 492 = \/1 %+

1
Y E WP L S
\/+ NG -

DO | =
g&
]
ol
+
(N}
_I_
Sil=

(5.41)

]
%\i

Thus the limiting sphere is S(O, 3 + v/5) =~ S(0, 2.288).

For /., the square becomes a parallelogram with x — = + y and y — 2y. In this case, we can use
that the maximum distance we ever get to is y = 2, so S(O, 2) is the limiting sphere.

For ¢; we get a stranger looking parallelogram (at an angle). Here, the maximum distance will
clearly be for z = 0, y = 1 as we then get a distance |0 + 1| + |2| = 3. It is possible to prove this
algebraically, because the maximum for |x + y| + |2y| over the range —1 < z,y < 1 by looking
at the boundaries and extrema, but it rather clear visually. Thus the limiting sphere is S(O, 3),
simply enough.

We can see all of these in Figure 5.1.
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— 4y sphere
[| — linear transformation
——  limit circler =3 + \/E
=2 -1 0 1
X
£, sphere
[| — limiting sphere r =2
—— linear transformation
-2 -1 0 1
T
— {; sphere
— linear transformation
limiting spherer =3
-3 -2 -1 0 1
Zz

Figure 5.1: This shows the original sphere, the transformation of the sphere, and the new limiting

sphere.

with generating code

#!/usr/bin/env python2
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import numpy as np
import matplotlib.pyplot as plt

x1=np.linspace(—1,1,201)
yl=np.sqrt(l—x1xx2)
y2=-mnp.sqrt(l—x1*%2)

xrl=x1+yl
yrl=2xyl

xr2=x14y2
yr2=2xy2

fnum=3+4np.sqrt (5)

limx = np.linspace(—np.sqrt (fnum) ,np.sqrt (fnum) ,501)
limyl= np.sqrt (fnum—limx**2)

limy2= —np.sqrt (fnum—limx**2)

fig=plt.figure ()
ax=fig .add_subplot (111)

ax.plot (x1,yl, b’ ,label=r’$\ell_28 '+’ _ +r $\rm{sphere}$’)
ax.plot(x1,y2,’b")

ax.plot (xrl,yrl, ’r’,label=r’$\rm{linear\_transformation}$’)
ax.plot (xr2,yr2,’r")

ax.plot (limx ,limyl, g’ ,label=r’$\rm{limit\_circle\_}r=34+\sqrt{5}$7)
ax.plot (limx ,limy2,’g"’)

ax.set_xlabel (’$x$’,fontsize=30)

#ax.set_ylabel (’3y$’,fontsize=30)

ax.set_ylabel (’$y$’,fontsize=30,rotation="horizontal )
#plt.title (r ’Real$(n)$’)

ax.set_xlim ([ —2.5,2.5])

ax.set_ylim ([ —2.5,2.5])

ax.legend (loc="best’ ,prop={’size :15})

plt.tight_layout ()
plt.savefig(’ell2A .png’ ,bbox_inches="tight )

plt.clf()

xa=np.linspace(—1,1,201)
ya=np.linspace(—1,1,201)
ones=np.ones (201)

fig=plt.figure ()
ax=fig .add_subplot (111)

ax.plot (xa,ones, b’ ,label=r’$\ell_\infty$ '+ . ’+r’ $\rm{sphere}$’)
ax.plot (xa,—ones,’b’)
ax.plot (ones,ya,’b’)
ax.plot(—ones,ya,’b’)

ax.plot (2xxa,2xones, 'g’,label=r ’$\rm{limiting\_sphere\_}r=2%")
ax.plot (2+«xa,—2xones, 'g’)

ax.plot (2+ones,2xya, 'g’)

ax.plot(—2%ones ,2xya,’g’)

ax.plot (xatones,2xones, 'r’,label=r’$\rm{linear\_transformation}$ ")
ax.plot (xa—ones,—2%ones, 'r’)

ax.plot (onestya,2xya, 'r’)

ax.plot(—ones+ya,2xya, 'r’)

ax.set_xlabel (’$x$’,fontsize=30)
#ax.set_ylabel (’3y$’,fontsize=30)
ax.set_ylabel (’$y$’,fontsize=30,rotation="horizontal ”)
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#plt.title (r ’Real$(n)$ ")
ax.set_xlim ([ —2.5,2.5])
ax.set_ylim ([ —2.5,2.5])

ax.legend (loc="best’ ,prop={’size ':15})

plt.tight_layout ()
plt .savefig(’ellinfA .png’,bbox_inches="tight )

plt.clf ()

xr=np. linspace (0,1,5)
xl=np.linspace(—1,0,5)
yr=1—-xr

yl=—xr

fig=plt.figure ()
ax=fig.add_subplot (111)

ax.plot (xr,yr, b’ ,label=r’$\ell_18 '+’ _"'+r ’$\rm{sphere}$’)
ax.plot (xr,xl,’b")
ax.plot (xl,xr,’b”)
ax.plot(xl,yl,’b")

ax.plot (xr+yr,2%yr,’r
ax.plot (xr+xl,2xx1, 1

ax.plot (xl4xr,2%xr, 'r’)
ax.plot (xl+yl,2xyl, 'r”)

r’,label=r’$\rm{linear\_transformation}$”)

)
)
)

ax.plot (3xxr,3xyr, 'g’,label=r ’$\rm{limiting\._.sphere\_.}r=3%")
ax.plot (3*xr,3xxl,’g"’)
ax.plot (3xxl,3xxr,’g’)
ax.plot (3xx1,3xyl, g’)

ax.set_xlabel (’$x$’,fontsize=30)

#ax.set_ylabel (’3y$’, fontsize=30)

ax.set_ylabel (’$y$’,fontsize=30,rotation="horizontal ”)
#plt.title (r 'Real$(n)$ )

ax.set_xlim ([ —3.1,3.1])

ax.set_ylim ([ —3.1,3.1])

ax.legend (loc="best’ ,prop={’size ':15})

plt.tight_layout ()
plt .savefig (’elllA .png’,bbox_inches="tight ")

5.3 Exercises on operator norms

5.3.1 1

Let w = 2x — 3y 4+ 4z. Which point of the form (41, £1,4+1) make w largest? If f is the function

R® = R, (z,y,2) — w, what is || f]|..?

Solution:

Exercises on operator norms

Clearly to maximize w we need all of (z,y, z) to be such that x is as large and z as large as they
can be while y be as negative as possible.

In this case (1, —1, 1) will give the largest possible value of w = 9.

Let’s choose a unit vector in the direction of largest increase, which will be (0,0, 1) and so || f|| ., = 4.
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5.3.2 2

Generalize from your answer to question 1. What is || f||_ for f: (z,y, 2) = az + by + c2?

Solution:

We simply take the sum of |al, |b], |c|, since a unit vector in that direction will be increased the
most, and in the oo-norm, we simply take the max of the components which will be the sum of
the absolute values. Thus, || f||. = |a| + |b] + |¢].

5.3.3 3
What is || f]|, for f: (z1,22,...,2n) = Do ap2,?

Solution:

Via the same reasoning as above, for a max norm such as the co-norm, we have || ||, = >, |a,|.

5.3.4 4
Let

w1 = 21’1 - 3l‘2 + 4I3

Wo = X1 + To + T3

Consider f : & — w, where = (1, 2, 23) and w = (w1, w2). What x with ||z|| = 1 makes |lw||
a maximum? What is || f||, it being understood the £, norm applies both to input and output?

Solution:

Just looking at the possibilities, we want to maximize w, since the maximum of w; is larger than
the possible maximum of wy with (z1, 29, x3) = (+1,£1,£1) being the unit vectors in the co-norm
that are most useful. Then

(1,-1,1) (5.42)
(9,1) (5.43)

T
w
is the maximum since 9 is the largest that either w; or wy could ever be. Thus || f|| = 9.

5.3.5 5

Would the answer to question 4 be different if, the rest of the equation being unchanged, ws were
altered (a) to x; + 2x9 — 43 or (b) to z1 + 3x9 — 6237

Solution:
Yes, then for (a) z = (1,1, —1) leading to || f|| = 7 and (b) x = (1,1, —1) leading to || f|| = 10.
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5.3.6 6

Investigate the generalization of the problems posed in questions 4 and 5, with the aim of finding
a formula for || f|| where f : 2 — w is specified by w, =) a,szs with 1 <r <mand 1 <s <n.

Solution:

It will clearly just be the maximum over the w,. Thus

I = max )y lav (5.44)
s=1

which is the max of the absolute value row sum.

5.3.7 7

Let w = 22 — 3y +4z. What is the maximum value |w| can have have subject to |z|+ |y|+]|z| = 17
What is || f]| for f: (x,y,z) — w if the ¢; norm is used for the input?

Solution:

These two questions are equivalent, we may note. The simplest way to figure this out would be
to graph it, but three dimensions is challenging, and we’d have to deal with a cube. Thus, we can
instead use that one of the edge points must be a maximum because there are no extrema for w
except at boundaries. Thus we would need to check (£1,0,0), (0,+£1,0) and (0,0, £+1). Therefore
we see that (0,0, 1) produces the largest value and so || f]|, = 4.

5.3.8 8

Generalize from your answer to question 7. What is || f|| for f(z,y, z) — ax + by + cz, the ¢, norm
applying to the input?

Solution:

We will have the largest value be || f|| = max(|al, |0], |c|) via the same reasoning as in the previous
question.

5.3.9 9
What is || f]| for (z1,22,...,2,) = Y., arz, the ¢; norm applying to the input?

Solution:

Via the same reasoning we maximize over the arguments, thus || f|| = max, |a,|.
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5.3.10 10
Let
w1, = 7$1 + 2:62
Wy = —3551 + 65132
What is the maximum value of |wy| + |ws| subject to |z1| + |z2| = 17 For f : x — w, where

r = (x1,%2) and w = (wy, wy) what = with ||z||; = 1 makes ||w||; a maximum? With these norms
for x and w, what is || f||?

Solution:

This is a bit more complicated because we now need to think about maximizing w; and ws
simultaneously. However, we are again aided by the fact that we need only check boundaries
as there are no extrema in w; or we. Thus, we see that we need only check w; and wy for (£1,0)
and (0,=£1). This will clearly just be summing the “columns” so we see 7+ 3 = 10 is greater than
2+ 6 = 8. Thus, the maximum ||z||, is = = (£1,0) with ||w]|, = 10, so that || f|| = 10.

5.3.11 11

How would the answer to question 10 have to be modified if, th rest of the equation remaining
unaltered, the equation for w, was changed to (a) wy = —3z1 + 929, (b) wy = —3x; + 8z4, (c)
Wy = 3371 + 8&32

Solution:

Now we have (a) = = (0,£1), ||f|| = 11 (b) here there is no “unique” vector as = = (0,+£1)
or x = (£1,0) yields ||f|| = 10 and (c) is the exact same as (b) as the negative sign makes no
difference because of absolute values.

5.3.12 12

Investigate the general question of a formula for || f|| with f : ¢4 = ¢1, v — w where w, =) a5
with 1l <r<mand1l<s<n.

Solution:
Clearly, our reasoning implies that
£ = max Y fa. (5.45)
r=1

which is the max of the absolute value column sum.
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5.3.13 13
It

c= /01(3x2+2x+1)f(:c)d1:,

what is the maximum value ¢ can take for a continuous function f subject to |f(z)] < 1 for
0<x<1?

Solution:

Clearly, choose f(x) = 1 throughout the interval so that the rest of the integral (which is completely
positive) can be maximized. Thus

1
c:/dx(3x2+2x+1):1+1+1:3 (5.46)
0

is the maximum.

5.3.14 14

What function, not necessarily continuous, makes ¢ maximum where
2m

c= i (x) sin(z) dz |If(z)] <1

for z € [0,2x]? If we also require f to be continuous what is the supremum for ¢? Is there any
continuous f that makes ¢ actually equal to the supremum value?

Solution:

The function is simply sgn(sin(z)) which is discontinuous. The supremum for ¢ will be 4 because
/ sin(x) dx = — cos(m) + cos(0) = 2 (5.47)
0

and sin is antisymmetric around 7 on this interval. There is no continuous f that will actually hit
the supremum value, because then it would be sgn(sin(x)), but we can get arbitrarily close.

5.3.15 15

Discuss the general question of ||T']|, where T" is in C[a, b] and T" maps f — ¢ where

= | 5 (@) d

for a given continuous function ¢. Question 13 throws some light on the situation when ¢(x) is
positive throughout, and question 14 on the case when ¢(x) changes sing within the interval.

Solution:

We see that || T| is [ |¢(x)] if | f()] < 1 is a restriction.
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5.3.16 16
Let T : C[0,1] — C[0,1] f — g be defined by

g(z) = /0 (* + 2zy + 3y°) f(y) dy .

What f with || f|| = 1 makes ||g|| maximum? What is ||T]|?

Solution:

Given the domain of g(x) as [0, 1], then we see we wish to make the integral as large as possible
since it is completely positive. Thus if f(y) = 1, then

gx) =2 +2+1 (5.48)

and so ||g|]| = 3. WE also then see that ||T’|| = 3, since this is the maximum possible for ||g|| = T'f.

5.3.17 17

(i) Let k be a prescribed number, for which 0 < k£ < 1. Find the supremum of |¢| where

¢ = / (k— )7 (y) dy

and f € C[0, 1] with || f|| = 1. What values of & in the interval [0, 1] make sup |¢| a maximum, and
what is the value of this maximum?

(i) Let g(x fo T — y)dy. What is ||T|| for T : C[0,1] — C[0,1], f — g7

Solution:

(i) The supremum will be where we take f(y) = sgn(k — y). This will then give

k 1 ) k2 1 — k2
=1 [ h=ndrs [@-may= -5+ 25
0 k

1
—k(1=B)| =[5 —k+K] (549

we need to check k =0,k =1,k = 1/2 for extrema.

sup || = 5 (5.50)
k=1 1 1
= _141== 5.51
suple] = 5 —1+1=2 (5.51)
=1/2 1
sup|c| —-1/24+1/4=0 (5.52)

And so the maxsup |c| = 1 on this interval.
(ii) This is given by our answer above since the max possible is given by either x = 0 or z = 1 we

get | T = 3
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5.3.18 18
Investigate ||T|| for T : C[0, 1] — C[0,1], f — g where

o(z) = / K (2, 9)(y) dy

the kernel K(z,y) being continuous. Note: If K(x,y) were given by a table, for example by its
values when x and y are both multiples of 0.1, an approximate treatment would lead us to consider
equations of the type g, = > ks fs. Thus it is likely that there will be some resemblance between
the answer to this question and the answer to question 6 above.

Solution:

Given the information from the above, we expect the answer to be of a form similar to

17N = max K (z, y)| (5.53)

and indeed, if | f(y)| < 1 we find the supremum by assuming that we integrate fol |K(x,y)|dy. We
will get some function from this g(z) and we now need to choose the x to get the supremum.

Thus,

1
IT|| = sup / K (2, )| dy (5.54)
x 0

5.4 Bounded, Linear Operators

5.4.1 Exercise 1

Let T : C[0,1] — C[0,1] be defined by T'f = g where g(x) = [, tf(t)dt. Find T and discuss the
convergence of the series 1 +7 +T? +---+T" +--- in the space of bounded operators. Examine
the series produced by the iteration

fun0) =1+ [ th)de with fo(z) =0

0

Identify the analytic function given by this series. Is it a solution of the integral equation f(x) =

1+ [Ttf(t)de?

Solution:

T is defined by the above equation, so I'm not sure what is meant by find 7. Note

T?f = /: dt t/ot dt' ' f(t') (5.55)

T t1 tn—1
0 0 0
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We also can see that if h = || f||, then

T x 2
/tf(t)dt</ dt th="h<h=|f|
0 0 2

47

(5.57)

Thus, [|Tf]| < ||f|| and so ||T|| < 1. Note that this strict inequality is true of HkaH < HT’“’lfH <

-+ < |If|l. Hence (with T = 1) and ||T'|| = a we have (using ||TkH < |I7"

oo [ee] o0 1
Tk k k_ .
DTH <D NTH <Y dt = (5.58)
k=0 k=0 k=0
Thus this must converge.
For fo(z) =0 we see
fi=1 (5.59)
T .172
f2:1+/ art=1+2 (5.60)
0
T t2 .T2 LU4
=1 dtt(l+—=)=14 —+ —= 5.61
T I2 1L'4 fL‘G
f4:1+/ dt t(1+t2/2+t1/8) =1+ " + = + (5.62)
; 2 8 M
z n 252 n—1 12k
=1 dt tf,_1(t) = —_— = 5.63
J +/0 Jaa (1) ;(2j—z)!! ;(Qk)!! (5.63)
where (2k)!! = (2k)(2k — 2)(2k — 4) - - - (2). Note that
x - xi
=) = (5.64)
=0
2 B 0 (tQ)Z - o0 t27,
e =) g o (5.65)
=0 i=0
O 429V O 42 o0 2i 42
2/2 _ (t*/2) _ t _ G = ! 5.66
‘ ZO il ZO 2i (i) ZO (20)2[i +1])---2 ZO (20! (5.66)
Thus, the series yields f(t) = e!*/2.
Then (using $et/? = te™t"/2)
x x d
1 +/ dt e’/ =1 +/ dt ae'fQ/Q —14e P 1= = f(z) (5.67)
0 0
and so it does satisfy the integral equation.
5.4.2 2
Let matrix
0 a
=i
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48 Bounded, Linear Operators

Find the matrix N given by the infinite series N = 1+ M + M? +-.-+ M" + - -, when this series
converges. What condition must a and b satisfy if the series that appear in the four entries of N
are all to converge? Find algebraic expressions for the entries of N when this condition is satisfied.
On the analogy of results in elementary algebra, it appears plausible that (1 — M)N = 1. Is this

equation in fact verified? What are the eigenvalues of M?

Solution:

First let’s find M™ for a couple of M.

o 10 a|l |0 a| jab O
A O O B 568
3 lab 0] 10 a| 0 a
M = [O ab} [b 0} — ab {b ‘ (5.60)
M*" = (ab)"1 (5.70)
0 a
2n+1 __ n
M = (ab) [b 0} (5.71)
Thus, we find
B [e'e) . [e'e) i 1 a
N=Y M= (Zwb) ) {b 1 (5.72)
k=0 k=0
If this is to converge we require ab < 1 When this expression is satisfied, we find
© 1 1 a _1 a
_ k _ — |1=ab 1-—ab
eyl - m 7
k=0 a a
Note
det M = —ab (5.74)
ab 1—ab 1
det N = — = = :
¢ (I—ab)?2 (1—ab)? 1—ab®> 1—ab (5.75)
We find
0 a 1 a ab a
MN = [ ] {l_bab l—ab} — {l—ab lgab:| (5.76)
b 0 1—ab 1—1ab l—bab l—lt)zb
Thus,
1 a ab a 1—ab 0
(]1 _ M)N — {l_bab liab} _ {1—(;11) 1;;)11)} — |i1—ab lab:| =1 (577)
l—ab 1—ab l1—ab 1—ab 0 1—ab
is confirmed. Note that the eigenvalues of M are given by A\2 — ab = 0 or A\ = +v/ab.
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54.3 3
Let M : C[0,1] — C[0, 1] be defined by M f = g where

1

g(x)z/xyf(y)dw/ zf(y)dy

0 T

Find ||M]||. Will the iteration defined by f,+1 = 1 4+ M f,, converge? Here 1 denotes the function
with the constant value 1, and we suppose fy(z) = 0.

Solution:
Given || f|| = 1 choosing f = 1 will maximize this because both integrals have positive arguments.
Thus
T 1 2 2
g(m):/ydy+/ :Edy:m——i—m(l—x):x—x—:x(l—E) (5.78)
; ; 2 2 2
To maximize this, we see we need to check the endpoints and
dg
—=0=1- 5.79
. x (5.79)
or x = 1, which is an endpoint. Clearly this is maximum at x = 1 yielding
=1 1
lg@@)ll "= "5 (5.80)
and thus ||[M| = 3. Given this, we do expect f,41 = 1 + Mf, to converge. In fact we can show
this because || M| < 1.
As an example, we find
Jo=0 (5.81)
fi=1 (5.82)
x
fo=142(1-73) (5.83)
23 2 4
-z _Z = R | .84
=g~ -3tz "t (5.84)
20 25 xt 223 2% 222
S A T e B 5.85
A==t a9 2T (5.85)
28 z’ 20 2%t 1123 2?4792
fs e b~ +1 (5.86)

T 40320 5040 720 90 ' 24 45 2 315

Note that % ~ 1.4667 and % ~ 1.52063.

It is not at all obvious what this is becoming. But we can use Leibnitz’s rule to find

fay =1+ [ utedv+ [ ast)dy (5.87)
f'(x) = a @ +/ f(y)dy—Mz/ fly)dy (5.88)
f'(@) = —f(z) (5.89)
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50 Bounded, Linear Operators

Thus, our most general solution is
f(z) = Acos(z) + Bsin(x) (5.90)

Using f(0) = 1 we see that A = 1. Using f/(1) = 0 then

f'(1) = —sin(1) + Bcos(1) =0 (5.91)
B = tan(1) (5.92)

and so the solution is
f(z) = cos(z) + tan(1) sin(x) (5.93)

We note tan(1) ~ 1.55741, and that our power series is getting close to this value with the fractions
employed.
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Chapter 6

Differentiation and Integration

6.1 Iteration Exercises

6.1.1 1

A well-known algorithm for finding the square root of a number a uses the iteration x — f(z) with
f(z) = 3 [z + a/z]. In what region is the convergence of the iteration guaranteed by the condition
f'(x) < k <17 Does the iteration converge for any initial value, =y, outside this region? Are there
any circumstances in which the iteration could converge to the other square root, —y/a? What
would happen if someone tried to use this algorithm to calculate the square root of a negative
number?

Solution:
We have
1 a 1 a
! =—— — =—|1- —} 1
F#) =35~ 32 2[ 2 (6.1)
This leads to
|f(z)] <1 (6.2)
a
—2<P—1<2 (6.3)
a
-1< = <3 (6.4)
2 1
—1>—>= 6.5
— >3 (6.5)
—a > 1% > % (6.6)
(6.7)

Where I have assumed a > 0. Because x? > 0 for all real numbers, the first inequality is always
true, that is, —1 < a/z? identically and so we can ignore the —a > z? part. Thus we only have
x? > a/3 as our condition.
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52 Iteration Exercises

If a < 0 we instead find

|f'(x)] <1 (6.8)
a
_2<1_ﬁ<2 (6.9)
—a
1 x?
— > —>1 6.11
= > (6.11)
g > 22> —a (6.12)

Here we note that because —a /2% > 0 we can ignore that inequality and so x* > —a is our condition
for convergence.

Note that with z;(z) = 1 [xo + xio] and
1 a 171 a a
:(:225 [x1+—} =513 {ZL’O‘F_} + (6.13)

oyl = lxn + i] (6.14)
(6.15)

2
T, — 2Tp41%y +a =

If we assume a > 0, x,, > 0 then the discriminant above must be greater than or equal to zero, so

4o —4a >0 (6.16)
2. >a (6.17)
Thus,
Tn + < Tn a 1 2
T T ot =8 2 2 " 2, 2z, (7 —a) (6.18)

Taking n large enough then 22 > a since 22, > a and so x,, — 11 > 0.

So we see that x, > \/a and x — x,,1 > 0 as n increases. Because z,, is a decreasing sequence, it
is rather clear it must approach the y/a value.

So for a > 0 and xy > 0 we have convergence no matter what happens.

We can get the negative square root by choosing xg < 0. Then we must check that (using that
z, < 0so —x, >0)
Tn+ - oz, a 1,

|Zn| = |Zn41] :xn_T:7+E:E(%_G) (6.19)

and so the sequence x,, — x,.1 is getting closer to zero, and will converge.

If a < 0 our above argument would seem to indicate that so long as 2> > —a, we should get

convergence, but this is not true. This is because given 22 > —a, x; is reduced and so on, until
22 < —a and then we no longer converge to the correct result.
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chapter6 /sqrootiteration.py
#!/usr/bin/env python2

import numpy as np

# Find square root of number a with initial guess x_-0
def iterate(a,xin,tol=le—6,maxitercount=le5):
itercount=0
xg2=xin
xgl=xin+42xtol
while ((np.abs(xg2—xgl)>tol)and(itercount<maxitercount)):
xgl=xg2
xg2=0.5%(xgl+a/xgl)
itercount+=1
xg4=0.5%(1 — a/xg2%*%2)
return a,xg2,xin,xgd,itercount

print iterate(—1,—1.9)

print iterate(—1,1.1)
print iterate(—1,3.1)

6.1.2 2

If f(z) = sin(z) + 0.5z, then |f'(x)| < 0.5 in the interval [7/2,7]. From this information, obtain
an interval that contains all points of the iteration, x,.; = f(x,), with 2o = 2. Estimate how
many iterations will be needed to solve 2sinz — x = 0 with an error less than 107, Carry out the
iteration, observe the number of iterations actually required and the magnitude of | f’(x)| in the
various intervals [z, ;1]

Solution:

Let’s find z; = sin(2) + 0.5(2) = 1.909 so |z; — x| =~ 0.0907. Thus, our estimate of the distance is

0.0907
20— @/ (1= k) = 3= ~ 01814 (6.20)

is the size of the region we expect to get farthest away from xy which is still within our region, so
we're fine. We expect

n|$’0—$1\

10~° = (0.5) a-05) (6.21)

10~9 — nln05 |§0__0'x51’ (6.22)

(107°(1-0.5)/|zo—a1]) _ ,nIn0.5 (6.23)
In 1079 2=03

n— # ~ 274 (6.24)

so about 28 iterations.

Running the code we find the answer is z ~ 1.89549 and it takes only 12 iterations. This is
consistent with what was seen in Sawyer for his guess. Our guess is conservative, and the algorithm
does quite a bit better.

Note the iteration comes from using if a is a fixed point of f(z), so f(a) = a then we can use

Tna1 = f(x,) as an iteration.
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Thus, in our case 2sin(z) — z = 0 we write it as z = 2sin(z) and then = = sin(x) + 0.5x.

chapter6 /siniteration.py
#!/usr/bin/env python2

import numpy as np

# Find solution to 2 sin(x) —x = 0
def iterate(xin,tol=le—6,maxitercount=1e5):
itercount=0
xg2=xin
xgl=xin+2xtol
while ((np.abs(xg2—xgl)>tol)and(itercount<maxitercount)):
xgl=xg2
xg2=np.sin (xgl)+0.5xxgl
itercount+=1
return xg2,xin,itercount

print iterate (2,1e—9)

6.1.3 3

Find f'(4.5) for (a) f(z) = tanx (b) f(z) = 7 + tan"!(x). The equation z = tanz has a solution
in the neighborhood of x = 4.5. Which of the two functions mentioned above should be chosen to
find this solution by means of the iteration z,.1 = f(x,) with xq = 4.57

Solution:

(a) We have 44222 — gec?(z) and sec?(4.5) ~ 22.5.

(b) To find the derivative of the arctangent, we use tany = = (making triangles with this we find

cos(y) = 1/v/1+ 22) so y = tan~!(z) and

dy 1

2 2

dy = dr—2 - - -
sec” y dy x . oy cos*(y)

1
1+ 22

(6.25)

so f'(4.5) = 0.047 is the value for this method.

We clearly should use method (b) since the derivative is much smaller, and so we expect much
faster convergence.

Indeed, we find it takes 4 iterations for (b), but (a) actually converges to a different solution and
takes nearly 5000 iterations to get there.

chapter6 /taniteration.py
#!/usr/bin/env python2

import numpy as np

# Find solution to 2 sin(x) —x =0
def iteratel (xin,tol=le—6,maxitercount=1e5):
itercount=0
xg2=xin
xgl=xin+42xtol
while ((np.abs(xg2—xgl)>tol)and(itercount<maxitercount)):
xgl=xg2
xg2=np. tan(xgl)
itercount+=1
return xg2,xin,itercount
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def iterate2(xin,tol=le—6,maxitercount=1e5):

itercount=0

xg2=xin

xgl=xin+2xtol

while ((np.abs(xg2—xgl)>tol)and(itercount<maxitercount)):
xgl=xg2
xg2=np.pi + np.arctan(xgl)
itercount+=1

return xg2,xin,itercount

print iteratel (4.5)
print iterate2 (4.5)

6.2 Differentiation Exercises

6.2.1 1
Find the 2 x 2 matrix that represents f’(z,y) when f(z,y) is specified by

6.2.1.1 a
(_ya il?)

Solution:

Then the matrix is

oz Oy
6.2.1.2 b

(z+y,z—y)

Solution:

Then the matrix is
Ofe  0fs
9z By
6.2.1.3 c
(z+y,z+y)

Solution:

Then the matrix is
Ofe  Ofz
g ég— _ {1 1}
5 o L1
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56 Differentiation Exercises

6.2.1.4 d

(‘rQ - y27 QZIfy)

Solution:

Then the matrix is

Ofs  Ofa
g‘% g‘i = {2"” _le (6.29)
%, 5 2y 2z
6.2.1.5 e
(e” cosy, e” siny)
Solution:
Then the matrix is
8_1; ai _ |e"cosy —e”siny (6.30)
% 88—; esiny e¥cosy '

6.2.2 2

In section 6.2, generalized differentiation was discussed in the context of functions R? — R2. Adapt
this discussion (a) to functions, R* — R, such as (z,y) — z* + 3, (b) to functions R — R? such
as t — (acost,bsint).

Solution:

(a) We use the Frechét definition so

(@, y) + (ha, hy)) = [ ((z,y)) = M(he, hy) + € ((ha, hy)) (6.31)
where [le((hz, hy))|| = 0 as [ (ha, hy)|| =0
In our example (z,y) — 22 + y?, we see
Fl(@,y) + (hay hy)) = [ ((2,y) = (x + by ) + (y + hy)* = 2° =

= 2xhy 4+ h2 + 2yhy + h2 = M (hy, hy) + €((ha, hy)) (6.32)
M(a,b) = 2a + 2b

We can note that the Frechét derivative is the divergence of a vector from this definition. If we do

a Taylor approximation in multiple dimensions it will be clear M = )", gﬂ’: L,

(b) We use the Frechét definition so
f((@,9) + (has hy)) = [ ((2,9)) = M(he, hy) + € ((ha, hy)) (6.33)

where ||e((hg, hy))|| = 0 as || (hg, hy)|| — 0
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In our example t — (acost,bsint), we see

ft+h)—f(t)= (acos(t+ h),bsin(t + h)) — (acost,bsint)

= (a[—cos(t) + cos(t + h)],b[—sin(t) + sin(t + h)]) (6.34)
Now as h — 0 we find
ft+h)—f(t)
= (a [— cos(t) + cos(t) — hsin(t) — %COS(t) + O(hg)} : (6.35)
b {— sin(t) + sin(t) + hcos(t) — %Sin(t) + O(h?’)} )
= (—ahsin(t),bhcos(t)) + e(h) = (—asin(t), beos(t)) h + e(h) (6.36)
Thus Mt = (—asin(t),bcos(t)) is the linear transformation. In general, we’d find for t —
(fi(t), f2(t), ..., fn(t)) that
Of 0fa  Ofn
Mt = (W’E""W) (6.37)

so that M is the gradient operator.

6.3 Exercises On Functional Calculus Derivatives

6.3.1 Exercise 1

Let F' be defined by f — g. For a number of cases the value of g(z) is shown below. For each of
these, write the expression F'(f)h - (x) which defines the derivative F'(f).

6.3.1.1 a
[f (@)]?

Solution:

We simply get F'(f) =2f.

6.3.1.2 b
[f ()]

Solution:
Here we get F'(f) = n[f(z)]" .

6.3.1.3 c
23 f (x)]?
Solution:

We find F'(f) = 223 f because the x is unchanging for this operation.

Sawyer Notes ©K. J. Bunkers
December 16, 2016



58 Exercises On Functional Calculus Derivatives

6.3.1.4 d
sin(f(z))

Solution:

We find F'(f) = cos(f(x)).

6.3.1.5 ¢
Jo tLF@)) dt

Solution:
Here we find
F’(f) :/ 2tf(t)dt (6.38)

6.3.1.6 f
f'(x)

Solution:

Let’s use the definition of f/(z) so

/() = lim ; (6.39)

ey | fHR)@+HR) = (f+h)(@)  fla+h) = fla)] . h@+h) —h@)
Fi(f) = Jim h N h = jm h = M
(6.40)

As there is nothing multiplying h;(z) we therefore say that the derivative is zero I'd think.
Note the simpler way to find this is

F'(H)h-(x) = (f + 1) (x) = f'(x) = M (x) (6.41)

We then must say that there is no well defined F”( f) unless we are willing to say F'(f) = h'(x)/h(x)
which has no functional dependence on f itself.

6.3.1.7 g
f@)f'(x)

Solution:
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We find
F'(f)h-(z) = (f + D) (@)(f + h)'(z) — f(2)f'(2) = LLHf1T] + f(2)h'(2) + h(x) f'(z) — L} fT]
= ['(x)h(z) + f(x)h'(z)
(6.42)

Once again we are faced with saying there is no pure F’(f) since we would need to say

P = o)+ T (6.4%
6.3.1.8 h
o Jylf (@) dt
Solution:

Here we find

o= [ o [ RSO [y fak ) =2/ o 1)+ )

h—0 h—0 h2
(6.44)
Py = [ oy [ 40220 S
N (f+h)@)(f +h)(x)  fle+h)fl@+h)=2f(x)f(x+h)+ f(@)f(z)
2 E
(6.45)
:I/ldt {th+ 2f (t+ h)hi(t + h)
0 h—0 h?
{1+ W (0) ~ D) 2+ D) T 2O (6
h2
_W—W+M+ O(hQ)}
E 1
_ x/o at lim 2 {N + f;); IO o my — L0+ }22_ /) hl(t)} (6.47)
Then we use
S+ ’2)2_ SO o+ my = L0 };32_ IO () + B (1) + O(12)) (6.48)
so that we get
/1 dt %Loz{f(t”) Jt )h/l(t)] (6.49)
/ dt 21/t x/ol dt [2LF (Om (0] — 2f"(£)hn (2)] (6.50)
= a2 (1 () = 27 (0 (0)] - /<ﬂ2ﬂ()() (651
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60 Exercises On Functional Calculus Derivatives
So we find

FI(f) = 22 f'(1) — 22'(0) + x/ —of"(t)dt (6.52)

0

More simply we could use

PumwwledtWf+MﬁW—UﬁWT=xA<ﬁuﬁ#ﬁﬂﬂfwﬁw—iﬁﬁﬁﬂ
- x/o dt 2 (DR (t) = 22 (1)h(1) — 22 (0)h(0) — :13/0 dt 2" ()h(t)
(6.53)

which is identical. We are again confronted with F’(f) is not really well defined, although F'(f)h-
(x) certainly is.

6.3.1.9 i

Jo dt {[F@OF + [f' @)1}

Solution:

Here we find from our previous results that

F'(f) = /Ox 2f(t)det+2f'(1) — 2f(0) + :c/o —2f"(t) dt (6.54)
Or more accurately
=/<n 1)+ 2 (' (0)
(6.55)
= /0 dt | 21" (&)h(t)] + 2z f (1)h(1) — 22 f'(0)R(0)
6.3.1.10 j
Ly dt 1)
Solution:

Now we find

ALl } ML Lo {fron]
M - o] o]
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Differentiation and Integration 61

6.4 Exercise 2

Let S be the function C[0,1] — C[0,1], f — g, where

ole) =5+ [ LroPar

Find the derivative S'(f) and show that [|f|| < 0.25 = [[S'(f)|| < 0.5. Hence show that the
iteration f,.; = Sf, with fy = 0 converges to a function belonging in B(0,0.25).

Solution:

From the above we have

. . (6.57)
= [ [itee + 200m) - g667) = [ 25(0m0
0 0
s =2 [ at 50 (6.58)
0
So assuming || f|| < 0.25, then clearly
x 1
I = |2 [ o s <2 [ ae s <2029 <05 (6.59)
0 0
Then fy = 0 implies fi = £ so || f1|| = = = 0.125 and so we see that we will get
o0 2n+1 1
< — .
S < oo
This series is arrived at because
T
fi= 3 (6.61)
T T2 oz x3 x
_z r_r v - 6.62
2= 3 6 8 192°8 "1 (6.62)

where because the integration will yield n! in the denominator and n! > 2", our inequality will
always hold.

Thus, f,4+1 = Sf, will converge with f, = 0.
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Note that the f(z) that satisfies

fla) =5+ [ P (6.63)
fi@) = 5+ @) (6.64)
f(z) = W (6.65)
fl(z) = Seé(zi%c) (6.66)
é ) 1+ tan(z?§ + C)? _ Sec2(% +C) (6.67)

We then can note that the series for this f(z) matches that given by f,, as n increases.

6.5 Exercises on Iteration

In these questions the symbols f, S, and ¢ have the meanings attached to them in section 6.6

6.5.1 1

Find the operator S corresponding to the function f: R? — R? (z,y) — (zy+0.07, 22 +y*—0.41)
with the initial (xg,yo) = (0.1, —0.6). Show that S’(0.1+ X, —0.6 4 Y") is given by a 2 x 2 matrix,
M with my; = mgy = (2X + 12Y)/7 and mys = mg; = (12X + 2Y')/7. Hence show that | X| <,
Y] <t implies ||S'(0.1 + X, —0.6 + Y)|| < 4¢t. Deduce that the iteration t — ¢(t) = 0.0315 + 2t2,
may be used for comparison with the modified Newton-Raphson iteration. Verify this by carrying
out both iterations. Compare this method with that used at the beginning of Section 6.4

Solution:

We have (assuming (z,vy) = (fu, fy))

Ofs  Ofa y oz
1 __ | Oz o) _
= [% %_y] - {295 Qy} (6.68)
So that
pripe B e
[yt = [y T ] (6.69)
22—y2  2y2—222
Thus,
Qyo 2 2-%0 2
@ty Y1) = (@ Yn) — | Dag® 2070 | (20y + 0.07, 275 + g — 0.41) (6.70)
To—Yo 295245
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noting
12 1
f' (o, y0) ™! = {_5 _4 (6.71)
7 7
so that
1 43 2 58
Thus,
o | % % C[ET+2w+12)  E6r+y) (6.73)
95 ‘98_; (62 +y) (T + 22+ 12y) ‘

We see clearly that mq; = may and myy = mo; from this and so S’(0.1 + X, —0.6 +Y") yields

2 2
/ _ _ (X +6Y) 2(6X+Y)

S'0.1+ X,-06+Y) {%(6X—|—Y) 5(X +6Y) (6.74)

So that for | X| <t and |Y| < ¢ we have

2 2
, - C[E(X46Y) 26X +Y)] _ 2t 2
S(01+X,-06+Y) = [%(6X+Y) bx ey)| S ot 2 (6.75)
and so

S°(0.1+ X,—-0.6+Y)|| <4t (6.76)

We know that ¢'(t) = 4t will therefore yield a good answer. Thus ¢(t) = 2t> + ¢ is required. We
need (z1,y;) which yields

39 221
(1,91) = (ﬁ» ﬁ) (6.77)
2 11
— = (—. —) ~ (0.01142 —0.03142 .
(z1,91) — (z0, %0) (175, 350) (0.0114286, —0.0314286) (6.78)

Thus choosing ¢(0) > 0.0315 will do and so indeed
o(t) = 2t* +0.0315 (6.79)

is a good iteration.

We can implement these in python.

chapter6 /Stiteration.py
#!/usr/bin/env python2

import numpy as np

s1=12/7.
s2=1/7.
$3=43/700.
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s4=6/7.
s5=2/7.
$6=58/175.

# Find solution to crossing point of xy=-0.07 and x"2+4+y~2=0.41
# Note this is equivalent to solving x*%4—0.41x%%x2+0.0049=0
# with solutions x = +-0.630618,+—0.111202
def xyiterate(xin,yin,tol=le—6,maxitercount=1e5):
itercount=0
xg2=np.array ([xin,yin])
#ensure first iteration occurs
xgl=xg2+4+2xtol
err = [np.max(np.abs(xg2—xgl))]
while ((np.max(np.abs(xg2—xgl))>tol)and(itercount<maxitercount)):
#copy xgl from xg2
xgl[0]=xg2[0]
xgl[1l]=xg2[1]
#use iteration
xg2[0]=s1%xgl[0]*xgl[1]+s2*xgl[0]**2 + xgl[0] + s2x*xgl[1l]*%*2 + s3
xg2[1]=s4xxgl [0]**2+s5*xxgl [0]*xgl [1]+sdxxgl[1]**x2+ xgl[l]—s6
err .append (np.max(np.abs (xg2—xgl)))
itercount4=1
return xg2,itercount ,err

# Find solution t_{n+1}=phi(t_-n) for phi(x) = 0.03154+2txx2
def titerate (tin,tol=le—6,maxitercount=1le5):
itercount=0

xg2=tin

xgl=xg2+2xtol

err = [np.max(np.abs(xg2—xgl))]

while ((np.abs(np.max(xg2—xgl))>tol)and(itercount<maxitercount)):
xgl=xg2

xg2=0.03154+ 2.%xxgl=*x*2
err .append (np.max(np.abs(xg2—xgl)))
itercount+=1

return xg2,itercount ,err

# Slower way of solving xyiterate above
def xyiterate2 (xin,yin,tol=le—6,maxitercount=1le5):
itercount=0
xg2=np.array ([xin,yin])
#ensure first iteration occurs
xgl=xg2+2xtol
err = [np.max(np.abs(xg2—xgl))]
while ((np.max(np.abs(xg2—xgl))>tol)and(itercount<maxitercount)):
#copy xgl from xg2
xgl[0]=xg2 [0]
xgl[1]=xg2[1]
#use iteration
xg2[0]=xgl [0]*xgl[1]+xgl[0]+0.07
xg2[1]=xgl[0]**2+xgl [1]**2+xgl[1] —0.41
err .append (np.max(np.abs(xg2—xgl)))
itercount+=1
return xg2,itercount ,err

print xyiterate (0.1,—0.6)
print titerate (0)
print xyiterate2(0.1,—0.6)

The results are
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|9(tn) = G(tn-1)|

6.4 ||<J]n, yn) - (In—la Yn—

65

1)”00

iterate | N-R |[(Zn, Yn) — (Tn-1,Yn—1)
1 0.031428571428571472

2 0.00085597667638492858
3 4.7467115329880016e-05
4 2.6599557030326793e-06
) 1.5187785007420018e-07
6 J—

7 _

8 -

9 I

10 —

11 —

12 —

0.0315
0.0019845000000000002
0.00025792348050000108
3.4678804174792521e-05
4.6829928239747187e-06
6.3275557129344184e-07

2.0000000000020002¢-06
0.039999999999999925
0.011699999999999822
0.0032269499999999507
0.0010892640927249175
0.00027077859784385705
0.00010285104490803665
2.1657419990717131e-05
1.0118774463219182¢-05
2.9775669416892692¢-06
1.0604413587245176e-06
4.6128826033942083e-07

Table 6.1: Error versus iterates for two methods and the test method. N-R is the Newton-Raphson
method and 6.4 is the method from section 6.4. We see that ¢t — ¢(t) is a conservative guess for
N-R and that N-R is much better than the method of 6.4, as we expected. This program went

until the error was less than 107°.
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6.5.2 2

For f:R =R, (z,y) = (22 + y* — 200, + zy — 2°) and the initial (o, yo) = (10, 10) show that
[f'(z0,90)] "' = N, where

1 [310 —20
~ 12000 |290 20
Show that
, o 2z 2y

What is S’(xo,y0)? Is this result an accident or will it always happen with the Newton-Raphson
method? Find S'(10 + X, 10 +Y) and show that ||.S’(10 + X, 10 +Y)||_ does not exceed (t/3) +
t2/100 when |X| < ¢ and |Y| < ¢. (This can be shown by a crude approximation in which every
term is replaced by its absolute value.) Hence show that the comparison function ¢ can be defined

by ¢(t) = ¢ + % - %. Check this by carrying out the iterations both of S and of ¢.

Solution:
First
Ofe  Ofs
Tl 2x 2y
f/(-T,?J) = (‘%‘Z gy = [ 2 2 ] (6'80>
Thus,
3y’ +a _ Yy 31 1
. 2z 2y - — 3L 1
1 2(x 3yx+x T 3yx+x
ol = [, 25 o0 - | T e [ ]
2(z+y)Bya+z—y)  (a+y)Byataz—y) 1200 600
(6.81)
as desired. Thus,
(xn—l-la yn-i-l) = S(*rm yn) = (xm yn) - [f/(xm yO)]_lf(xm yn) (6'82>
= (T, Yn)
(3L(=200 + 2 +yn) + 2(x) — Tayn — yp) 29(=200 + 27 +y) + 2(ys + Ty — ;)
1200 ’ 1200
(6.83)
31(—200 + 22 + y2) — 2(yp + Tnln — Yp) 29(—200 + 22 + y2) + 2(y2 + xpyn, — 2
=\ Tn — yYn —
1200 Y 1200
(6.84)
thus
) %ﬁ %ﬁ 1— 622+2(3x2—y) _ 62y—2(z+3y?) 622+2(3z2—y)  62y—2(z+3y?)
S (x ) Z/) — [9sy, 0S8y _58172(132:?97?;) 1— 58y}r220(?n+3y2) 1 5890712%%)22734) 58y+§%233y2)
Ox Oy 1200 1200 1200 1200
(6.85)
- 2x 2y
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This will always be true since N is independent of x,y

/—’L
S(w,y) = Lw,y) — [f (w0, 90)] 7" f(2,y) (6.87)
S'(z,y) =1 - Nf'(z,y) (6.88)

which is exactly what we found.

Thus,
Ly — X(3X 491)) (X +Y(3Y +29)
S10+XJO+Y‘:{WJ 00 6.89
( )= B XBX 131) - V) (X - Y(3Y +80)) (6.89)
Using
(Y T+ 1X](3I1X]+91)) 55 (1X]+ V]3]V +29))
10+ X, 104+ Y f;’ {600(’ 600 6.90
57 Moo S I B (1x131X] +31) + V) (x| + Iy ]+s9p) [ (G0
t? 2t + 3t2 t 3t? 4+ 32t + 3t? t
< e J 39203 300 312+ 320+ 32+ 90 6.91)
600 600
2 122 ¢2 122t
< Lo e vy red 6.92
'—Inax‘{1oo 500" 100 600 } (6.92)
2 t
<t (6.93)

Now let’s find

1(x1,91) = (2o, o)l o = [1(59/6,61/6) — (10,10)[| . = [[(1/6, =1/6)[[,, = é (6.94)
Thus, we have

3 12 3 21
= vt 1 6.95
=305 =306 "6 (6.95)

as our test function so that [¢(0)| > ||(z1 — xo, y1 — yo)

Carrying out the iterations with the following program will yield the table below. We find (x,y) ~
(10.16521699, 9.83200709).

chapter6 /s10iteration.py
#!/usr/bin/env python2

import numpy as np

s1=31%2/12.
$2=31/1200.
s3=1/600.

s4=29x%2/12.
$5=29/1200.

# Find solution crossing of x"24y"2—200=0 and y 3+4xy—x"3=0
def xyiterate(xin,yin,tol=le—6,maxitercount=1e5):
itercount=0
xg2=np.array ([xin,yin])
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#ensure first iteration occurs
xgl=xg2+2xtol
err = [np.max(np.abs(xg2—xgl))]
while ((np.max(np.abs(xg2—xgl))>tol)and(itercount<maxitercount)):
#copy xgl from xg2
xgl[0]=xg2[0]
xgl[1]=xg2[1]
#use iteration
xg2[0]=xgl[0]+s1—s2*(xgl[0]**2+xgl [1]**2)+s3*(xgl[1]**3+xgl [0]*xgl[1] —xgl[0]*x*3)
xg2[1]=xgl[1]4+s4—s5*(xgl[0]**24+xgl[1]*%x2)—s3x(xgl[1]**3+xgl [0]*xgl[1l] —xgl[0]*x3)
print xg2
err .append (np.max(np.abs (xg2—xgl)))
itercount+=1
return xg2,itercount ,err

# Find solution t_{n+1}=phi(t_-n) for phi(t) = 1/6+t"2/6+t"3/300
s6=1/6.
s7=1/300.
def titerate (tin,tol=le—6,maxitercount=1le5):
itercount=0

xg2=tin

xgl=xg2+2xtol

err = [np.max(np.abs(xg2—xgl))]

while ((np.abs(np.max(xg2—xgl))>tol)and(itercount<maxitercount)):
xgl=xg2

xg2=s6*(14+xgl **2)+xgl*xx3
err .append (np.max(np.abs(xg2—xgl)))
itercount+=1

return xg2,itercount ,err

print xyiterate(10.,10.)
print titerate (0)

iterate | N-R [|(2n, yn) — (01, Yn-1)lloc [0(tn) — o(tn1)|

0.16666666666666607 0.16666666666666666
0.0014969135802456179 0.0092592592592592449
4.8116429892886003e-05 0.0013439579840471283
8.8120274632785822¢-07 0.000204855322259944 74

— 3.1446710607341277e-05
— 4.8324814503619695¢-06
— 7.4274005490426731e-07

N O Tt W~

Table 6.2: Error versus iterates for the method and the test method. N-R is the Newton-Raphson
method. We see that t — ¢(t) is a conservative guess for N-R . This program went until the error
was less than 1076.

Sawyer Notes ©K. J. Bunkers
December 16, 2016



Differentiation and Integration 69

6.5.3 3

The function f : R® — R™ is defined by f(v) = Mv+ g(v) with constant matrix M. The equation,
f(v) = 01is to be solved by the Newton-Raphson method with the initial vector vy. It is given that
¢ (vg) = 0. Prove that S is the function v — —M~1g(v). Find S for the function f : R? — R?
(z,y) — (=372 + 9y + 2° + y° + 25, 42 — 28y + 2%y> + 18) with (z9,%0) = (0,0). Show that, when
|z| <t and |y| <t, then

15" (2, y) ||, < 0.28t* 4 0.222t°
Deduce that a possible comparison function ¢ is given by
B(t) = 0.862 + 0.056t> + 0.037¢°

Carry out the iterations both of S and ¢. (Note: for the relevant values of ¢ an improved choice
of ¢ can be found)

Solution:

We begin with

f'(w) =M +g'(v) 6.96
f'(vo) = M +4'(vg) = M 6.97)
So

[f (o))t =M~ (6.98)

so that
f,) = vny1 = v, — M f(v,) = v, — M~ Mo, + g(vy)) = v — v, — M g(v,,) (6.99)
S(v,) = =M *g(vy) (6.100)
flv) = -M"g(v) (6.101)

as desired. For f : R? — R? we see that
f(z,y) = (=372 + 9y + 2° +9° + 25,4z — 28y + 2°y> + 18)

-37 9 6.102
= [ A _28] (z,y) + (2 +y° + 25,27° + 18) (6102
= Mv + g(v) (6.103)
with v = (z,y). Note
/ [ st Byt
g (z,y) = {3x2y3 3232 (6.104)

so ¢'(vg) = 0 as needed for our theorem above. Thus,
S(v) = M tg(v) (6.105)

-1
boN a1 |37 9 5z Byt ] —1 [28 9] [ 5zt 5yt
S'(v) =M "¢ (v) = [ 4 _98 302 3%y 1000 | 4 37 3023 3y (6.106)

=1 [28(5x%) +9(32%y3) 28(5yt) + 9(32%y?) (6.107)
T 1000 |4(5xh) + 37(3x%y3)  4(5yt) + 37(3x3y?) '
—1 [1402* + 272%y% 140y* + 2723y>
= Tn00 4 2,3 4 3,2 (6.108)
1000 [202* 4+ 111xz°y® 20y* + 1112’y
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Thus, we find for |z| < ¢ and |y| < ¢ that

—1 [1402* + 272%y% 140y* + 2723y> 1 [140t* + 27t° 140t* + 2785
1000 4 2,3 4 3,2 = 1l7nnn 4 5 4 5 (6109>
1000 |202* + 11127y 20y* 4+ 1112%2| || = || 1000 |20¢* 4+ 1115 20¢* + 11147 |||
54 40 222 280 222
< t £° ¢t s < t £0 6.110
= A { 10000 " 1000° *1000° 1000  J = 1000 T 1000 (6.110)
Thus,
¢'(t) = 0.28t* + 0.222t° (6.111)
o(t) = a + 0.056t> + 0.037¢° (6.112)
The first iteration yields
1 28 9
(z1,1) = 1006 {4 37} (25, 18) = (0.862, 0.766) (6.113)
So making [¢(0)] > [[(x1 — zo,v1 — Yo)||, = 0.862. Therefore a good test function is
o(t) = 0.862 + 0.056t° + 0.037¢° (6.114)
Note
2825 + 285 + 700 923y + 162 4’ +4y° +100 372343 + 666
1000 1000 1000 1000
(28 4 28y> + 93yl + 862 4dx) + 4yl + 3Tadyd + 766 (6.116)
B 1000 ’ 1000 '

We can test as we have before and form a table. Note the approximate solution is (z,y) =~
(0.88871945,0.78179593).

chapter6 /sqiteration.py
#!/usr/bin/env python2

import numpy as np

s1=0.028
s2=0.009
s3=0.862
s4=0.004
§5=0.037
s6=0.766

# Find solution crossing of —37x+9y+x"5+y 5425=0 and 4x—28y+x 3y 3+18=0
def xyiterate (xin,yin,tol=le—6,maxitercount=1e5):
itercount=0
xg2=np.array ([xin,yin])
#ensure first iteration occurs
xgl=xg2+2xtol
err = [np.max(np.abs(xg2—xgl))]
while ((np.max(np.abs(xg2—xgl))>tol)and(itercount<maxitercount)):
#copy xgl from xg2
xgl[0]=xg2[0]
xgl[1]=xg2[1]

#use iteration
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xg2[0]=s1(xgl[0]**5+xgl [1]**5)+s2xxgl [0]**x3*xxgl[1]**3+s3
xg2[1]=s4*(xgl[0]**5+xg1 [1]**5)+s5+xxgl [0]**3xxgl[1]**x3+s6
print xg2
err .append (np.max(np.abs(xg2—xgl)))
itercount+=l1

return xg2,itercount ,err

# Find solution t_{n+1}=phi(t_-n) for phi(t) = 0.862+0.056t"5+0.037*t"6
s7=0.862
$8=0.056
s9=0.037
def titerate (tin,tol=le—6,maxitercount=1le5):
itercount=0

xg2=tin

xgl=xg2+2%tol

err = [np.max(np.abs(xg2—xgl))]

while ((np.abs(np.max(xg2—xgl))>tol)and(itercount<maxitercount)):
xgl=xg2

xg2=s7+s8xxg1l*x5+s9*xxgl *x6
err .append (np.max(np.abs(xg2—xgl)))
itercount+=1

return xg2,itercount ,err

print xyiterate (0.,0.)
print titerate (0.)

iterate | N-R [|(2n, yn) — (Zn-1,Yn-1)lloc [0(tn) — O(tn1)|

1 0.86199999999999999 0.86199999999999999

2 0.023300905889619972 0.041830741063889398

3 0.0029489501040541599 0.012117311147522125
4 0.00040447316229497154 0.0040036202722723013
) 5.6095039640324806¢e-05 0.001375264700676726

6 7.7920815866328041e-06 0.00047855614292680038
7 1.0826349360337773e-06 0.0001672674888629766
8 1.5042662826481035e-07 5.8554859815318494e-05
9 — 2.0509239661681278e-05
10 — 7.1848634624060992¢-06
11 — 2.5171918762723067e-06
12 — 8.819099203138947e-07

Table 6.3: Error versus iterates for the method and the test method. N-R is the Newton-Raphson
method. We see that t — ¢(t) is a conservative guess for N-R, . This program went until the error
was less than 107°.

6.5.4 4
The function S : C[0,a] — C[0, 1], where a > 0, is defined by y — 2z with

oa) = /Ox[y(t) Lt

Show that with yo(z) = 0, the behavior of the iteration of S can be estimated by means of the
comparison function ¢, with ¢(t) = a®/3 + a*t + at*. Show that the iteration of S arises naturally
from the Newton-Raphson procedure for solving the differential equation d—; — (x +u)?* =0, with

d
the condition «(0) = 0 and the initial ug(x) = —z. Verify that u; = yp.
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Solution:

We begin with

gwm-@w=lﬂmw+h@+wf—w@erw

_ /m [WJF 2y(t)h(t) + [WOT? + R+ 2t [k + h(t)] — [ubt)]? — 2ewtt] — %%} dt

_ / 2y(0)h(E) + 20h(1)] dt

(6.117)
S'(y) =2 / () + 4] dt (6.118)
0
Thus, we need for ||y(t) — yo|| < s (where yo = 0) we have
1" ()]| < 2sup {/ y(#) +t|dt} < 25up {/ sdt+/ tdt} (6.119)
0 0 0
2sup{/ sdt+/ tdt} < 2as + a* (6.120)
0 0
or if we rewrite in terms of ¢,
IS/l < &/(t) = a® + 2at (6.121)
Now, if we plug in yo = 0 we find
T 333
Y = / tdt = — (6.122)
0 3
which is maximized by x = a for this interval. This yields that ¢(0) = % SO
a3
o(t) = 3+ a’t + at? (6.123)
just as desired.
For the differential equation u' = (x + u)?, We note the error function can simply be
flu) =u — 2* — 22u — u? (6.124)
Now
Fh-(z) = + b — 27=2zu — 2oh — 0¥ — 2uh — W — o + 27 F2ruta (6.125)
= h' — 2xh — 2uh (6.126)
Now, we can use that ug = —x which gives
f(ug)h - () = k(x) = h' — 2zh + 2zh =1 (6.127)
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Thus, using ~(0) = 0 since u(0) = 0 and we need agreement at this point for k(x) as well, so that

/093 ds k(s) = h(z) — h(0) = h(z) (6.128)
This of course would yield
o)) o)) = [t lgte) (6.120)
Upi1 :un—/oxdt fun) = uy, —/Oxdt [ul, — (t + un)?] = un —un+m+/0xdt (u, + 1)
(6.130)
— /I dt (u, +t)? (6.131)

which is the S we desired since u,(0) = 0. We find

uy :/ [~z + 2] =0=1y, (6.132)
0

as desired.
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6.5.5 5
The function f : C[0,1] — C[0,1], y — z has

2(z) = b—y(z) + ax[y(r)]* + a/lx[y(s)]2 ds witha > 0,b>0.

With initial yo(x) = 0, find the function S used to solve the equation f(y) = 0. (The inverse of
f'(yo), often hard to find is here immediately evident.) Show that

S'(yo)h - (x) = 2azxy(x)h(x) + a/ 2y(s)h(s)ds (6.133)
1
Deduce that ¢(t) = b+ at? can be used in the Kantorovich comparison iteration. For the case

a=1,b = 0.09, find y1,y2,y3, and compare ||y,+1 — Y|l with ¢,.; — ¢, for n = 0,1,2. What
unusual thing happens in this example?

Solution:

We immediately have

f/<y)h.(x)z%—}/—h—l—aa:(f—l—zyh—l—}i{)+a/1xdsyz+2yh+%<

: (6.134)
~{o- o) + byt [ as)
1
= —h+ 2azyh + 2a/ ds yh (6.135)
1
= —h(1 + 2axy) + Qa/ ds yh (6.136)
1
With yg = 0 we find
f'o)h - (x) = —h (6.137)
and so f'(yo) = —1. Thus,
() = v+ Jun) = s+ b=+ +a [ 42 (6.138)
1
S =y~ o) o) = b+ ax+a [ 4P ds (6.139)
1
Thus,
S'(y)h -z = B+ ax(y? + 2yh + M) + a/ (4% + 2yh + M) ds
. ! (6.140)
— {b + axy? s ds}
1
= 2axyh + 2a/ ds yh (6.141)
1
S'(y) = 2azy + 2a/ dsy (6.142)
1
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matching what we desired. Thus, with ||y — yol| = ||y|| < ¢
15" (y)]] < 2a||zy|| + 2asup {/ ds ||y||} = 2axt + 2a(x — 1)t = daxt — 2at < 2at  (6.143)
1
Thus ¢'(t) = 2at is a good test. We now need vy, so
m :b+(m:y§—|—a/ dsyg =b (6.144)
1
and so ¢(0) = b yielding
o(t) = at> + b (6.145)
as desired.
We have
Yo =0 (6.146)
g =b (6.147)
Yo = b+ axb® + a/ dsb? = b + axb® + ab®(x — 1) = b + 2azb® — ab? (6.148)
1
y3 = b+ ax[b+ 2ab’r — ab’]® + a/ ds [b — ab* + 2ab*s]?
y . (6.149)
= Ea?’b‘lmg — 6a’b*z? + 2ab*x — CLT + 6a*b’2* — 4a*b*x + 2ab*x — ab® + b
Thus, for a = 1 and b = 0.09 we find
Yo =10 (6.150)
y1 = 0.09 (6.151)
Yy = b+ 2axb® — ab® = 0.09 + 0.0081(—1 + x) + 0.0081z = 0.0819 + 0.0162x (6.152)
_ 16 3.4 3 374, .2 314 a’b’! 23,2 2:3 2 2
yg—gabx 6a°b x* + 2a°bx 3 + 6a°b°z" — 4a“0°x + 2ab"x — ab” + b (6.153)
= 0.0818781 + 0.0134152x + 0.0039803422 4 0.00034992x>
Thus,
1 — voll = 0.09 (6.154)
lly2 — v1]] = 0.0081 (6.155)
llys — yo|| = 0.00152361 (6.156)
where we see the norm is achieved at x = 1 for all of the function tested. For ¢ we find
to=0 (6.157)
th=ats +b="0 (6.158)
ty=at; +b=ab*+b (6.159)
ty = at; + b= a(ab® + b)* + b = a(a®b* + 2ab* + b*) + b = a®b* + 2a*V* + ab® + b (6.160)
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and for a =1 and b = 0.09

[t, —to| = 0.09
|ty — 1| = |ab?| = 0.0081
|ts — to] = |a®b* + 2a%b?| = 0.00152361

And so we see we get exactly the same as our test function.

We can note that numerically we find a similar result (see Figure 6.1).

chapter6 /intiteration.py
#!/usr/bin/env python2

import numpy as np
import matplotlib.pyplot as plt

Find solution for a function y(x), such that f(
Here f(y) = b — y 4ax[y(x)]"2 + a int-1"x ds [y
So S(y) = b+ axy™2 + a int_-1"x ds y~2

y)=0
(s)]”

2

xarray should be the values used for xin
xin should be an array that is a numerical approximation
to the initial function guess over x
def funiterate (xarray ,xin,a,b,tol=le—6,maxitercount=1e5):
itercount=0
xg2=xin
a=1.xa
b=1.xb
alen=np.shape(xin) [0]
ints=np.zeros (alen)
#ensure first iteration occurs
xgl=xg2+42xtol
err = [np.max(np.abs(xg2—xgl))]
while ((np.max(np.abs(xg2—xgl))>tol)and(itercount<maxitercount)):
#copy xgl from xg2
xgl[:]=np.copy(xg2[:])
#use iteration
for j in range(alen):
ints [j]=—np.trapz(xgl[j:]**2,xarray[]j:])
xg2=btaxxarray*xgl**2 + axints
err .append (np.max(np.abs(xg2—xgl)))
itercount+=1
return xg2,itercount ,err [1:]

# Find solution t_{n+1}=phi(t-n) for phi(x) = 0.031542txx2
def titerate(tin ,a,b,tol=le—6,maxitercount=1e5):
itercount=0

a=1.xa

b=1.xb

xg2=tin

xgl=xg2+4+2xtol

err = [np.max(np.abs(xg2—xgl))]

while ((np.abs(np.max(xg2—xgl))>tol)and(itercount<maxitercount)):
xgl=xg2

xg2=axxgl*%x2+b
err .append (np.max(np.abs (xg2—xgl)))
itercount+=1

return xg2,itercount ,err [1:]

Find solution for a function y(x), such that f(
Here f(y) = y(x) + int_.0"x y(s) ds — b — a[y(x)
So S(y) = aly(x)]"24+b e (—x) — e"(—x) int_-0"x d

xarray should be the values used for xin

xin should be an array that is a numerical approximation
to the initial function guess over x

def funiterate2 (xarray,xin,a,b,tol=le—6,maxitercount=1e5):

FFF I F I
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#

itercount=0
Xg2=xin
a=1l.xa
b=1.xb
alen=np.shape(xin) [0]
ints=np.zeros(alen)
#ensure first iteration occurs
xgl=xg2+2*tol
err = [np.max(np.abs(xg2—xgl))]
while ((np.max(np.abs(xg2—xgl))>tol)and(itercount<maxitercount)):
#copy xgl from xg2
xgl[:]=np.copy(xg2[:])
#use iteration
for j in range(alen):
ints [j]=np.trapz (np.exp(xarray [:]j])*xgl[:]j]**2,xarray [:j])
xg2=a*xgl*+2 + b*np.exp(—xarray) — np.exp(—xarray)=*as*ints
err .append (np.max(np.abs (xg2—xgl)))
itercount+=1
return xg2,itercount ,err [1:]

print out solutions

x=np.linspace (0,1,101)

y=0x%x

print funiterate(x,y,1,0.09)
print titerate (0,1,0.09)

print funiterate2(x,y,1,0.09)
print titerate (0,1,0.09)

#

Xa

yal=0.0818737 + 0.0134081%xa + 0.00329524xxa**2 + 0.00110903xxa**3 + 0.00020512%xax*x4 +

actual solutions, yal for problem 5 and ya2 for problem 6
=np.linspace (0,1,1001)

0.0000302779*xax*x5 4+ 3.24987e—06*xa*x*x6 + 1.39936e—Txxa**7

7

ya2= 2.58494e—25 + 1.39936e—7*np.exp(—8+xa) + 3.24987e—6xnp.exp(—T*xa) + 0.0000302779*np.exp(—6+xa

#

) + 0.00020512*np.exp(—5+xa) + 0.00110903+np.exp(—4xxa) + 0.00329524*np.exp(—3*xa) +

0.0134081*np.exp(—2*xa) + 0.0818737xnp.exp(—xa)

make plot for problem 5

x=np.linspace (0,1,3)
y=x*0.
g=funiterate(x,y,1,0.09) [0]

x1
y1
gl

X2
y2
g2

x3
y3
g3

fi
ax

ax .
ax.
ax .
ax.
ax .

pl
pl
ax

=np.linspace (0,1,11)
=x1x0.
=funiterate (x1,y1,1,0.09) [0]

=np. linspace (0,1,101)
=x2%0.
=funiterate (x2,y2,1,0.09) [0]

=np.linspace (0,1,501)
=x3 *0.
=funiterate (x3,y3,1,0.09) [0]

g = plt.figure ()

=fig.add_subplot (111)
plot (x,g,label=r’$ ’+str (np.shape(x) [0])+r \rm{\_points}$’)
plot (x1,gl,label=r’$ ’+str (np.shape(x1)[0])+r \rm{\_points}$’)
plot (x2,g2,label=r’$ ’+str (np.shape(x2) [0])+r \rm{\_points}$’)
plot (x3,g3,label=r’$ ’+str (np.shape(x3) [0])+r \rm{\_points}$’)

plot (xa,yal,label=r’$y_4(x)$")

t.setp(ax.get_yticklabels (), fontsize=20)
t.setp (ax.get_xticklabels (), fontsize=20)
.set_xlabel (’$x3$’,fontsize=30)

#ax.set_ylabel (’Sy(x)$’,fontsize=30)

ax
ax

.set_ylabel (’$y(x)$’,fontsize=30,rotation="horizontal ’)
.legend (loc="best ’ ,prop={’size :15})

#plt.title (r’Real$(n)$’)
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125

126  plt.tight_layout ()

127 plt.savefig(’approxyl.png’,bbox_inches=’tight )
128

129 # make plot for problem 6

130 x=np.linspace (0,1,3)

131 y=xx*0.

132 g=funiterate2(x,y,1,0.09) [0]

133

134 xl=np.linspace(0,1,11)

135 yl=x1x0.

136 gl=funiterate2(x1l,y1,1,0.09)[0]

137

138 x2=np.linspace (0,1,101)

139  y2=x2x0.

140 g2=funiterate2(x2,y2,1,0.09) [0]

141

142 x3=np.linspace (0,1,501)

143 y3=x3x*0.

144 g3=funiterate2(x3,y3,1,0.09) [0]

145

146 fig = plt.figure ()

147 ax=fig.add_subplot (111)

148

149 ax.plot(x,g,label=r’$ ’+str (np.shape(x) [0]
150 ax.plot(xl,gl,label=r’$ ’+str (np.shape(xl)
151 ax.plot(x2,g2,label=r’$ +str (np.shape(x2)
152 ax.plot(x3,g3,label=r’$ ’+str (np.shape(x3)
153 ax.plot(xa,ya2,label=r’$y_4(x)$")

154

155 plt.setp(ax.get_yticklabels (), fontsize=20)

156 plt.setp(ax.get_xticklabels (), fontsize=20)

157 ax.set_xlabel(’$x$’,fontsize=30)

158 #ax.set_ylabel ("3y(x)$’,fontsize=30)

159 ax.set_ylabel(’Sy(x)$’,fontsize=30,rotation="horizontal’)
160 ax.legend(loc="best’,prop={’size ’:15})

161 #plt.title (r Real$(n)$’)

162

163 plt.tight_layout ()

164 plt.savefig( approxy2.png’,bbox_inches=’tight ”)

)
[
[
[

r’\rm{\_points}$’)
])4+r ' \rm{\_points}$ ")
%)+1‘ "\rm{\_-points}$’)

+
0
0
0])4r \rm{\_points}$’)

iterate | N-R [|(#n, yn) = (Tn1, Yn-1)lloe [0(tn) — O(tn1)|

1 0.089999999999999997 0.089999999999999997

2 0.00810000000000001 0.0080999999999999961
3 0.0015236100000000086 0.0015236100000000086
4 0.00030125366943209442 0.00030125366943209442
5 6.011470992249579e-05 6.011470992249579¢-05

6 1.2017522165411187e-05 1.2017522165411187e-05
7 2.4032878085944454e-06 2.4032878085944454e-06
8 4.8064889809906752¢-07 4.8064889809906752¢-07

Table 6.4: Error versus iterates for the method and the test method with the function y,(x) for
y being represented at 101 points from x = [0, 1] evenly spaced. N-R is the Newton-Raphson
method. We see that t — ¢(t) is still basically perfect as an estimate. This program went until
the error was less than 1075,
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0.100
— 3 points
— 11 points
—— 101 points

0.095¢ — 01 points
— ()

y(x)0.090¢
0.085¢
0.08§ 5022

1.0

Figure 6.1: We see that as we make the vector y(z) have more and more points so that it approaches
the function y(x), we get a better and better result. Note that the analytical y,(x) is drawn for

comparison.
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6.5.6 6

Show that, if f(y) = Ly — g(y) where L is a linear operator and ¢'(yo) = 0 then S(y) = L™g(y).
Show that, if

h(x) + /Ox h(s)ds = k(x)

then

Let f:C[0,¢] — C[0,¢], y — =z have

2(a) = y(a) + / “y(s)ds — aly(@)P — b.

The constants a, b, ¢ are all positive. With the help of the results above, find S, the function
iterated to solve the equation f(y) = 0, the initial yo having yo(z) = 0. Show that

S'(y)h - (z) = 2ay(x)h(z) — 2ae™" /01 e*y(s)h(s)ds.

Find a suitable function ¢ for the Kantorovich comparison iteration. Compute y,ys,y3 for a =
1,b = 0.09. Do the results suggest any connection between this question and question 5 above?

Solution:
We have
W) =L=4g /[ (o) =L—g(y) =L (6.164)
[f'(yo)] = L7 (6.165)
so S(y) = L™'g(y) as desired.
Then
hz) = k(z) — e /0 " eh(s) ds (6.166)
b (z) — K(x)=e" /090 e’k(s)ds — e "e"k(x) = —k(z) + e * /Ofﬂ e’k(s)ds = —h(x)
(6.167)
B (z) + h(z) = K (z) (6.168)

Just as we desired. We need only integrate with h(0) = k(0) = 0, which should hold if we keep
our boundaries fixed. Alternatively, we can integrate by parts

h(z) + /0 “h(s)ds = h(z) — e / ds e*k(s) + / [ (s) — e /0 setk(t)] (6.169)

= k(z) + /dsk /Ods {—w Sk(s) + /Osdt etk;(t)] (6.170)
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where

/OI ds {e‘””esk(s) dt e'k(t) } { “Tek(s) + ;S {—e‘s /OS dt etk:(t)} - (—es)esk‘(s)]
(6.171)

= /Ow ds [e ™ e’k(s) + /0 dt e'k(t) / ds k(s)+e™® /Ox ds e’k(s) —e /OI ds e’k(s)
(6.172)

= /0 ds k(s) (6.173)

Thus,

h(z) + /0 " h(s) ds = h(z) + /0 " ds k(s) — /O " ds [e—ze%(sHe—S /O Cat e%(t)] (6.174)
— k() +/0w ds k(s) —/0de k(s) = k(z) (6.175)

as desired without us having to imply anything about boundaries.

Now for our f we can write it as

f() = y(x) + / “y(s)ds — b— aly(@) = L(y) — aly(z)P — b (6.176)

Ly=y+ /OJC y(s)ds (6.177)
9(y) = aly(x)* +b (6.178)
"(y) = 2aly(x)] (6.179)

We find L~! via the same mechanism as we have previously.

k(x) = Lh(x) (6.180)
L™ 'k(z) = h(x) (6.181)
SO we say
k(x) =h+ /Ow h(s)ds (6.182)
and so we have
L7 'k(z) = k(x) —e™® /Ox e’k(s)ds (6.183)
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Thus, with yo = 0 we have ¢'(yo) = 0 so we apply our result and find

S@) = L g(y) = aly(@)? +b— e / ds ¢* [aly(s))? + ] (6.184)
0
= aly(x))? + b=eEb+ e b — e_x/ ds ae®[y(s))? (6.185)
0
= aly(x)]* + e *b — e“/ ds ae[y(s)]? (6.186)
0
S'"(y)h - () = 2ay(x)h(x) — 2ae_x/ ds e*y(s)h(s) (6.187)
0
as desired.
If we assume ||y|| < ¢ then
15" ()] < 2at — 2aez/ e‘tds < 2at — 2ae”“t(e® — 1) < 2ate™® < 2at (6.188)
0
Thus we can choose ¢'(t) = 2at. We find
oyl = |le 0| < (6.189)
and so if we choose ¢(0) = b then [|y1 — yol| > ¢(0). So
B(t) = b+ at? (6.190)
We find
Yo = be 2 (e” — ab (e” — 2)) (6.191)
1
Y3 = gbe—‘“ (—€* (a®b® + 3ab — 3) + 16a°b* — 18a°b*e” (ab — 1) + 6abe™ (ab — 1)%)  (6.192)
for the given a and b, we find
Y1 = 0.09¢7 (6.193)
Yy = € 2 (0.0162 + 0.0819¢") (6.194)
ys = e~ (7 (e7 (0.0134152 + 0.0818781¢”) + 0.00398034) + 0.00034992)  (6.195)
ly1 = yoll = 0.09 (6.196)
llyo — 1| = 0.081 (6.197)
llys — 12| = 0.00152361 (6.198)
From our previous problem, we find from ¢(t) that
to=0 (6.199)
th=ats +b="0 (6.200)
ty=at; +b=ab*+b (6.201)
ty = at; + b= a(ab® + b)* + b = a(a®b* + 2ab* + b*) + b = a®b* + 2a%V* + ab® + b (6.202)
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and for a =1 and b = 0.09

|t1 — to] = 0.09 (6.203)
[ty —t1| = |ab®| = 0.0081 (6.204)
|ts — to| = |a®b* + 2a*b®| = 0.00152361 (6.205)

So we see there is a strong similarity between these two problems. Note that we are choosing
f(y) = 0 for both problems with for this problem and then the previous problem, respectively,

)+ i y(s)ds—a y(x)])? — b (6.206)

) =b—y(z) +a / () ds + azfy(x)] (6.207)

So we see there is some similarity, although it is still a bit surprising that the iterations behave so
similarly.

We can note that numerically we find a similar result (see Figure 6.2). See previous problem for
the code.

iterate | N-R [|(2n, yn) — (01, Yn1)lloc  [0(tn) — O(tn1)|

1 0.089999999999999997 0.089999999999999997

2 0.0080999999999999961 0.0080999999999999961
3 0.0015236100000000086 0.0015236100000000086
4 0.00030125366943209442 0.00030125366943209442
5 6.011470992249579e-05 6.011470992249579¢-05

6 1.2017522165411187e-05 1.2017522165411187e-05
7 2.4032878085944454e-06 2.4032878085944454e-06
8 4.8064889809906752¢-07 4.8064889809906752¢-07

Table 6.5: Error versus iterates for the method and the test method with the function y,(x) for
y being represented at 101 points from x = [0, 1] evenly spaced. N-R is the Newton-Raphson
method. We see that t — ¢(t) is still basically perfect as an estimate. This program went until
the error was less than 1075,

Sawyer Notes ©K. J. Bunkers
December 16, 2016



84 FExercises on Iteration

0.10
— 3 points
0.09} — 11 points
' —— 101 points
| — 501 points |
0.08 —  y()
0.07
y(x)
0.06f
0.05¢
0.04¢
0060 02 04 06 08 10

Zr

Figure 6.2: We see that as we make the vector y(z) have more and more points so that it approaches
the function y(x), we get a better and better result. Note that the analytical y,(x) is drawn for
comparison.

If we use a solver, like Mathematica, we find that the solutions to f(y) = 0 for problem 5 and
problem 6 scale (for a = 1) respectively as (where W is the Lambert W function)

yps(z) ~ W(—x)/(—z) (6.208)
ype(x) ~ W(—e ") (6.209)

for C' > 1.7 to ensure proper behavior for our domain. Note that for W = W (z) that

dw
(14+W)— =W (6.210)
dz
From which by plugging in solutions of the correct form, we can get the solutions for f(y) = 0.
It is usually easiest to see by taking a deriviative with respect to x of f(y) = 0 and matching the
differential equation to that above with y — W/x, W (e ™).
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Chapter 7

Euclidean Space

7.1 Exercise on minimum distances

The functions u 4+ mv, where u and v are fixed functions and the number m varies, form a straight
line in C[0, 1]. If u(x) = 1, v(z) = x, find for what values of m the distance, in the metric of C[0, 1],
between u + mv and the function 0 takes its minimum value.

Solution:

If we take u = 1 and v = z then
u+mv=1+mae (7.1)
Then

1 m <0

(7.2)
1+m m>0

lu+mv — O[] = [T + ma|| :{

because x € [0, 1] so that the largest that the function can be is either 1 or 1+ m away depending
on the sign of m.

Thus, m < 0 are the minimum values.

7.2 Exercises On Euclidean Distance

721 1

Let O = (0,0,0), A= (0,1,1), B=(1,0,1), C = (1,1,0). Show that any vector in the plane OBC
is of the form (s+1,t,s). What condition must s and ¢ satisfy if this vector is to be perpendicular
to OB? Find the point, M, of the plane OBC that is nearest to A. Calculate the distances ||OM||
and ||AM ||, and show that these agree with the values that could be deduced without the use of
coordinates, from the geometry of the regular tetrahedron, OABC, with side v/2.

Solution:
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86 Exercises On Euclidean Distance

In the plane OBC Let OB = P and OC' = (). Then the associated unit vectors are respective

p= (\%, 0, \%) and ¢ = (\%, \/Li’ 0). Any thing in this plane can be written as sP + t() with s and
t being real numbers. Thus

s(1,0,1) +¢(1,1,0) = (s,0,8) + (¢,£,0) = (s + t,t,s) (7.3)
as desired. If this vector (call it R) is to be perpendicular to OB = P = (1,0, 1) then
R-P=0=(s+t)+s=2s+t=0 (7.4)

That is 2s = —t. So R = (—s, —2s, s).

Since we have a formula for any point on the plane, we can minimize the length of the line from
any point on the plane to A.

MA=T=(s+t,t—1,s—1) (7.5)
& =|MA|=(s+t)*+ -1+ (s—1)° (7.6)

od?
E:2(3+t)—|—2(t—1):0=>23+4t—2:():>s+2t:1 (7.7)

od?
%:2(s+t)+2(s—1):O:>2t+43—2:O:>2s—|—t:1 (7.8)
(7.9)

Thus, we require
25+ 4t — (2s+t)=2-1 (7.10)
3t = (7.11)
1
t=- 7.12
: (712)
2 1

=1-2t=1--=- 7.13
s 3= 3 (7.13)

Thus, s =t = % and closest point on the plane is M = (%, %, %)

To double check, let’s use the two perpendiculars in the plane we have. Thus, first OB and A. IF
OB = tv and A = u then the minimum ¢, is given by
(0,1,1)-(1,0,1) 1

=101 (1,01 " 2 (7.14)

so the vector is (1/2,0,1/2) and for R (choose this vector as (1,2, —1) for simplicity) and A again
we find

,_(01y-@2-1y  2-1 1 (7.15)
o7 (,2,-1)-(1,2,-1) 14+4+1 6 '

so the vector is (1/6,1/3,—1/6) Adding these together yields

M =(1/2,0,1/2) + (1/6,1/3,-1/6) = (2/3,1/3,1/3) (7.16)
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as we expected. Then

IOM|| = V16 +1+1/3 =V18/3 =2 (7.17)
M| = V27527529 = V3o = — (7.18)

We note that ||AM]|| should be the height of a tetrahedron which is given by \/Té\/é =4/ 2= \/lg
as it should. ||[OM]|| is the length of a side, and so it is reassuring that it is /2.

7.3 2

Let A = (3,4,5) and B = (5,4,3). Show that C, the point on the line x = y = z nearest to A is
also the point of that line nearest to B. Describe in Euclid’s language the figure formed by the
points O, A, B, C' and their joins.

Solution:
let the point on the line specified by x = y = z be parameterized as (t,t,t), or t(1,1,1). Thus,

R CRt 1)5))(3,4, 5) _ (1, 1,1)5(5,4, 3) _ 4 (7.19)

so the point C' = (4,4, 4).

We see that this forms an isosceles triangle.

7.4 3

Let pq, p2, and p3 be three mutually perpendicular vectors of unit length. Let v = ¢1p1 + cops +c3p3.
(The numbers ¢, ¢, c3 are the coordinates of v for axes in the directions of p;, ps, and ps.)
Find expressions giving ¢q, ¢o and c¢3 in terms of scalar products of the four vectors. Verify that
P = (g, %, %), Py = (%, ’76, %) and p3 = (%, ’72, ’76) are perpendicular and of unit length. Find the
coordinates, ¢, for v = (5,1,1) and show that these are the same as the coordinates of v in the
original system. About what line would the original axes of the coordinates have to be rotated to

bring them into coincidence with py, ps, and p3?

Solution:
We have
RN
e ! (7.20)
VP2
Co = — - 7.21
2 \/p2—p2 b2 ( )
V- Pp3
’ \VP3*P3 ’ ( )
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we have
12—-18+6
prpr = (6/T.3/7,2/7)+ (2/7,-6/1,3/T) = —— == =0 (723
18 =6 —12
6+ 12 — 18
pa by = (2/7,~6/7,3/7) - (3/7,~2/7,6/7) = ———= =0 (7.25)
36+9+4
o= ————— =1 2
pi+p 10 (7.26)
For v = (5,1,1) we find
30+3+2
cp=p-v= +7 e (7.27)
10 —
Co=pa+v= 0 76+3:1 (7.28)
15-2-6
03:p3-v:f:1 (7.29)

They would have to be rotated about the line formed by extending the vector v = (5,1, 1) because
this is an invariant in both systems, and so must be conserved through the rotation.

7.5 Exercises on Crude Least Squares

751 1

Prove that the values of f and ¢ taken for the x-values —2,—1,0, 1,2 give perpendicular vectors
if f(x) =1 and g(z) = z*> — 2. Find the values of a and b that make a + b(z*> — 2) the best
approximation (in the sense of least squares) to e~=*/8 for the z-values listed above. Tabulate
these, and compare them with the errors for the approximation 1 — 22/8 given by the beginning

of the Taylor series for e~*"/8.
Solution:
We have
(f,9)=12)+1(-1)+1(-2)+1(-1)+1(2)=2—-1—-2—-1+2=0 (7.30)

let p=f,g=g,and u = e*/8. Then we want ap + bqg = u to be least squares minimized. Note

p=1[1,1,1,1,1] (7.31)
q=1[2,-1,-2,-1,2] (7.32)
u = [0.607,0.882, 1, 0.882,0.607] (7.33)
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We have
(f,f)=5 (7.34)
(9,9) =22 +1+22+1+2°=14 (7.35)
(f,u) = 3.978 (7.36)
(g,u) = —1.339 (7.37)
(7.38)
Thus,
(p,u) 3.978
a= ~ ~ 0.796 7.39
(p,p) 5 (7:39)
(q,u) —1.339
b= ~ —0.0956 7.40
(¢:9) 14 (740)

Thus, collecting terms, (note I used full machine precision, rather than 3 significant figures)

x -2 -1 0 1 2

ap + bg 0.60434372  0.89124468  0.98687833 0.89124468  0.60434372
1-2 0.5 0.875 L. 0.875 0.5

e~/8 0.60653066 0.8824969 1. 0.8824969  0.60653066
Error ap + bq 0.00218694 -0.00874778 0.01312167 -0.00874778 0.00218694
Error Taylor Series | 0.10653066 0.0074969 0. 0.0074969  0.10653066

Table 7.1: Comparison table of approximations.

7.5.2 2

Verify that 1 and 22 — 3.5 give perpendicular vectors when the z-values 0, 1,2, 3 are successively
substituted. Find the least squares approximation of a + b(x? — 3.5) to cos 30x° for these values.
If you differentiated the least squares approximation to the sine function, would you expect to get
the approximation to the cosine function?

Solution:

Then p = [1,1,1,1] and ¢ = [-3.5,—2.5,0.5,5.5], with « = [1,1/3/2,0.5,0] so that

(p,q) = —-354+—-25+05+55=-6+6=0 (7.41)
(p.p) =4 (7.42)
(¢:9) =49 (7.43)
(u,p) = 2.366 (7.44)
(u,q) = —5.415 (7.45)

SO
g lwp) 2366 o (7.46)

(p,p) 4
—5.415

b= EZZ)) ~ o~ —0.1105 (7.47)
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Note, that I would expect the differentiation of the approximation of the cosine to do a good job
of approximating the sine, so long as we are using continuous, differentiable functions, which we
are. [ would also expect the approximation to be similar. We see that the differentiation of the
approximation does not give the same result as this cosine approximation. The coefficients are not
wildly off from each other, but neither are they very close.

We see for the differentiation, we’d get

agir = 0.516061 <> a = 0.5915 (7.48)
bair = —0.061005 > b = —0.1105 (7.49)

Thus, collecting terms, (note I used full machine precision, rather than 3 significant figures)

T 0 1 2 3
ap + bq 0.9782966 0.8677851 0.5362506 -0.0163069
cos(30z°) 1. 0.866025404 0.5 0

Error ap + bg | 0.0217034 -0.0017597  -0.0362506 0.0163069

Table 7.2: Comparison table of approximations.

7.5.3 3

State problems equivalent to 1 and 2 above as questions about points and planes in Euclidean
spaces of suitable numbers of dimensions.

Solution:

For problem 1, what point on the planes in the subspace of £° spanned by vectors p and ¢
given below, is vector w closest to? Here, p = [1,1,1,1,1], ¢ = [2,—1,-2,—1,2] and u =
[0.607,0.882,1,0.882,0.607].

For problem 2, what point on the planes in the subspace of £* spanned by vectors p and ¢ given
below, is vector u closest to? Here, p = [1,1,1,1], ¢ = [-3.5,—2.5,0.5,5.5] and u = [1,/3/2,0.5,0].
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Chapter 8

Euclidean Space

8.1 Exercises for Least Squares Generalized

8.1.1 1

What in terms of (u,u), (u,v) and (v,v) is the distance of tv from u, when ¢ is chosen to make
this a minimum?

Solution:
We use
[tv —u| = /dx (tv —u)? = /d:c t20* — /dx 2tvu + /dx u? = t*(v,v) — 2t(v,u) + (u, u)
(8.1)
To minimize we take % and set to zero to find
2to(v,v) — 2(v,u) =0 (8.2)
(v,u)
tn = 8.3
"~ (w0) 53
(8.4)
Note that then the minimum may be given by
v, u)? v,u)? v, u)?
tow = ull” = ((v,v)) - 2((11,11)) ¥ ()= () - ((v,v)) ~ () mnlw (8.5)

[(, w) (v, v) = (v, u)?]

(v,0)

8.1.2 2

Prove that in £5[0,7/2], the best approximation to sin(x) of the form mz is given by m = 24 /73,
What is the £y distance of the approximation from the sin function?
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Solution:
We find m via
- . - cos( B /2 pw/2
(z,sin(z)) [, ?dz zsin(z) — IN 2 dx $dd—w() [m cos(z)]g o dz cos(z)
m = = - = = = 3
@2) 7 51 5
0 +sin(x)|f* 24
B 3 /24 o3
(8.6)
Thus
/2 w/2 1— 92 in(2
(sinz,sinz) = / dr sin®z = / dx w = % — Smi ?) 3/2 = % (8.7)
0 0
24 196
lma — sin(z)||* = (sin(z),sin(z)) — m(sin(z), z) = % — F(D _ preaa: 0.0113613
(8.8)
lma — sin(z)]| ~ 0.10659 (8.9)
8.1.3 3

Show that the algebraic arguments of section 8.3 are justified when (u, v) is defined as foﬂ/Q u(z)v(x)d.

Solution:

It all follows from

/2 /2 /2
(u, av + bw) = / dz u(av + bw) = a/ dz wv + b/ dz ww = a(u,v) + b(u,w) (8.10)
0 0 0

8.1.4 4

Let f(z) = a+ baz?, g(x) = cx + k3. Find the angle between the vectors that represent f and g
in Lo[—1,1].

Solution:

We use the angle between two vectors is denoted by

(f.9)
cosf = (8.11)
L/ (Hlgl
Thus,
1 1
(f,9) = / dz [(a+ ba®)z(c+ ka?)] = / dz [acz + akx® + bex® + bka”]
- - 8.12)
! bkx® x? 22! ®.
= / dz [bka® + (be + ak)z® + acz| = + (be+ak)— +ac—| =0
1 6 4 2],
Thus, cosf = 0 implies § = 7, thus they are orthogonal.
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815 5

Let f(x) =0, g(z) = 2, h(z) = 1+ 3z. Find the distances d(f,g), d(f,h), d(g,h) in Lo[—1,1].
What geometrical figure is formed by the points representing f, g, h in this space? What value
does this geometrical representation suggest for the scalar product (g, h)? Test the validity of this
suggestion by calculating (g, h) directly as an integral.

Solution:

1

d(f,g) = d(0,2) = U dx 22]2 =4zt =38 (8.13)

-1

1 1
\/d(f,h):\/d(0,1+3x):/ dz (1+3x)2:/ dz [1+63+92°] =2+32°)L, =2+6=38
1 —1
(8.14)

1 1
Vd(g,h) = +\/d(2,1+ 3z) :/ dz (3z — 1) :/ de [1—62+492°]2+32°L, =2+6=28
-1 -1
(8.15)

This suggests we have an equilateral triangle so (f, g) = ||.f|l llg|l cos @ = v/8v/8 cos(60°) = 4.
We have
1
(9.h) :/ dz [2+ 62] = 4+ 0 (8.16)
~1

as we thought.

8.1.6 6

Let f,(x) = 2™ Find ||f.|| (a) if f, is regarded as an element of £5[0,1], (b) if f, is regarded as
an element of C[0,1]. In each case, discuss whether f,, tends to a limit as n — oo and state the
limit if it does.

Solution:

For (a), we have

) 1 ) 2+l 1 1
= d n_ = 8.17
71 /0 SR T | N (8.17)
As n — oo, then in £5]0, 1] we see that lim, . ||fa]| = 0 since the denominator grows without
bound.

For (b) we note that 2" will reach its maximum distance from the origin at = 1, which will of
course yield || f,|| = 1 for all n. Thus, there is a limit, and it is lim,, . || fa] = 1.

We note we get very different answer depending on the norm used.
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8.1.7 7
Do as in question 6, with f,(z) = n'/4e ™"

Solution:

For (a) we have
—2nx —2n

1
2 1/2 —2nx _ 1/2€
2= [ a =
| f=ll /0 xn'‘e n lo NG

—2n
Clearly, this approaches zero as n — oo since e 2"/y/n and \/Lﬁ both approach zero rapidly as
n — oQ.

(8.18)

For (b), we note that the maximum value of e~ in this interval is 1, so that || f,|| = n'/%. Note
that as n — oo that this blows up, so that there is no limit as n — oo.

8.1.8 8

Let f(z) = a and g(x) = cosz. Find what value of a makes the distance of f from ¢ in
Lo|—m/2,7/2] a minimum, and determine this minimum distance. For this value of a, what is the
distance of f from g in C[—7/2,7/2]7 What value of @ would make f nearest to g in C[—7/2,7/2],
and how far apart would they then be in that space?

Solution:

We use

)2 . /2
1 o dr cos(x sin(z)| 2
o (eos(@)) g (@) _sin@ls, _ 2 (8.19)

T [Pt n

The distance is given by

w/2 /2 1 9
(cosz,cosz) = / dz cos?(x) = / dz 1+ cos(2z) —_ (8.20)
—7/2 —7/2 2 2
2 28
|a — cos(z)||* = T 29T ~ 0.297557 (8.21)
2 0w ™
|la — cos(x)|| ~ 0.545488 (8.22)

For C[—m/2,7/2] we note that ||2 — cos(z)|| = sup|2 — cos(z)| = 2 ~ 0.63622. To make a a
minimum in C we need to choose a = 0.5 so that ||a — cos(x)|| = 0.5. This is because cos(z) varies
between 0 and 1 with = € [—7/2,7/2] so that choosing the halfway point minimizes the norm.

819 9

Let f(x) = ax and g(z) = sinz. Find what value of a makes d(f,g) in £[0,7/3] a minimum,
and find this minimum distance. A well-known crude approximation to sinz° is /60, which
corresponds to a = 3/m for radian measure. The value of a that makes f closest to g in C[0,7/3]
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is 0.869 647 167 . Make tables showing the errors of approximation ax — sin x for the three values
of a referred to in the paragraphs above, and compare them.

Solution:
We use

(x,sin(x)) fﬁ/g dz zsin(z)  —xcos(z)[}® + fﬂ/g dx cos(x)
a = = —

(z, ) fw/gd:v x? %33/3
/6 + Sin(x)]o/3 _ —7m/6+ ‘/7§ (8.23)
B 73 /34 - 7m3/81

~ 0.894 546 519 372964 9

Thus, the minimum distance is

/ " g sin?(z) = / M cos@e) _wsinQo)lf _w sin@r/3) 7 V3 (8.24)
0 0 2 6 4 6 4 6 8
2 ™ \/g (—7T/6 + \/75)2
la —sin(z)|? == — Yo -~ 27
6 8 w3 /81 (8.25)
__9Bv3-n) V3 T 0.000775 876 |
- 473 s 6
Now for the table
a | z=0° 10° 20° 30° 40° 50° 60°
a, | 0. ~0.01752036 ~0.0297645 20.03161654 -0.01827633  0.01459466  0.07074152
as | 0. -0.00698151100 -0.00868680999 0. 0.0238790570  0.0672888902 0.133974596
as | 0. -0.02186611 -0.03845602 -0.04465381 -0.03565935  -0.00713412  0.04466698

Table 8.1: Error in the approximation az for various a for function sin(z) in [0,7/3]. a1 =
0.894 546 5193729649, ay = 3/m, and az = 0.869 647 167.

We see that both have errors at different portions of the domain. One might say that a; and as
do better over the entire range, but as = 3/m does an impressive job near the center. We can plot
these in Figure 8.1.
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Figure 8.1: A plot of the approximations and the errors.

chapter8/varas.py
#!/usr/bin/env python2

import numpy as np
import matplotlib.pyplot as plt

#Test various a’s for a x as an approximation to sin(x) in [0,pi/3]
al1=0.8945465193729649

a2=3/np. pi

a3=0.869647167

x=np. linspace (0,np.pi/3,501)

fig = plt.figure()
ax=fig .add_subplot (111)

ax.plot (x,al*x,label=r’$a_18")
ax.plot (x,a2*x,label=r’$a_28 ")
ax.plot (x,a3*x,label=r’'$a_3%")
ax.plot (x,np.sin(x),label=r’$\sin._x$")

plt .setp(ax.get_yticklabels (), fontsize=20)
plt.setp(ax.get_xticklabels (), fontsize=20)
ax.set_xlabel (7$x$’,fontsize=30)
#ax.set_ylabel ("3y(x)$’,fontsize=30)
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#ax.set_ylabel (’8y(x)$’,fontsize=30,rotation="horizontal ”)
ax.legend (loc="best’ ,prop={’size :15})
#plt.title (r Real$(n)$’)

plt.tight_layout ()
plt .savefig (’varas.png’,bbox_inches="tight ")

plt.clf ()
x1l=np.linspace (0,np.pi/3,7)

yl=al#xl-np.sin (x1)
y2=a2*x1-np.sin (x1)
y3=a3*xl-np.sin (x1)

fig = plt.figure()
ax=fig .add_subplot (111)

ax.plot (x1,np.abs(yl),label=r’$\rm{Error\_}a_1$
ax.plot (x1,np.abs(y2),label=r’$\rm{Error\_.}a_2$")
ax.plot (x1,np.abs(y3),label=r’$\rm{Error\.}a_3$

plt .setp (ax.get_yticklabels (), fontsize=20)

plt .setp(ax.get_xticklabels (), fontsize=20)

ax.set_xlabel ('$x$’,fontsize=30)

#ax.set_ylabel (’$y(x)$’,fontsize=30)

#ax.set_ylabel (’$y(x)$’,fontsize=30,rotation="horizontal ")
ax.legend (loc="best ' ,prop={’size ":15})

#plt.title (r "Real$(n)$ )

plt.tight_layout ()
plt .savefig (’varasError.png’,bbox_inches=’"tight ")

print yl
print y2
print y3

8.2 Exercises on Chebyshev/Fourier Series
8.2.1 1
Show that for f(z) = n%x — 2® with the interval [0, 7], equation

o= 200 =2 [ do f(o)singra)

™ Jo

gives the Fourier coefficients, ¢, = 12(—1)""/r3. Use these values to calculate

g(z) = Z ¢y sin(rx)

for x = nw /4, with n taking whole number values from [—4, 12] inclusive. Sketch a rough graph of
g for —m < x < 3w, and compare this with the graph of f.

Solution:
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We have
/ dz zsin(rz) = ——/ dz xch(mc) =—- / dz d [z cos(rz)] — cos(rx)%
0 r Jo dx r |Jo dx dx
—1 T —1
= — {m cos(rx)[f —/ dz Cos(rx)] = — |:7T cos(rm) _ sin(r H (8.26)
r 0
-1 -1 r+1
= a(-1) = =)
T T

r r €T i

N 1 [ d 1 N d dz?
/ dr 2’ sin(rz) = ——/ dz SL’SM =—— [/ dz — [2° cos(rz)] — cos(rx)i]
; ; da . a d

17T Q

= — |2° cos(rx)|] — / dz cos(rx)}
Tl 0
—17] 4 " 2

= — |’ cos(rm) —3 [ dz z°cos(rz)
roL 0
17T Tr '

= — |7 cos(rm) — —/ dz xzm}
ro| r Jo dx

r n ) (8.27)
- = _7r3(—1)’“ - ; /O da {% [2? sin(ra)] —Sin(m;)(jii}]

T
1T w
= 3 (=1)" —M—l— ;2/0 dz xsin(m’)}
—1 - -1 r+1
- - 73(_1)r+§()%]
)

7T3(_1)r+1 6(—1 r+2ﬂ.
r r3

Thus,

/07r dz (m*x — 2°)sin(rz) = 7T2(_1 el <_M 61" _ 6(_1);+ T (8.28)

Thus, (using (—1)"*3 = (=1)?(=1)"" = (=1)")

2 /O7r dz (7?z — 2°)sin(rz) = — = — (8.29)

™

Thus, we find Figure 8.2 and table 8.2.
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Table 8.2: The values for the approximation and the function for the given values of x.

#!/usr/bin/env python2

import numpy as np

100

~100}
—200}
—300}
—400}
~500/
—600|
—700|
—800'

0,

Figure 8.2: A plot of the approximation.

r |7z —a3 S0 esin(rz)
-4 110.64092289  24.5215824

-3 | -2.57857812  -2.6088132

-2 | -11.73275439 -11.7392088

-1 | -8.87490147  -8.8696044

0 [0 0.

1 | 8.87490147 8.8696044

2 | 11.73275439  11.7392088

3 | 2.57857812 2.6088132

4 1-10.64092289 -24.5215824

5 | -10.54632377 -75.65197799

6 |-2.77145435  -156.78237359
7 | 6.70111714  -273.91276919
8 | 11.88878887 -433.04316479
9 |6.77445731 -640.17356039
10 | -8.41359761  -901.30395599
11 | -11.62179874 -1222.43435159
12 1 -5.40972637  -1609.56474719

chapter8/fourierone.py

import matplotlib.pyplot as plt

#Test various a’s for a x as an approximation to sin(x) in [0,pi/3]

x1=np.linspace (—4,12,17)

x=np.linspace(—np.pi,3*np.pi,501)

fl=np. pi**x2xx1—x1%%3

f=np. pi**2%xx—xX**3
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def cr(r):
return 12.x(—1)**(r+1)/(r)**3

maxfour=10
s1=x1x%0
s=x*0
for i in range(len(s)):
for j in range(maxfour):
s[i]=s[i]+cr(j4+1)*np.sin ((j+1)*x[i])

for i in range(len(sl)):
for j in range(maxfour):
sl[i]=sl[i]4+ecr(j+1)*np.sin ((j+1)*x1[i])

fig = plt.figure()
ax=fig.add_subplot (111)

ax.plot (x,s,label=r '$\sum_{r=1}"{10}c_r\sin(rx)$’)
ax.plot (x,f,label=r $\pi " 2x—x"3%")

plt .setp (ax.get_yticklabels (), fontsize=20)
plt.setp(ax.get_xticklabels (), fontsize=20)

ax.set_xlabel (’$x3’,fontsize=30)

#ax.set_ylabel ("Sy(x)$’,fontsize=30)

#ax.set_ylabel (’3y(x)$’,fontsize=30,rotation="horizontal ’)
ax.legend (loc="best’ ,prop={’size ":15})

#plt.title (r ’Real$(n)$’)

plt.tight_layout ()
plt .savefig (’cubicfunction.png’,bbox_inches="tight )

print sl
print f1

8.2.2 2
(The sawtooth function) Let f(z) =z for 0 <z < 7/2 and f(z) =7 — 2 for /2 < x < 7. Show

that the corresponding Fourier series is

g(x) = (4/m) |sin(x) — %sin(?:x) + 2—15 sin(5x) + - - -

with the squares of the odd numbers appearing as denominators. Does the series g(z) converge
(a) absolutely, (b) uniformly? Investigate the graph of g, with = taking all real values. Sketch the
graph of the derivative f’ in [0, 77]. Would you expect a Fourier series for f’ to converge uniformly?

Solution:

Let’s first construct the series for 0 < z < 7/2. Then

w/2 1 w/2 d 1 w/2 d d
/ dz zsin(rz) = ——/ dz IM =—— [/ dz T [z cos(rz)] — cos(rx)d—x
0 0 0

r dx r x x
—1 /2 " -1 |7 Sin(rz) /o
= {x cos(rx)|0/ —/0 dx cos(rx)} = [5 cos(rm/2) — T|O/ }
_sin(rm/2)  7wcos(rm/2)
B r? 2 r
(8.30)
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December 16, 2016



Euclidean Space 101

Note that
(0 r=0 mod4
LT 1 r=1 mod4 (-1)"-1_ .,
sin(r ™) — T T 8.31
111(7“2) 0 r=2 mod4 2 (8:31)
(—1 =3 mod4
(1 r=0 mod4
T 0 =1 mod4 (=1)"+1.
)= =~"7 4 8.32
S =Y 1 r=2 mod4 2 (8:32)
L0 r=3 mod 4

For 7/2 <o < m we use u =z — /2 so that f(u) =7 — (u+ 7/2) = 7/2 — u. Thus,

/ dz 7sin(rz) = oY) czs(mc) ne = ;(COS(TTI'/2) — cos(rm)) (8.33)
w/2

T 1 (7 d 1 T d d
/Tr/2 dz zsin(rz) = - /7r/2 dz x% = [/ﬂ/z dz P [z cos(rz)] — cos(m")£

-1 {x cos(ra)|T — /ﬁ ; da cos(m;)] == E (2 cos(rm) — cos(rr/2)) — S”‘(Tm) ;/2}
_ M ~ 7 (2eos(rn) — cos(rr/2))
(8.34)

So in totality,

T ' 2 1
/ dz [r — z]sin(rz) = g (cos(rm/2) — cos(rm)) + sm(:# + g (COS(TTF) ~ 5 cos(r7r/2)>
w/2
(8.35)
_ mcos(rm/2)  sin(rmr/2)
=gt (8.36)
Thus, ¢, is given by
2 [T 2 si 2 2 2 2 si 2
.o — _/ dr f(x)sin(rz) = _Sln(T;‘(‘/ ) cos(rm/2) n cos(rm/2) N _sm(r;r/ )
T Jo T r r T
_ A4sin(rn/2)
T (8.37)
# r=1 mod4
= —% r=3 mod4
0 otherwise
So we recover
(£) = = [sin(z) g sin(3z) + o sin(5e) + (5.38)
g(z) = — |sin(z) — 5 sin(3z) + o sin(5z :
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Note that

4 & 4 = 1 47
g(x) < S;Z 1) 5= (8.39)

therefore g(z) does converge absolutely, and via Weierstrass, uniformly as well.

The derivative is shown in Figure 8.3. I wouldn’t expect uniform convergence. This is because the
function is discontinuous, and so we don’t expect good convergence properties. We’d find

/2 _ _
/ Az sin(rz) = cos(r0) — cos(rm/2) 1 cos(rm/2) (8.40)
0 r r
T — 2
—/ dz sin(rz) = cos(rm) COS(TW/ ) (8.41)
w/2
‘o — 2 {1 — cos(rm/2) N cos(rm) — COS(TW/2>:| (8.42)
m r
2 [1- 2cos r7r/2) + cos(rm) (8.43)
== ,
0 r=0 mod4
0 =1 d4
={ oo e (8.44)
= r=2 mod4
0 r=3 mod4
Or
h(z) = 5 1sin(29[:) 1s1n(6:c) + L sin(10zx) + (8.45)
o |2 6 10 '

For the worst case, this is

o0

I =1
Z4r+2 éZF (8.46)

the harmonic series which famously fails to converge.
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1.0 —

f (z)

0.0 0.5 1.0 1.5 2.0 25 3.0
T

Figure 8.3: A plot of the derivative of f'(x).

chapter8 /plotsawp.py
#!/usr/bin/env python2

import numpy as np
import matplotlib.pyplot as plt

#Test various a’s for a x as an approximation to sin(x) in [0,pi/3]
x=np.linspace (0,np.pi,500)
f=0xx

f[:250]=1
f[250:]=—1

fig = plt.figure ()
ax=fig .add_subplot (111)

ax.plot (x,f,label=r’$f " \prime(x)$’)

plt.setp(ax.get_yticklabels (), fontsize=20)
plt.setp(ax.get_xticklabels (), fontsize=20)

ax.set_xlabel (7$x$’,fontsize=30)

#ax.set_ylabel ("3y(x)$’,fontsize=30)

#ax.set_ylabel (’8y(x)$’,fontsize=30,rotation="horizontal ’)
ax.legend (loc="best’ ,prop={’size :15})
ax.set_ylim(—1.1,1.1)

#plt . title (r’Real$(n)$’)

plt.tight_layout ()
plt.savefig (’sawp.png’,bbox_inches=’"tight ")
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8.2.3 3

Show that the Fourier series
Z cos[(2r + 1)6]
2r + 1

arises from f(6) = 7 —6 on [0, 7]. By putting = cos # obtain the series of Chebyshev polynomials
that corresponds to sin~* z. Tabulate the errors produced when sin~! x is approximated (a) by the
terms up to z° in its Taylor series, (b) by the Chebyshev series up to the term in T5(x). Observe
the contrast in behavior between these.

Solution:

First, we find

/7T 49 cos{(2r + 1)0] = sin[(2r + 1) ; sin[(2r + 1)0] _0 (8.47)
/ " 46 B cos|(2r + 1)0] = zrl 1 / a0 GW (8.48)
_ Osin[(2r + DO 1 T -1 -
i o — S /0 sin[(2r + 1)0] = @ Tie cos|(2r 4+ 1)0]|;
(8.49)
1 [(21+ 1)6] 2
T @1 (2412 (8.50)
Thus, yielding the series

2 2 4 cos[(2r 4+ 1)6)

g(0) = ;;mmsmw 1)6] = ?;W (8.51)

as desired.

We note that for x = cosf, v/1 — 22 = siné, sin"*(z) = 7/2 — 6 due to the triangle drawn this
way.

We remember that
T, (z) = cos(nh) (8.52)

So that the series becomes

g(z) = % ; % (8.53)

For (a), we note that the fastest way to find the coefficients is through Cauchy’s theorem. Then,

dz” _QM?{ C — ”+1 (8:54)
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To calculate the series, let’s use that we can integrate term by term. So we have
dsin~!(x) 1 (8.55)
dw V122 '
Then
1 1 3
P g Iy v ST 8.56
V1—2x? +2$+8x+ (8.56)
v 1 3
sin~(r) ~ / dx {1 + 5:1:2 + §x4 4o (8.57)
3

~ Y2 . 8.58

T+t Tt (8.58)
Thus,

3 5
.1 i 3
~ —+ — 8.59
sin” (z) =~ x4+ 5 + 10 (8.59)
4 s T
in~'(2) ~ = [Ty + = 4+ =2 .
sin™' (z) - [ 0+ 5 —1—25 (8.60)

Let’s divide [0, 7] into eleven divisions. Thus, table 8.3 and Figure 8.4.

T

Power Series

Chebyshev Series

sin~!x

-1.00000000e+-00
-9.51056516e-01
-8.09016994e-01
-5.87785252¢-01
-3.09016994e-01
6.12323400e-17
3.09016994e-01
5.87785252¢-01
8.09016994e-01
9.51056516¢e-01
1.00000000e+00

9.16666667e-02
7.79989459¢-02
4.54043097e-02
1.46320165¢-02
1.30843538e-03
2.34299938e-66
1.73110699e-03
2.51561097e-02
9.73894813e-02
1.94712928e-01
2.41666667¢e-01

-1.41471061e+00
-1.29407737e+00
-9.86355468e-01
-6.13844453e-01
-2.79000165e-01
5.19756244e-17
2.79000165e-01
6.13844453e-01
9.86355468e-01
1.29407737e4-00
1.41471061e+-00

-1.57079633e+-00
-1.25663706e+-00
-9.42477796e-01
-6.28318531e-01
-3.14159265e-01
6.12323400e-17
3.14159265e-01
6.28318531e-01
9.42477796e-01
1.25663706e4-00
1.57079633e+-00

x Power Series Chebyshev Series sin™ " x

-1 0.09166667  -1.41471061 -1.57079633
-0.8 | 0.04369067  -0.96879382 -0.92729522
-0.6 | 0.015768 -0.63152681 -0.64350111
-0.4 | 0.00349867  -0.37574714 -0.41151685
-0.2 | 0.00024267  -0.17429235 -0.20135792
0. 0. 0. 0.

0.2 | 0.00029067  0.17429235 0.20135792
0.4 | 0.00503467  0.37574714 0.41151685
0.6 | 0.027432 0.63152681 0.64350111
0.8 |0.09284267  0.96879382 0.92729522
1. 0.24166667  1.41471061 1.57079633

Table 8.3: The values for the approximation and the function for the given values of x. I used

values for z from z = cos @ in the first table.
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2.0 '
— Chebyshev
1.5F — Power
— sin"'w

=10 —0.5 0.0 0.5 1.0
xI

0.35
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0. 30 i ——  Error Power

0.25}
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Figure 8.4: The approximations for sin~!(z) and the error plotted versus x.
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We note that the Chebyshev series error, nicely, has an oscillatory behavior throughout the region,
and so remains lower overall through the region. The power series is more accurate near x = 0,

but at the edge regions has larger error.

chapter8/chebpower.py

#!/usr/bin/env python2

import numpy as np
import matplotlib.pyplot as plt

#Test various a’s for a x as an approximation to sin(x) in
def coeffarr (m):
mEnp . zeros (m)
for j in range(m) [1::2]:
mmfj]=1./()*x2
return 4/np. pismm

theta=np.linspace (0,np.pi,501)
x=np.cos (theta)
x=np. linspace (—1,1,501)

y=np.polynomial.chebyshev.chebval (x, coeffarr (5))
y1=x+x*%3/6.43/40.%x%*5
y2=np.arcsin (x)

fig = plt.figure()
ax=fig .add_subplot (111)

ax.plot (x,y,label=r ’$\rm{Chebyshev}$’)
ax.plot(x,yl,label=r’$\rm{Power}$’)
ax.plot (x,y2,label=r’$\sin"{—1}.x$")

plt.setp(ax.get_yticklabels (), fontsize=20)
plt.setp(ax.get_xticklabels (), fontsize=20)

ax.set_xlabel (’$x$’,fontsize=30)

#ax.set_ylabel (’8y(x)$’,fontsize=30)

#ax.set_ylabel (’$y(x)$’,fontsize=30,rotation="horizontal ")
ax.legend (loc="best’ ,prop={’size ":15})

#plt.title (r’Real$(n)$’)

plt.tight_layout ()
plt.savefig(’arcsinapprox.png’,bbox_inches="tight ")

plt.clf()

fig = plt.figure()
ax=fig .add_subplot (111)

ax.plot (x,np.abs(y —y2),label=r’$_\rm{Error\._.Chebyshev}$")
ax.plot (x,np.abs(yl—y2) ,label=r’$\rm{Error\_Power}$”)

plt.setp(ax.get_yticklabels (), fontsize=20)

plt .setp (ax.get_xticklabels (), fontsize=20)

ax.set_xlabel ('$x$’,fontsize=30)

#ax.set_ylabel (’Sy(x)$’,fontsize=30)

#ax.set_ylabel (’$y(x)$’,fontsize=30,rotation="horizontal ’)
ax.legend (loc="best’ ,prop={’size ':15})

ax.set_xlim (—1.05,1.05)

#plt.title (r’Real$(n)$’)

plt.tight_layout ()
plt.savefig (' Errorarcsinapprox.png’,bbox_inches="tight ’)

plt.clf ()

fig = plt.figure()
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ax=fig .add_subplot (111)

ax.semilogy (x,np.abs(y —y2),label=r’$._\rm{Error\_Chebyshev}$’)
ax.semilogy (x,np.abs(yl—y2),label=r’'$\rm{Error\_Power}$ ")

plt.setp(ax.get_yticklabels (), fontsize=20)

plt .setp (ax.get_xticklabels (), fontsize=20)

ax.set_xlabel (’$x$’,fontsize=30)

#ax.set_ylabel (’$y(x)$’,fontsize=30)

#ax.set_ylabel (’$y(x)$’,fontsize=30,rotation="horizontal ’)
ax.legend (loc="best’ ,prop={’size ':15})

ax.set_xlim (—1.05,1.05)

#plt.title (r’Real$(n)$’)

plt.tight_layout ()
plt.savefig(’LogErrorarcsinapprox.png’,bbox_inches="tight )

plt.clf ()

theta=np.linspace (0,np.pi,11)
x=np.cos (theta)
x=np.linspace(—1,1,11)

print x

yl=np.polynomial.chebyshev.chebval(x, coeffarr(5))
y2=x*x*%3/6.4+3/40.%x%%5
y3=np.arcsin (x)

print yl

print y2
print y3
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