
Kyle Bunkers HW06 Sec. 7 Plasma Confinement

1 General Stability of Simple Differential Equation Find conditions on f(x) such that
the first order differential equation ẋ = f(x) has a fixed point at x = 0 and

1.a Spectral Stability has the property of spectral stability.

Solution:

The requirement of being a fixed point at x = 0 implies that f(0) = 0. Thus, we see that xe = 0
is an equilibrium point. We can then linearize around this point and find for ∆x that

d∆x

dt
= f(∆x ) ≈ f ′(0)∆x +O(∆x 2) (1)

∆x ∼ ef
′(0)t (2)

Thus, we see we have spectral stability if f ′(0) < 0.

1.b Asymptotic Linear Stability has the property of asymptotic linear stability.

Solution:

We follow the same procedure and see that we require f ′(0) < 0 again.

1.c Lyapunov Stability has the property of Lyapunov stability.

Solution:

This requires that we solve

d∆x

dt
= f(∆x ) (3)

This means we’d need to solve ∫ x

x0

d∆x

f(∆x )
= t− t0 (4)

for ∆x .

1.d Global Stability has the property of global stability (all initial conditions approach x = 0
as t→∞).

Solution:

This is true if f ′(0) < 0 as then we will approach equilibrium which will go to zero as t→∞.
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2 Lyapunov Stability Two dimensional, incompressible fluid motion is governed by the equa-
tion

∂U

∂t
+ [φ , U ] = 0

where [f , g] = ẑ · ∇f × ∇g, and U = ∇2φ is the vorticity, and V = ẑ × ∇φ is the velocity.
Consider a fluid in a bounded disk, with the condition φ = constant on the boundary.

2.a Conserved Quantities Show that H = 1
2

∫
d2x |∇φ|2 and G =

∫
d2x g(U) for any function

g(U) are conserved quantities.

Solution:

First let’s note that

∂U

∂t
+ [φ , U ] =

∂U

∂t
+ ẑ · ∇φ× ∇U =

∂U

∂t
+ ∇U · (ẑ× ∇φ) =

∂U

∂t
+ V · ∇U =

dU

dt
(5)

Take
∫

d2x φ of the equation and we see∫
d2x φ

∂∇2φ

∂t
+

∫
d2x φẑ · ∇φ× ∇∇2φ = 0 (6)

We use

φẑ · ∇φ× ∇∇2φ = φziεijk(∂jφ)∂k∂m∂mφ = φziεijk{∂k ([∂jφ]∂m∂mφ)− φ(∂m∂mφ)
��

��∂k∂jφ}
= φziεijk∂k ([∂jφ]∂m∂mφ) = −φẑ · ∇× (∇φ∇2φ)

(7)

Note also, that because of the constancy of ẑ this is

= φ∂k (εijkzi[∂jφ]∂m∂mφ) = ∂k (φεkijzi[∂jφ]∂m∂mφ)− (∂kφ)εkijzi∂m∂mφ[∂jφ]φ

=∇ ·
(
φ∇2φẑ× ∇φ

)
− ∇φ · ∇2φẑ× ∇φ

(8)

Thus ∫
d2x ẑ · ∇φ× ∇∇2φ =

∫
d2x φ∇ · (∇2φẑ× ∇φ)

=
((((

((((
(((

(((
∫

d2x ∇ · (φ∇2φẑ× ∇φ)−
∫

d2x ∇φ · ∇2φẑ× ∇φ = 0

(9)

because of our boundary conditions (i.e., that ∇φ = 0 along the boundary because φ is constant
on the boundary).

We also have

φ
∂

∂t
∇2φ = φ

∂

∂t
∇ · ∇φ = φ∇ · ∂

∂t
∇φ =���

���
�

∇ · (φ ∂
∂t
∇φ)− ∇φ · ∂

∂t
∇φ = −1

2

∂

∂t
| ∇φ|2 (10)

where the cancellation is again because of the boundary condition. Thus we find

−
∫

d2x
1

2

∂

∂t
| ∇φ|2 = − ∂

∂t

∫
d2x

1

2
| ∇φ|2 = −dH

dt
= 0 (11)

Hazeltine & Meiss 2 of 23



Kyle Bunkers HW06 Sec. 7 Plasma Confinement

and so H is conserved.

For G we use [define F = ∂g
∂U

and so F = F (U(x, t))]

∂g(U)

∂t
=
∂g

∂U

∂U

∂t
= − ∂g

∂U
ẑ · ∇φ× ∇U (12)

∇F =
∂F

∂x
=
∂F

∂U

∂U

∂x
=
∂F

∂U
∇U (13)

so that

F ẑ · ∇φ× ∇U = ẑ · ∇(φF )× ∇U − φẑ · ∇F × ∇U = ẑ · ∇(φF )× ∇U −
���

���
���

�

φ
∂F

∂U
ẑ · ∇U × ∇U

= ẑ · ∇× (∇(φF )U) =∇ · (U ẑ× ∇(φF ))

(14)

Thus, we find

dG

dt
=

d

dt

∫
d2x g(U) =

∫
d2x

∂g(U)

∂t
= −

∫
d2x F ẑ · ∇φ× ∇U = −

∫
d2x ∇ · (U ẑ× ∇(φF )) = 0

(15)

via boundary conditions on φ.
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2.b Functional Determines Equilibrium Solution Consider the functional F [φ] = H +G.
Show that δF = 0 determines an equilibrium solution.

Solution:

We take

δF = δH + δG (16)

Then clearly δF = 0 implies δH = −δG . We have

δH = δ

∫
d2x

1

2
| ∇φ|2 =

∫
d2x [∇δφ · ∇φ] (17)

δG = δ

∫
d2x g(U) =

∫
d2x

[
∂g

∂U
δU

]
=

∫
d2x J︸︷︷︸

∂g
∂U

∇2δφ =

∫
d2x [∇ · (Jδφ )− ∇J · ∇δφ ]

(18)

We note that ∇· (Jδφ ) = 0 when integrated along the boundary because δφ = 0 at the boundary
because of our imposed boundary conditions.

Thus

δH + δG =

∫
d2x ∇δφ · [∇φ− ∇J ] (19)

Thus, we need to check if ∇φ = ∇J is a possible solution. Take φ = J + C for some constant C.
Then

U = ∇2φ = ∇2J (20)

[φ , U ] = [J + C , U ] = ẑ · (∇J × ∇U) = ẑ · ∂J
∂U
∇U × ∇U = 0 (21)

Therefore, we must have an equilibrium solution as ∂∇2J
∂t

= 0.

2.c Functional and Lyapunov Stability Show that δ2F is positive definite if g′′ > 0, and
therefore that the flow is (formally) Lyapunov stable when the velocity profile has no inflection
points. Complete Lyapunov stability follows upon demonstrating (7.9), see (Arnol’d,1965)

δ2F [ξ] ≥ C||ξ||2 for any ξ (7.9)

Solution:

We need to calculate δ2F . This is given by

δ2F =

∫
d2x

1

2
| ∇δφ |2 +

∫
d2x

∂2g

∂U2
(δU )2 =

∫
d2x

[
| ∇δφ |2

2
+ (∇2δφ )2

∂2g

∂U2

]
(22)

It is then obvious that if g′′ ≡ ∂2g
∂U2 > 0 that this is necessarily a positive number.
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3 Derivation of Cylindrical Reduced MHD Eigenvalue Equation Derive (7.73), veri-
fying (7.71) and (7.72).

k‖∇⊥2(k‖ϕ) + εk‖k⊥J
′
0ϕ =

1

r2
∂

∂r

[
k2‖r

3 ∂

∂r

(ϕ
r

)]
+
k2‖
r2

(1−m2)ϕ (7.71)

U = ∇⊥2ϕ =
1

r2
∂

∂r

[
r3
∂

∂r

(ϕ
r

)]
+

1

r2
(1−m2)ϕ (7.72)

1

r2
∂

∂r

{
[ω2 − (k‖vA)2]r3

∂

∂r

(ϕ
r

)}
+ [ω2 − (k‖vA)2]

(1−m2)

r2
ϕ− (k⊥vA)2β′κrϕ = 0 (7.73)

Solution:

We begin with the equation

ω2

v2A
∇2
⊥ϕ = k‖∇2

⊥k‖ϕ+ εk‖k⊥J
′
0ϕ+ k2⊥κrβ

′ϕ (23)

First, let’s show (7.71).

k‖∇2
⊥(k‖ϕ) + εk‖k⊥J

′
0ϕ =

1

r2
∂

∂r

[
k2‖r

3 ∂

∂r

(ϕ
r

)]
+
k2‖
r2

(1−m2)ϕ (24)

Let’s expand the left hand side first

∇2
⊥(k‖ϕ) =

1

r

∂

∂r

(
r
∂(k‖ϕ)

∂r

)
− k2⊥k‖ϕ (25)

We also use −r/(aq) = ψ′0 and

J ′0 =
d

dr
∇2
⊥ψ0 =

d

dr

[
1

r

d

dr
[rψ′0]

]
=

d

dr

[
1

r

d

dr

[
r
−r
aq

]]
= − d

dr

[
1

r

d

dr

[
r2

aq

]]
(26)

Note there is no −k2⊥ψ0 because ∇⊥f = (r̂ ∂
∂r

+ iθ̂k⊥)f̃ , but in fact, we see that there would also

be a term r ∂f0
∂r

included for the equilibrium current.

We use (n = 0 for equilibrium current)

R0k‖
m

=
1

q
(27)

so

r2

aq
=
r2R0k‖
am

=
1

mε
r2k‖ (28)

Thus,

J ′0 = − 1

mε

d

dr

[
1

r

d

dr

(
r2k‖

)]
(29)
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Thus,

k‖∇2
⊥(k‖ϕ) + εk‖k⊥J

′
0ϕ =

k‖
r

∂

∂r

(
r
∂(k‖ϕ)

∂r

)
− k2⊥k2‖ϕ+ εk‖k⊥ϕ

−1

mε

d

dr

[
1

r

∂(r2k‖)

∂r

]
(30)

= k‖
∂2(k‖ϕ)

∂r2
+
k‖
r

∂(k‖ϕ)

∂r
− k2⊥k2‖ϕ−

k‖k⊥ϕ

m

d

dr

[
r
∂k‖
∂r

+ 2k‖

]
(31)

= k2‖
∂2ϕ

∂r2
+ 2k‖

∂k‖
∂r

∂ϕ

∂r
+ k‖ϕ

∂2k‖
∂r2

+
k2‖
r

∂ϕ

∂r
+
k‖ϕ

r

∂k‖
∂r
− k2⊥k2‖ϕ−

k‖k⊥ϕ

m

[
∂k‖
∂r

+ r
∂2k‖
∂r2

+ 2
∂k‖
∂r

]
(32)

= k2‖
∂2ϕ

∂r2
+ 2k‖

∂k‖
∂r

∂ϕ

∂r
+
∂2k‖
∂r2

[
k‖ϕ−

rk‖k⊥ϕ

m

]
+
k2‖
r

∂ϕ

∂r
+
∂k‖
∂r

[
k‖ϕ

r
−

3k‖k⊥ϕ

m

]
− k2⊥k2‖ϕ (33)

= k2‖
∂2ϕ

∂r2
+ 2k‖

∂k‖
∂r

∂ϕ

∂r
+ k‖ϕ

∂2k‖
∂r2

[
1− rk⊥

m

]
+
k2‖
r

∂ϕ

∂r
+ k‖ϕ

∂k‖
∂r

[
1

r
− 3k⊥

m

]
− k2⊥k2‖ϕ (34)

We can use k⊥ = m/r so that

= k2‖
∂2ϕ

∂r2
+ 2k‖

∂k‖
∂r

∂ϕ

∂r
+
���

���
���

�

k‖ϕ
∂2k‖
∂r2

[
1− rm

rm

]
+
k2‖
r

∂ϕ

∂r
+ k‖ϕ

∂k‖
∂r

[
1

r
− 3m

mr

]
−
m2k2‖
r2

ϕ (35)

= k2‖
∂2ϕ

∂r2
+ 2k‖

∂k‖
∂r

∂ϕ

∂r
+
k2‖
r

∂ϕ

∂r
−

2k‖ϕ

r

∂k‖
∂r
−
m2k2‖
r2

ϕ (36)

Now for the right hand side,

1

r2
∂

∂r

[
k2‖r

3 ∂

∂r

(ϕ
r

)]
+
k2‖
r2

(1−m2)ϕ (37)

=
1

r2
∂

∂r

[
k2‖r

3

[
1

r

∂ϕ

∂r
− ϕ

r2

]]
+
k2‖
r2

(1−m2)ϕ (38)

=
1

r2
∂

∂r

[
k2‖r

2∂ϕ

∂r
− rk‖ϕ

]
+
k2‖
r2

(1−m2)ϕ (39)

= k2‖
∂2ϕ

∂r2
+

1

r2

(
∂ϕ

∂r

[
2k‖r

2∂k‖
∂r

+ 2rk2‖

]
− k2‖ϕ− 2k‖rϕ

∂k‖
∂r
− rk2‖

∂ϕ

∂r

)
+
k2‖
r2

(1−m2)ϕ (40)

= k2‖
∂2ϕ

∂r2
+ 2k‖

∂ϕ

∂r

∂k‖
∂r

+
�2k2‖
r

∂ϕ

∂r
−
S
S
S

k2‖ϕ

r2
−

2k‖ϕ

r

∂k‖
∂r
−
�
�
��k2‖

r

∂ϕ

∂r
+
k2‖
r2

(A1−m2)ϕ (41)

= k2‖
∂2ϕ

∂r2
+ 2k‖

∂ϕ

∂r

∂k‖
∂r

+
k2‖
r

∂ϕ

∂r
−

2k‖ϕ

r

∂k‖
∂r
−
m2k2‖
r2

ϕ (42)

Thus we have proven (7.71). We then take this and put it into our original equation and so find
on the left hand side

∇2
⊥ϕ =

1

r

∂

∂r

[
r
∂ϕ

∂r

]
− k2⊥ϕ =

∂2ϕ

∂r2
+

1

r

∂ϕ

∂r
− m2

r2
ϕ (43)
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We then note

1

r2
∂

∂r

[
r3
∂

∂r

(ϕ
r

)]
+

1

r2
(
1−m2

)
ϕ (44)

=
1

r2
∂

∂r

[
r2
∂ϕ

∂r
− rϕ

]
+

1

r2
(
1−m2

)
ϕ (45)

=
1

r2

(
2r
∂ϕ

∂r
+ r2

∂2ϕ

∂r2
− ϕ− r∂ϕ

∂r

)
+

1

r2
(
1−m2

)
ϕ (46)

=
�2

r

∂ϕ

∂r
+
∂2ϕ

∂r2
− A
AA

ϕ

r2
−
�
�
�1

r

∂ϕ

∂r
+

1

r2
(
A1−m2

)
ϕ (47)

=
∂2ϕ

∂r2
+

1

r

∂ϕ

∂r
− m2

r2
ϕ (48)

So that we can write ∇2
⊥ϕ in that manner if we so wish. Then we have

ω2

v2A
∇2
⊥ϕ = k‖∇2

⊥(k‖ϕ) + εk‖k⊥J
′
0ϕ+ k2⊥κrβ

′ϕ (49)

ω2

v2A

(
1

r2
∂

∂r

[
r3
∂

∂r

(ϕ
r

)]
+

1

r2
(
1−m2

)
ϕ

)
=

1

r2
∂

∂r

[
k2‖r

3 ∂

∂r

(ϕ
r

)]
+
k2‖
r2

(1−m2)ϕ+
m2

r2
κrβ

′ϕ

(50)

ω2

(
1

r2
∂

∂r

[
r3
∂

∂r

(ϕ
r

)]
+

1

r2
(
1−m2

)
ϕ

)
− v2A
r2

∂

∂r

[
k2‖r

3 ∂

∂r

(ϕ
r

)]
−
k2‖v

2
A

r2
(1−m2)ϕ− (k⊥vA)2κrβ

′ϕ = 0

(51)

1

r2
∂

∂r

[
(ω2 − v2Ak2‖)r3

∂

∂r

(ϕ
r

)]
+

1

r2
(ω2 − v2Ak2‖)

(
1−m2

)
ϕ− (k⊥vA)2κrβ

′ϕ = 0 (52)

Which is a full derivation of the required equation.
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4 Differential Equation Consider the equation

x2ξ′′ + 2xξ′ + (ω2x2 − 2)ξ = 0

with the boundary conditions limx→0 xξ(x) = ξ(1) = 0.

4.a Sturmian Equation Show this is a Sturmian equation.

Solution:

A Sturmian equation is of the form

[f(x;λ)ξ′]
′ − g(x;λ)ξ = 0 (53)

We require

f(x;λ)ξ′′(x) + f ′(x;λ)ξ′(x)− g(x;λ)ξ = 0 (54)

Thus choosing f(x;λ) = x2 and g(x;λ) = 2− ω2x2 we see that the above equation yields

x2ξ′′ + 2xξ′ + (ω2x2 − 2)ξ = 0 (55)

and so is clearly Sturmian.

4.b Variational Principle Obtain the variational principle and show that there are no solu-
tions for ω2 < 0.

Solution:

It is known for a Sturmian problem that the functional to minimize through variation is

F [ξ] =

∫
dx

[
f(ξ′)2 + gξ2

]
(56)

as

δF [ξ] =

∫
dx [2fξ′δξ ′ + 2gξδξ ] (57)

=

∫
dx [���

��(2fξ′δξ )′ − (2fξ′)′δξ + 2gξδξ ] (58)

=

∫
dx δξ [(2fξ′)′ + 2gξ] (59)

Which if we minimize is equivalent to (fξ′)′ + gξ = 0, as desired.

We can use

Λ =

∫
dx [x2(ξ′)2 + (2− ω2x2)ξ2]∫

dx ξ2
(60)

to find a possible eigenvalue.

I think we need more information before we can prove there are no solutions for ω2 < 0. That is,
Hazeltine and Meiss should actually have some example of what they’re even looking for in the
book.
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4.c Spherical Bessel Equation and Eigenvalues Convert the equation to the spherical
Bessel equation and obtain the eigenvalues.

Solution:

The spherical bessel function differential equation is

x2ξ′′ + 2xξ′ + (x2 − n[n+ 1])ξ = 0 (61)

If we define ωx ≡ y then

x2ω2ξ′′(y) + 2xωξ′(y) + (y2 − 2)ξ(y) = 0 (62)

y2ξ′′(y) + 2yξ′(y) + (y2 − 2)ξ(y) = 0 (63)

Then we see that our equation is the spherical Bessel functions with n = 1.

The eigenvalues will be obtained by noting that the boundary conditions require us to choose the
spherical Bessel function of the first kind and ξ(1) = 0 requires us to ξ(1) = j1(ω) = 0 so the ω
are the roots of j1.
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5 Curvature of Helical Field Line in a Cylindrical Plasma Show that the curvature of
a helical field line in a cylindrical plasma is given by κr = −r/(Rq)2. Combining this with (7.98)
gives a familiar form of the Suydam criterion.

q2β′
(
Rq

rs

)2

<
q′2

4
for stability (7.98)

Solution:

We need to find κr = r̂ · κ = r̂ · b̂ · ∇b̂.

We use in cylindrical coordinates that

(A · ∇B)r = Ar
∂Br

∂r
+
Aθ
r

∂Br

∂θ
+ Az

∂Br

∂z
− AθBθ

r
(64)

In our case

B = Bz(r)ẑ +Bθ(r)θ̂ (65)

b̂ =
Bz√

B2
z +B2

θ

ẑ +
Bθ√

B2
z +B2

θ

θ̂ = bzẑ + bθθ̂ (66)

So that

(b̂ · ∇b̂)r = −bθbθ
r

= −1

r

B2
θ

B2
θ +B2

z

=
−1

r

1

1 + B2
z

B2
θ

(67)

We have

q =
r

R

Bz

Bθ

(68)

Rq

r
=
Bz

Bθ

(69)

Thus,

κr =
−1

r

1

1 + R2q2

r2

=
−r

r2 +R2q2
(70)

Note if we use a tokamak ordering so q ∼ O(1) and r
R
∼ O(ε) we find

κr =
−r
R2q2

1
r2

R2q2
+ 1

=
−r
R2q2

(
1 +O(ε2)

)
≈ −r
R2q2

(71)

which is the desired answer.
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6 Verify Energy Principle Verify (7.124), keeping track of the partial integrations so as to
obtain the boundary terms.

δ2W [ξ] =
1

2

∫
d3x

[
Q2

4π
− 1

c
ξ · J×Q +

5

3
P (∇ · ξ)2 + (ξ · ∇P )(∇ · ξ)

]
+ B.T. (7.124)

Solution:

We begin with the form

δ2W [ξ] =
1

2

∫
d3x

[(
P +

B2

8π

)[
Tr [∇ξ]2 − (∇ · ξ)2

]
+

5

3
P (∇ · ξ)2 +

1

4π
{B · ∇ξ −B∇ · ξ}2

]
(72)

Remember that Q =∇×(ξ×B). Let’s first deal with Tr[∇ξ]2 = ∇ξ : ∇ξ (a strange notation. . . ).
Define PT = P +B2/(4π) for convenience for now.∫

d3x PT∂iξ
j∂jξ

i =

∫
d3x ∂i(PT ξ

j)∂jξ
i − ξj∂i(PT )∂jξ

i (73)

The first term

∂i(PT ξ
j)∂jξ

i = ∂i(PT ξ
j∂jξ

i)− PT ξj∂i∂jξi = B.T.− PTξ · ∇(∇ · ξ) (74)

and the second term, using ∇PT = B · ∇B so that

ξj∂iPT∂jξ
i = (ξ · ∇ξ) · (B · ∇B) (75)

and altogether

PT ∇ξ : ∇ξ → B.T.− PTξ · ∇(∇ · ξ)− (ξ · ∇ξ) · (B · ∇B) (76)

Now for the other non-trace term,∫
d3x PT∂iξ

i∂jξ
j =

∫
d3x ∂i(PT ξ

i)∂jξ
j − ξi∂i(PT )∂jξ

j (77)

∂i(PT ξ
i)∂jξ

j = ∂i(PT ξ
i∂jξ

j)− PT ξi∂i∂jξj = B.T.− PTξ · ∇(∇ · ξ) (78)

and the second term, using ∇PT = B · ∇B so that

ξi∂iPT∂jξ
j = (ξ ·B · ∇B)∇ · ξ (79)

and altogether

PT (∇ · ξ)2 → B.T.− PTξ · ∇(∇ · ξ)− (ξ ·B · ∇B)∇ · ξ (80)
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We can also note that

Q2 = [(B · ∇ξ −B(∇ · ξ))− ξ · ∇B] · [(B · ∇ξ −B(∇ · ξ))− ξ · ∇B] (81)

= (B · ∇ξ −B(∇ · ξ))2 − 2(ξ · ∇B) · (B · ∇ξ −B(∇ · ξ)) + (ξ · ∇B)2 (82)

We can also use

4πJ

c
×Q = (∇×B)× (∇× (ξ ×B)) = εijkεjlm∂l(Bm)εknp∂n(εprsξrBs) (83)

= [εjkiεjlm] [εknpεrsp] ∂l(Bm)∂n(ξrBs) = [δklδim − δkmδli] [δkrδns − δksδrn] ∂l(Bm)∂n(ξrBs)
(84)

= [δklδimδkrδns − δklδimδksδrn − δkmδliδkrδns + δkmδliδksδrn] ∂l(Bm)∂n(ξrBs) (85)

= [δlrδimδns − δlsδimδrn − δrmδliδns + δmsδliδrn] ∂l(Bm)∂n(ξrBs) (86)

= ∂r(Bi)∂s(ξrBs)− ∂s(Bi)∂r(ξrBs)− ∂i(Br)∂s(ξrBs) + ∂i(Bs)∂r(ξrBs) (87)

= (B · ∇ξ) · ∇B− [∇ · (ξB)] · ∇B− ∇B · (B · ∇ξ) + ∇B · [∇ · (ξB)] (88)

Thus,

ξ · 4πJ

c
×Q (89)

= (B · ∇ξ) · (∇B · ξ)− [∇ · (ξB)] · (∇B · ξ)− (ξ · ∇B) · (B · ∇ξ) + (ξ · ∇B) · [∇ · (ξB)]
(90)

Note that

(ξ · ∇B) · [∇ · (ξB)] = (ξ · ∇B) · [B∇ · ξ + ξ · ∇B] (91)

= (ξ · ∇B) · [B∇ · ξ] + (ξ · ∇B)2 (92)

We can then note that Q2 − 4π
c
ξ · J×Q is the same as

= (B · ∇ξ −B(∇ · ξ))2 − A2(ξ · ∇B) · (B · ∇ξ −B(∇ · ξ)) +���
���(ξ · ∇B)2

− (B · ∇ξ) · (∇B · ξ) + [∇ · (ξB)] · (∇B · ξ)

+
hhhhhhhhhhh
(ξ · ∇B) · (B · ∇ξ)−

hhhhhhhhhh
(ξ · ∇B) · [B∇ · ξ]−����

��
(ξ · ∇B)2

(93)

= (B · ∇ξ −B(∇ · ξ))2 − (ξ · ∇B) · (B · ∇ξ −B(∇ · ξ))

− (B · ∇ξ) · (∇B · ξ) + (∇ · ξ)B · (∇B · ξ) + (ξ · ∇B) · (∇B · ξ)
(94)

We know that the PT terms are of the form

B.T.− (ξ · ∇ξ) · (B · ∇B) + (B · ∇B) · ξ(∇ · ξ) (95)
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7 Linearized Energy Derive the linearized energy δ2W [φ, ψ], for low-beta, large-aspect ratio
reduced MHD, (7.62). Compare the result with (7.126).

1

v2A

dU

dt
= −∇‖J −

1

R0

[x , p]

1

c

∂ψ

∂t
+ ∇‖ϕ =

ηc

4π
J

dp

dt
= c [β , ϕ]

(7.62)

δ2W [ξ] =
1

2

∫
d3x

[
Q2
⊥

4π
+
B2

4π
|∇ · ξ⊥ + 2ξ⊥ · κ|

2 +
5

3
P (∇ · ξ)2 + (ξ⊥ · ∇P )(ξ⊥ · κ)

− 1

c
J‖b̂ · (Q⊥ × ξ⊥)

]
+ B.T.

(7.126)

Solution:
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8 θ-Pinch Consider a cylindrical plasma, described by B = B(r)ẑ and P = P (r). Use the
Fourier representation (7.64) for ξ = ξrr̂ + ξθ∇θ = ξζ ∇ζ (note that the Fourier amplitudes
are complex). The argument at the end of §7.6 implies that one can consider incompressible
displacements ξ. Use this to eliminate ξ‖ = ξζ .

ψ = ψ0 +
∑
m,n

ψ̃m,ne
imθ−nζ (7.64)

δ2W [ξ] =
1

2

∫
d3x

[
Q2
⊥

4π
+
B2

4π
|∇ · ξ⊥ + 2ξ⊥ · κ|

2 +
5

3
P (∇ · ξ)2 + (ξ⊥ · ∇P )(ξ⊥ · κ)

− 1

c
J‖b̂ · (Q⊥ × ξ⊥)

]
+ B.T.

(7.126)

8.a Reduced Energy Principle Show that (7.126) can be reduced to the form

δ2W =
π

2
R

∫ a

0

dr

r
B2

{∣∣∣∣kξθ − im

k
(rξr)

′
∣∣∣∣2 +

( n

kR

)2 [
|(rξr)′|2 + k2r2|ξr|2

]}

where k2 = (m/r)2 + (n/R)2.

Solution:

8.b Find ξθ Determine ξθ by minimizing δ2W .

Solution:

8.c Unstable Modes Substitute this into the above expression showing that δ2W is positive
for n 6= 0. Thus the only possible unstable mode is that for n = 0 for which δ2W is zero.

Solution:
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9 Screw Pinch Consider the cylindrical field (7.62), with P = P (r).

1

v2A

dU

dt
= −∇‖J −

1

R0

[x , p]

1

c

∂ψ

∂t
+ ∇‖ϕ =

ηc

4π
J

dp

dt
= c [β , ϕ]

(7.62)

9.a Incompressibility Removing Components of ξ Eliminate ξ‖ using the incompressibil-
ity constraint, and show that ξ⊥ can be eliminated from δ2W algebraically, just as ξθ was in
exercise 8.

Solution:

9.b Energy Principle for Screw Pinch The resulting expression is a quadratic form in ξr
and ξ′r. After judicious integration by parts to eliminate the ξrξ

′
r terms, show that δ2W becomes

δ2W =
π

2
R

∫ a

0

dr

r

{(
rk‖
k

2)
|ξ′r|2

+

[( n

Rk

)2
rβ′ + [(kr)2 − 1]

(
k‖
k

)2

−
n2Rk‖
(kR)4

(n+mq)

]
|ξr|2

}

Solution:

9.c Large Aspect Ratio Limit Taking the large aspect ratio limit, compare this result to the
ω2 = 0 limit of (7.87), noting that ϕ/r = ξr.

−
∫ a

0

dr r3[ω2 − (k‖vA)2]

[(ϕ
r

)′]2
=

∫ a

0

dr [ω2 − (k‖vA)2](m2 − 1)
(ϕ
r

)2
+m2

∫ a

0

dr rβ′κr

(ϕ
r

)2 (7.87)

Solution:
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9.d Slab Model The sheared slab has the equilibrium field B = B0[ẑ + ŷF (x/Ls)], where
(x, y, z) are rectangular coordinates. Linearize ideal, zero-beta, reduced MHD (7.55) using the
model F = tanh(x/Ls). Consider perturbations with k‖(x = 0) = 0, and show that

∆′Ls = 2

(
1

kLs
− kLs

)
where

1

v2A

dU

dt
= −B

2
0

B̄2
∇‖J‖ + b̂0 · κ0 × ∇⊥p

1

c

∂ψ

∂t
+

1

B0

∇‖(B0ϕ) =
ηc

4π
J

dp

dt
= cb̂0 · ∇β × ∇⊥ϕ

(7.55)

Solution:
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10 Standard Tokamak Estimates Use the approximate dispersion relation (7.158) to esti-
mate the growth rate (γ), layer width (w), shear-Alfvén width (xA) and resistive skin depth (xR)
of an m ≥ 2 tearing mode in the Standard Tokamak. Use the estimates σs ' 1018 s−1, Ls ' qR
and ∆′ ' 1/a. Discuss the physical significance of the ratio w/ρi.

γ ∼ (∆′)4/5
(
ηc2

4π

)3/5

(k′‖vA)2/5 (7.158)

toroidal field (BT ) 50 kG

major radius (R0) 300 cm

minor radius (a) 80 cm

safety factor (q) q ' 1 (on axis)
q ' 3 (at edge)

central density (n) 1014 cm−3

central temperature (Ti = Te = T ) 10 keV

Table 1: The Standard Tokamak parameters.

Solution:
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11 Drift Model Electron Response Consider a cylindrical system with uniform temperature
and negligible magnetic curvature (but nonvanishing shear). Use the drift model of §6.5 to derive
the linear electron response to E‖; compare your answer to the kinetic result, (7.190). See Hazeltine
and Meiss (1985).

J‖ = σ∗E‖

σ∗ =
i

4π
ω2
pe

ω − ω∗e
k2‖v

2
the

Z ′(z)
(7.190)

Solution:
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12 Ideal m = 1 mode Electrostatic Potential Show that the electrostatic potential for the
ideal m = 1 mode, at low beta, has the approximate form

Φ = C/2− (C/π) arctan

(
x

xA

)
where C is a constant, x = r− rs and xA is the shear-Alfvén width. See Rosenbluth et. al. (1973).

Solution:
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13 Mercier to Suydam Criterion Show that the Mercier criterion (7.235) reduces to the
Suydam criterion (7.98) in the appropriate limit. Note that q′ means dq/dr in the former and
dq/dv in the latter.

q2β′
(
Rq

rs

)2

κr <
q′2

4
(7.98)

q′2

4
− β̃′

[〈
B2

| ∇χ|2

〉
〈κv〉+

〈(
β̃′

hB2

| ∇χ|2
− q′

)(
h

〈
B2

| ∇χ|2

〉
−
〈
hB2

| ∇χ|2

〉)〉]
> 0 (7.235)

Solution:
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14 Normal Curvature Form Reducing Mercier Criterion Show, starting with (3.120)
or (3.121), that the flux surface average of the normal curvature, at low beta, is proportional to
q2 − 1. Thus the Mercier criterion reduces to

q′2

4
+
β′

r
q2(1− q2) > 0

showing that modes q > 1 are stable. See Ware and Haas (1966).

κr ≈ −
∂

∂r
(lnR)−

(
Bp

B

)2
1

r
(3.120)

κθ = (1− bθbθ)
∂

∂θ
(lnB) =

(
BT

B

)2
∂

∂θ
(lnB) (3.121)

Solution:
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15 Averaged Ballooning Equation Compute ϕ3 and derive the averaged ballooning equa-
tion (7.244) for the envelope ϕ0.

−ω2(1 + z2)ϕ0 = s2
∂

∂z

(
1 + z2

) ∂
∂z
ϕ0 +

[
ρκ̄+

ρ2(2s− 3
8
ρ2)

(1 + z2)2

]
ϕ0 (7.244)

Solution:
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16 Ballooning Equation for Resistive, Flute-Reduced MHD Obtain the ballooning
equation for resistive, flute-reduced MHD, deriving (7.250). Show that when η � x−2R the line
bending term is small, and in this limit the mode has the form Φ ∼ e−(η/w)

2
and obtain the mode

width, w.

∂

∂η

F 2

1 + x2RF
2

∂

∂η
φ (7.250)

Solution:
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