
Kyle Bunkers 1 FULL INTEGRAL

As stated in Jackson 5.28,

Show that the mutual inductance of two circular coaxial loops in a homogeneous medium of
permeability µ is

M12 = µ
√
ab

[(
2

k
− k
)
K(k)− 2

k
E(k)

]
(1)

where

k2 =
4ab

(a+ b)2 + d2
(2)

and a, b, are the radii of the loops, d is the distance between their centers, and K and E are the
complete elliptic integrals of the First and Second Kind, respectively.

Find the limiting value when d� a, b and a ∼= b.

Solution:

1 Full Integral

We begin by looking at the integral

M12 =
µ

4π

∮
C1

∮
C2

d`1 · d`2
|x1 − x2|

(1.1)

where d`i points along the current direction (for convenience we will assume that they point
counterclockwise as you go around the circles).

Let our setup look as in Figure 1 and 2.

a

b

d

Figure 1: Setup of two coaxial rings of current from a side view.
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d`2

θ2

b

d`1

θ1

a

Figure 2: Setup of two coaxial rings of current when looking down their shared axis.

Now here are some useful trigonometric identies I will use.

cos (θ1 ± θ2) = cos θ1 cos θ2 ∓ sin θ1 sin θ2 (1.2)

sin (θ1 ± θ2) = sin θ1 cos θ2 ± sin θ2 cos θ1 (1.3)

sin2(θ) =
1− cos(2θ)

2
(1.4)

cos θ = 1− 2 sin2(θ/2) = 2 cos2(θ/2)− 1 (1.5)

sin θ = 2 sin(θ/2) cos(θ/2). (1.6)

Now we need to be careful, as I will do this in cylindrical coordinates, but because of the subtleties
of the double integral, it is easiest to do do cartesian unit vectors with cylindrical components.

Hence

d`1 · d`2 = a dθ1θ̂1 · b dθ2θ̂2 (1.7)

= (a dθ1) [− sin θ1x̂ + cos θ1ŷ] · {(b dθ2 [− sin θ2x̂ + cos θ2ŷ])} (1.8)

= ab dθ1 dθ2 [sin θ1 sin θ2 + cos θ1 cos θ2] (1.9)

d`1 · d`2
(1.2)
= ab dθ1 dθ2 cos(θ1 − θ2) = ab dθ1 dθ2 cos(θ2 − θ1). (1.10)

Also

|x1 − x2| = |[a cos θ1x̂ + a sin θ1x̂ + 0ẑ]− [b cos θ2x̂ + b sin θ2ŷ + dẑ]| (1.11)

=
√

(a cos θ1 − b cos θ2)2 + (a sin θ1 − b sin θ2)2 + (0− d)2 (1.12)

=
√
a2 + b2 + d2 − 2ab [cos θ2 cos θ1 − sin θ2 sin θ1] (1.13)

|x1 − x2|
(1.2)
=
√
a2 + b2 + d2 − 2ab cos(θ1 − θ2) =

√
a2 + b2 + d2 − 2ab cos(θ2 − θ1). (1.14)
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So we may rewrite our integrals as

M12 =
µ

4π

∮
C1

∮
C2

ab dθ1 dθ2 cos(θ2 − θ1)√
a2 + b2 + d2 − 2ab cos(θ2 − θ1)

(1.15)

(1.10) & (1.14)
=

abµ

4π

∮
C1

dθ1

∮
C2

dθ2 cos(θ2 − θ1)√
a2 + b2 + d2 − 2ab cos(θ2 − θ1)

. (1.16)

Now in the dθ2 integral, we have that θ1 is a constant so we may define new angles, ε = (θ2 − θ1) + π
and γ = (θ2 − θ1) with dγ = dε = dθ1 and 2φ = ε with 2 dφ = dγ such that

cos(θ2 − θ1) = cos γ = cos (ε− π)⇒ cos

(
ε− π

2

)
= sin

( ε
2

)
= sinφ. (1.17)

So now let’s calculate an arbitrary integral of the correct form,∮
C1

dγ
cos γ√

α− β cos γ

(1.5)
=

∮
C1

dγ
2 cos2

(
γ
2

)
− 1√

α− β[2 cos2
(
γ
2

)
− 1]

(1.18)

=

∮
C1

dε
2 cos2

(
ε
2
− π

2

)
− 1√

α− β[2 cos2
(
ε
2
− π

2

)
− 1]

=

∫ 2π

0

dε
2 sin2

(
ε
2

)
− 1√

α + β − 2β sin2
(
ε
2

) (1.19)

= 2

∫ π

0

dφ
2 sin2 φ− 1√

α + β − 2β sin2 φ
=

2√
α + β

[
2

∫ π

0

dφ
sin2 φ√

1− 2β
α+β

sin2 φ︸ ︷︷ ︸
I2

−
∫ π

0

dφ
1√

1− 2β
α+β

sin2 φ

]

(1.20)

=
2√
α + β

[
2(I2)− F

(
π,

√
2β

α + β

)]
. (1.21)

Where we have F (ϕ, k), the Lagrange Incomplete Elliptic Function of the First Kind, and E(ϕ, k),
the Lagrange Incomplete Elliptic Function of the Second Kind, defined as

F (ϕ, k) =

∫ ϕ

0

dθ
1√

1− k2 sin2 θ
(1.22)

E(ϕ, k) =

∫ ϕ

0

dθ
√

1− k2 sin2 θ. (1.23)

Now I2 can be calculated using the fact that

κx√
1− κx

=
κx− 1√
1− κx

+
1√

1− κx
=

1√
1− κx

− 1− κx√
1− κx

=
1√

1− κx
−
√

1− κx. (1.24)
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So seeing that κ↔ 2β
β+α

we can rewrite I2 as

I2 =
α + β

2β

∫ π

0

dφ

2β
α+β

sin2 φ√
1− 2β

α+β
sin2 φ

 (1.25)

I2
(1.24)
=

α + β

2β

∫ π

0

dφ
1√

1− 2β
α+β

sin2 φ
−
∫ π

0

dφ

√
1− 2β

α + β
sin2 φ

 (1.26)

=
α + β

2β

[
F

(
π,

√
2β

α + β

)
− E

(
π,

√
2β

α + β

)]
. (1.27)

Reminding ourselves that

K(k) = F
(π

2
, k
)

=

∫ π/2

0

dθ
1√

1− k2 sin2 θ
(1.28)

E(k) = E
(π

2
, k
)

=

∫ π/2

0

dθ
√

1− k2 sin2 θ. (1.29)

Now using these definitions, one may easily find using

sin(−θ ± π)
(1.3)
= sin θ (1.30a)

ϕ = −θ + π ⇒ dϕ = − dθ (1.30b)

that

F (π, k) =

∫ π

0

dθ
1√

1− k2 sin2 θ
=

∫ π/2

0

dθ
1√

1− k2 sin2 θ
+

∫ π

π/2

dθ
1√

1− k2 sin2 θ
(1.31)

(1.28) & (1.30b)
= K(k) +

∫ 0

+π/2

−dϕ
1√

1− k2 sin2(−ϕ− π)

(1.30a)
= K(k) +

∫ π/2

0

dϕ
1√

1− k2 sin2 ϕ
(1.32)

F (π, k) = 2K(k) (1.33)

E(π, k) =

∫ π

0

dθ
√

1− k2 sin2 θ =

∫ π/2

0

dθ
√

1− k2 sin2 θ +

∫ π

π/2

dθ
√

1− k2 sin2 θ (1.34)

(1.29) & (1.30b)
= E(k) +

∫ 0

+π/2

−dϕ
√

1− k2 sin2(−ϕ− π)
(1.30a)

= E(k) +

∫ π/2

0

dϕ

√
1− k2 sin2 ϕ

(1.35)

E(π, k) = 2E(k). (1.36)

We write that

I2 =
α + β

β

[
K

(√
2β

α + β

)
− E

(√
2β

α + β

)]
(1.37)

⇒

(1.21) =
2√
α + β

{
2
α + β

β

[
K

(√
2β

α + β

)
− E

(√
2β

α + β

)]
− 2K

(√
2β

α + β

)}
(1.38)
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Now we have for our case that α = a2 + b2 + d2 and β = 2ab so that

2β

α + β
=

4ab

a2 + b2 + d2 + 2ab
=

4ab

(a+ b)2 + d2
= k2

√
α + β =

√
2β

k
=

2
√
ab

k
.

(1.39)

Therefore we have (noting there is no θ1 dependence and so we just get a 2π from that integral)

M12 =
abµ

4π

∮
C1

dθ1

∮
C2

dθ2 cos(θ2 − θ1)√
a2 + b2 + d2 − 2ab cos(θ2 − θ1)

(1.40)

(1.38)
=

abµ

4π

∮
C1

dθ1
2√
α + β

{
2
α + β

β
[K(k)− E(k)]− 2K(k)

}
(1.41)

(1.39)
=

abµ

4π
2π

2k

2
√
ab

{
4

k2
[K(k)− E(k)]− 2K(k)

}
(1.42)

=
µ
√
ab

2

[(
4k

k2
− 2k

)
K(k)− 4kE(k)

]
(1.43)

M12 = µ
√
ab

[(
2

k
− k
)
K(k)− 2

k
E(k)

]
. (1.44)

Hence we get (1.44) as is required by Jackson (1).

2 Approximation of Integral

Now we need to do an approximation for when d� a, b, and a ∼= b.

2.1 Method Due to Maxwell

This method is inspired by Maxwell’s original approach in article 703 of A Treatise on Electricity
and Magnetism, Vol. 2 by Maxwell.

In this case, let a > b with a = b + c and we have that ρ =
√

(a− b)2 + d2 =
√
c2 + d2 is the

closest that the two circles come together and that this quantity ρ is small.

Now we need to find the magnetic field in coming from this ring and affecting the inner ring at b.
We know from elementary magnetostatics (from the Biot-Savart Law) that the field from a tiny
bit of ring d` gives

dB =
d`× r

|r|3
=

d` sin θ

r2
(2.1)

where the sin θ is coming from the cross product and so θ is the angle between the piece d` (for
convenience let it point counterclockwise relative to the circle) and the position P we’re calculating
the field at.

Looking at Figure 3 helps to see this.
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b

a

d`

c

P
θ

Figure 3: Picture for approximation. We exclude the small region around d` of radius c.

Now we need to find how far to integrate out in r. We exclude a small circle around d` and so we
will need to go from c/ sin θ to 2a sin θ as we will see below. So, suggestively, let’s call these limits
from r1 to r2, respectively.

To see this, we need only look at how far in Figure 3 we need to integrate over (which is the entire
region of the circle with radius b or less).

To see how to get these limits let’s rotate the circle so that differential element d` has its center
lying on the x-axis. Then let’s put the origin at the center of the circle centered around d` (i.e.
the circle with diameter 2c). So in this coordinate system the circle of radius b has its center left
of the origin by (b + c) units on the x-axis. Now the equation for the bigger circle of radius b in
these coordinates is

(x+ (b+ c))2 + y2 = b2 (2.2)

r2︷ ︸︸ ︷
x2 + y2 +2(b+ c)x+ (b+ c)2 = b2 (2.3)

r2 + 2(b+ c)x+ c2 + 2bc = 0. (2.4)

Now if we look at the angle that x is defined by, let’s call it α, which is measured from the x-axis
and its relationship to θ as we defined it. Remembering that θ is defined from the y-axis, we see
that θ = α− π/2. Figure 4 should help see this relationship. Now as

cos(α) = cos(θ + π/2)
(1.2)
= − sin(θ) (2.5)

we have our equation in terms of θ.

Hence we need only to find where (2.4) is 0 to find the distances from the center of the differential
element d` with a line connecting to the point P which lies in the circle of radius b. The distance
is, of course, called r here. So in terms of θ we find

r2 + 2(b+ c)x+ c2 + 2bc = 0 (2.6)

r2 + 2(b+ c)r cosα + c2 + 2bc = 0 (2.7)

r2 + 2(b+ c) cos(θ + π/2)r + c2 + 2bc = 0 (2.8)
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(2.5)⇒
r2 − 2(b+ c) sin θ r + c2 + 2bc = 0. (2.9)

d`

P

θ

θ
α

Figure 4: Relationship between α and θ.

The solution for r for (2.9) (calling each r1 and r2)

r1 = (b+ c) sin θ −
√

(b+ c)2 sin2 θ − (c2 + 2bc) (2.10)

r2 = (b+ c) sin θ +
√

(b+ c)2 sin2 θ − (c2 + 2bc), (2.11)

which in the small c limit become

r1 = (b+ c) sin θ − (b+ c) sin θ

√
1− c2 + 2bc

(b+ c)2 sin2 θ
(2.12)

≈ (b+ c) sin θ − (b+ c) sin θ

(
1− c(2b+ c)

2(b+ c)2 sin2 θ

)
=

c(2b+ c)

2(b+ c) sin θ

b�c
≈ 2bc

2b sin θ
(2.13)

r1 ≈
c

sin θ
(2.14)

r2 = (b+ c) sin θ + (b+ c) sin θ

√
1− c2 + 2bc

(b+ c)2 sin2 θ
(2.15)

≈ (b+ c) sin θ + (b+ c) sin θ

(
1− c(2b+ c)

2(b+ c)2 sin2 θ

)
= 2(b+ c) sin θ − c

sin θ

b�c
≈ 2b sin θ (2.16)

r2 = 2b sin θ (2.17)

which yield the two limits promised. Now we see that we need to have θ run from θ1 ≈ 0 to θ2 ≈ π,
where we can use the approximations as long as we are careful. In fact, it would be from θ1 to
π − θ1 by symmetry.

Mbc =
µ

4π

∫ π

0

∫ 2b sin θ

c/ sin θ

d` sin θ

r2
r dr dθ =

µ

4π
d`

∫ π

0

sin θ ln

(
2b sin2 θ

c

)
dr (2.18)

To see how to do this integral look to the at section 3.

So then

d`µ

4π

∫ π

0

sin θ ln

(
2b sin2 θ

c

)
dr

(3.8)
=

d`µ

4π
2

(
ln

(
4(2b)

c

)
− 2

)
=

d`

2π

(
ln

(
8b

c

)
− 2

)
. (2.19)
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Hence, integrating over d` with
∫ 2π

0
R d` = 2πR where R is the radius of the circle that d` goes

around which is for a ∼= b, just about b and we get for our case

Mbc = µb

[
ln

(
8b

c

)
− 2

]
. (2.20)

Now for the region between b and a we see that we can treat this as two straight wires because
if b ∼= a then there is a small radius of curvature and if we subtract out the inductance from the
inner region which we have just calculated, then it is almost the exact same as two wires. So

Mba −Mbc = µb

[
ln

(
c

ρ

)]
(2.21)

and so combining (2.20) and (2.21) we get

Mba = M12 = µb

(
ln

(
8b

ρ

)
− 2

)
. (2.22)

(note that ρ =
√
c2 + d2 ≈ d, as c� 1)

2.2 Asymptotic Expression for Elliptic Integrals

Alternatively, we may use the approximation that for k → 1 with k′ =
√

1− k2 with ψ(m) being
the digamma function as is stated in the DLMF 19.12 at http://dlmf.nist.gov/19.12, we find

k2 =
4ab

(a+ b)2 + d2
= 1− k′2 (2.23)

⇒

k′2 =

(
1− 4ab

(a+ b)2 + d2

)
=

(
(a+ b)2 + d2 − 4ab

(a+ b)2 + d2

)
=
a2 + b2 + 2ab− 4ab+ d2

(a+ b)2 + d2
(2.24)

=
a2 + b2 − 2ab+ d2

(a+ b)2 + d2
=

c2︷ ︸︸ ︷
(a− b)2 +d2

(a+ b)2 + d2
=

ρ2︷ ︸︸ ︷
c2 + d2

(a+ b)2 + d2
=

ρ2

(a+ b)2 + d2
(2.25)

k′2
(a+b)2�d2
≈ ρ2

(a+ b)2
a∼=b≈ ρ2

4b2
(2.26)

k′ ≈ ρ

2b
. (2.27)

To lowest order we find that

K(k) ≈ ln

(
1

k′

)
+ d(0)︸︷︷︸

ψ(1)−ψ(1/2)=ln 4

(2.28)

E(k) ≈ 1 (2.29)
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and so (1.44) becomes

M12 ≈ µ
√
ab︸︷︷︸
≈b
≈a

[(2− 1)K(k)− 2E(k)] ≈ µb

[
ln

(
1

k′

)
+ ln 4− 2

]
(2.30)

≈ µb

(
ln

(
4

k′

)
− 2

)
(2.27)
≈ µb

(
ln

(
4
ρ
2b

)
− 2

)
(2.31)

M12 ≈ µb

(
ln

(
8b

ρ

)
− 2

)
(2.32)

(note that ρ =
√
c2 + d2 ≈ d, as c� 1) as expected.

3 Log Integral

The integral of interest is ∫ π

0

sin θ ln
(
B sin2 θ

)
dθ (3.1)

so using u = cos θ ⇒ du = − sin θ dθ∫ 1

−1
ln (B(1− u2)) du =

∫ 1

−1

[
lnB + ln(1− u2)

]
du (3.2)

= 2 lnB +

∫ 1

−1
ln ((1 + u)(1− u)) du = 2 lnB +

∫ 1

−1
ln(1 + u) du+

∫ 1

−1
ln(1− u) du (3.3)

now using x = 1 + u⇒ dx = du and z = 1− u⇒ dz = − du we find

= 2 lnB +

∫ 2

0

lnx dx−
∫ 0

2

ln z dz = 2 lnB +

∫ 2

0

lnx dx+

∫ 2

0

ln z dz (3.4)

= 2

(
lnB +

∫ 2

0

lnx dx

)
(3.5)

Now integrating by parts with u = lnx, du = dx
x

and dv = dx so v = x we find∫
lnx dx = x ln(x)−

∫
x

dx

x
= x(lnx− 1) (3.6)

Hence

= 2
(
lnB + [x(lnx− 1)]20

)
= 2 (lnB + 2(ln 2− 1)) (3.7)

= 2 (lnB + ln 4− 2) = 2 (ln(4B)− 2) . (3.8)

4 Energy Method

An alternative method is to use that

∆W = M12I1I2 = 2

(
1

2

∫
J1 ·A2 d3x

)
(4.1)
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with the factor of 2 coming from the two contributions to ∆W from the rings.

We then can note that

J1 =
I1
r
δ(θ − arctan

[
b

d

]
)δ(r −

√
d2 + b2)ϕ̂ (4.2)

A2ϕ =
I2aµ

π
√
a2 + r2 + 2ar sin θ

[
(2− k2)K(k)− 2E(k)

k2

]
(4.3)

from Jackson (5.33) and Jackson (5.37) with

k2 =
4ar sin θ

a2 + r2 + 2ar sin θ
(4.4)

And so

∆W = µ

∫ π

0

dθ sin θ

∫ 2π

0

dϕ

∫ ∞
0

r�2 dr
I1

�r
δ(θ − arctan

[
b

d

]
)δ(r −

√
b2 + d2)A2ϕ (4.5)

= 2I1πµ

∫ π

0

dθ sin θ

∫ ∞
0

dr rδ(θ − arctan

[
b

d

]
)
δ(r −

√
b2 + d2)

k2
I2a[(2− k2)K(k)− 2E(k)]

π
√
a2 + r2 + 2ar sin θ

(4.6)

=
2I1I2�πaµ

√
b2 + d2[(2− k2)K(k)− 2E(k)] sin

[
arctan

(
b
d

)]
�π
√
a2 + b2 + d2 + 2a

√
b2 + d2 sin

[
arctan

(
b
d

)] (4.7)

We then use

k2 =
4a
√
b2 + d2 sin

[
arctan

(
b
d

)]
a2 + b2 + d2 + 2a

√
b2 + d2 sin

[
arctan

(
b
d

)] (4.8)

sin

[
arctan

(
b

d

)]
=

b√
b2 + d2

(4.9)

k2 =
4ab

a2 + b2 + d2 + 2ab
=

4ab

(a+ b)2 + d2
(4.10)

Therefore,

M12 =
µab[(2− k2)K(k)− 2E(k)]

k2
√
a2 + 2ab+ b2 + d2

=
2µk

2

√
ab[(2− k2)K(k)− 2E(k)]

k2
(4.11)

= µ
√
ab

[(
2

k
− k
)
K(k)− 2

k
E(k)

]
(4.12)

as desired.
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