Kyle Bunkers HWO02 Sec. 3 Plasma Confinement

1 Radial Distance Between Flux Surfaces and Surface Average Expression Show
that the radial distance between two neighboring flux surfaces is given by

dr = dF/|VF|, where F is any flux label. Then show that the flux surface average can be
expressed as

A
W= [asgy 1)

where dS is the area element on a magnetic surface.

Solution:

Given that F'is a flux label, then we may write

F .
dF:i—dr:VF-fdrFi()|VF|dr (2)
s
dF
ar= 9 3
"= vE (3)

Remember that
V(r) = / Pz = / Vgdrdfd¢ (4)
y y
v _ .,
E:V—/@d@d( . (5)
Now we have

(A) = vi 7{ JGAICA(x) = ‘le f dSA(xX) . (6)

Now because V is independent of the surface # and (, as it only depends on the flux label, we may
bring it inside of the integral, and because dS = ,/gdfd( = % (with J the Jacobian) is the
area element on a magnetic surface we omit the circle on the integral as it must be closed.

(A) = / dS‘é{#’ | (7)
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2 Flux Surface Average Compute the flux surface average of Vy - V8 x V(.

Solution:

We note that this is none other than the Jacobian (J = Vr - VO x V() with an extra factor
because x = x(r) so that

dy dy dx
¢ 9 = - . 0 = — = — /2
Vx - VO x V( T Vr - VO x V( gl (8)
and so

1 dy —-1/2

(Vx - VO x VOZW @deCEQ (9)
1 dy dy
dr

Now we can easily evaluate the integral (and take i—’; out as it is independent of # and () and using
some calculus identities we see that

dx
(Vx- VO x V() = < an? (11)
dr
2 dx
(Vx - VO x V() =4r K1 (12)
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3 Periodic Solutions for Differential Equation For what value of the constant C' does the
differential equation

d
d—g =sin*0 - C (13)
have periodic solutions?
Solution:
This is a separable equation and so
f:/sinzédG—/CdG (14)
1— 20
:/#de—cmq (15)
0 in(26
_ 0@ g icivo (16)
2 4 ——
Cs
1 sin(26)
_9(5_0)_ 1 + C; (17)
where the C1, Cs, and C are arbitrary constants and C} is the constant needed to satisfy boundary
1
conditions. We see that the only way that this is periodic is if the 6 term cancels, and so |C' = 3

is required for periodic solutions.
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4 Existence of Hamada Coordinates Show that Hamada coordinates exist, irrespective of
force balance, in an axisymmetric system. Hint: use symmetry coordinates to evaluate the integral
in (3.46).

]{ ey — W W x W (3.46)
Solution:
We note that when

=45 a=c-w (18)

}{10 da = ]Oj{ da (19)

is satisfied, then Hamada coordinates exist. As in the book, this is from

d
I :fvv- Vh x VCES (20)

j{[oda:j{hda:h]{da . (21)

Now for an axisymmetric system we have %—]? =0= %—? = 0. So we may write that % = B((ife)

_ ; 3, ds __
and da = —q¢df because there is no change along (. So we may use that d’z = x'drda =

X' dr d%ﬁfe) .

with

Hence, Iy can only be a function of r, as the € dependence will be integrated out. Every line must

go around the same @ in a loop, and there is no freedom in (, so that % will be the same over

the n loops, as all the lines will have the same number of loops past a certain ¢ and B has no

dependence on ¢. So Iy = Iy(r) and so
%[0 do = [0% da (22)

]f % [(2m)* = WV - VO x V(] =0 (23)

as desired. This implies

via (21).
5 Show Orthogonality Property of Metric Tensor Show explicitly that (3.52) follows

from (3.51).

gre =0=goc , (3.52)
VCO . V?“() =0= VCO . VQO . (351)
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Writing out the metric tensor g% we find
B VTO . VTO VTO . VHO VT[) . VC() | VT0|2 VT‘O . VQO 0
g” = Veo . VTQ VQQ . VQO V90 . VCO = V’l“o . V90 | V90|2 0 (24)
V(o + Vrg V(o - Vg V(o - V(o 0 0 ’ VCOP
We need a matrix such that g;; = 1. I'll use Gauss Elimination to find the inverse.
| Vo2 Vg« Vb, 0 10 07 _p v | Vro|? Vro » Vb, 0 1 0 07
RS T | Vro- Voo |2 9
Vg Vo | Vioo|? 0 |0 10 0 [Vh— S 0 |- 100
0 0 | VG? 10 0 1 0 0 | Vo2 0 0 1]
—1 -
_ Vho|?| Viro|? ro.
|V90|2+\VTO~V90|2 IVro-V90+R1 | VT‘0|2 0 0 L+ (% + 1) 2V D\VY(?OWO\Q 0
[Vrol? | V0ol + 5
— | Vro- Vo2 Vro- Vo
0 | VOo|? — ‘OVTOPO 0 — ol 1 0
0 0 | Vo ? 0 0 1
— — VO 2 VT 2 -1 — T T
o (R )
= Gij = ro- vo- VOo[2 ) ro- 0o[2 ) T
j In o (N e B (AT '?%TZ;" ) 0
0 | VG|~ |

And so we can see that g.c = g13 =0 and ggc = ga3 = 0.

6 Standard Tokamak Estimates

representative device — has the following parameters:

The “standard tokamak”

— a fictitious but conveniently

toroidal field (Br)
major radius (Rp)
minor radius (a)

safety factor (q)

central density (n)

central temperature (T; =T, =T)

50 kG
300 cm
80 cm

g~ 1 (on axis)
g ~ 3 (at edge)

10" ¢em—3

10 keV

Estimate (one significant figure) the following quantities in the standard tokamak:

6.a Toroidal Plasma Current toroidal plasma current;

Solution:
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We have the practical formula (3.147)

B
2 T
= —_— .14
q(a) = b5a R = (3.147)
5CLQBT
Jy=—"- 25
47 Rq(a) (25)

where [4 is in amps, but other quantities are in cgs. So

1, = 280 emPBX10TG) ) e 4 oy (26)
4 (300 cm)(3)

6.b Diamagnetic Current Density diamagnetic current density;

Solution:
We have
3= Shxvr=Loww (27)
CBP’ cP Zjnk T
B
~ = ~ B ~ B (28)
(3 x 10 em/s) (10 em=3)(10 keV)
~ (29)
(80 cm) (5 x 10* G)
- (3 x 10" cm/s)(10" em™3)(10 keV) (1.6 x 107 erg/keV) (30)
(80 cm)(5 x 10* G)
~ 1.2 x 10'° statAmp/cm® ~ 4 x 10* A/m* ~ 40 kA /m* (31)

6.c Return Current Density return current density.

Solution:

The return current density is given by (3.114) with xy = 15—;’ = RaBp = Ra%% = “2% and

I = BrR, (We note the return current is only the second term, as the first is an integration
constant)

—c df I dP
Jj=—B— —c=— 3.114
= 2P ay ~ “Bdy (3.114)
BrR P
Jreturn ~ _C%m (32>
q
_ —C¢qRP
- BTG2 (33)
_ (3x10" ¢m/s)(2)(300 ¢cm) (10" em™?)(10 keV)(1.6 x 1079 erg/keV) (34)
- (80 cm)2(5 x 10* G)
~ 9 x 10'° statAmp/cm® ~ 300 KA /m” (35)

With a cross section of ma? &~ 2 m? we find the return current to be 600 KA = 0.6 MA. This is a
reasonable value given the toroidal current is 2 MA.
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7 [ and fp in Standard Tokamak FEstimate § and fp in the standard tokamak.

Solution:

_8m (P) _4mwP(r=0)

~ 36
= 2 (36)
_4m(10™ em™?)(10 keV)(1.6 x 107 erg/keV) (37)
- 25 x 108 G
471.6 x 10% dyne/cm®
~ ~ .008 = .8% 38
25 x 108 G2 ) (38)
with (P) = P(r = 0)/2 while
87 (P 8 (P 87 ¢* R? ¢*(a)R?
e aC (39)
2 42 B3 2 a a
9(300 cm)?2
~ .008———=— ~ .008(126) ~ 1.008 = 108 40
S~ oosiaze) % (40)
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8 Thermal Energy in Standard Tokamak Estimate the thermal (plasma) energy in the
standard tokamak, in Joules. Assume the volume-averaged density and temperature are about
half theri central values. Compare your result to the thermal energy in a cup of coffee and to the
electrical energy in a 60 Amp-hr automobile battery.

Solution:

We have the energy as

kT
E, = 27r23a2"TB = 10% m3(7%(3)(.8)% m®)(10 keV)(L.6 x 1071 J/keV) (41)
E, ~ 3000 . (42)

A cup of coffee let’s say is 500 mL at about 70° C. Then its thermal energy as water has a specific
heat capacity of about 4.2 J/(gK) would give

E, = meAT = (500 g)(4.2 J/(gK))(343 K) ~ 720000 J . (43)

(Even if it were a balmy 40° C we’d get 657300 J.)
A battery with 60 Amp-hr. This is

E, =60 A hrV = 60 A(3600 )V = 216000 CV (44)

and so now it depends on the voltage that an automobile battery is at as [¢V] = J. Most likely
it is a V =12 V battery so that

E,=26x10°J] . (45)

In fact the thermal energy in the plasma is far less than these other two examples.
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9 Diamagnetic Current Direction Show, using (3.63) and Ampere’s law, that J, has the
correct direction to be called a “diamagnetic” current.

J, = éﬁ x VP (3.63)
4 4
VxB=—"J=¢ B-de=—"2[J.ds (Ampére’s Law)
c o8 ¢ Js

Solution:

For some small region set up a local cylindrical coordinate system letting B be in the z direction
so that J, is in the 6 direction. Then because b & Z while VP o« —f then

J, x2x (%) (46)
J, x—6 (47)

Then for
V xBp x J 0 x—6 (48)

If one curls one’s right hand’s fingers in the —6 direction then the thumb will point in the direction
of Bp which one can easily verify is in the —2 direction. Hence opposing the original B. This is a
small enough region that J, is basically constant.

If you do not believe this, then looking at the symmetry of the situation we see that it must be
only in the @ direction. Also the Bp is a function of r only. So

0573, 47
_ =__7] 49
or ¢t (49)
4
Bp = %Jlr +C (50)

because we need Bp = 0 at r = R at the edge of this “cylinder” we require that C' = —4nJ, R/c
and because R > r we see that Bp < 0. (We require it to go to zero because outside our little
column the Bp should not have any effect).

In more generalized coordinates the same idea would hold, although it would be more complicated
to express.
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10 Virial Theorem Use the identity

0 ((L’ﬁAaﬁ) 814@5
8[L’a 8xa

for any tensor with Cartesian components A,g, to deduce the integral relation

/d3x Toe = / A’z Nolopp
% S

<>
where T = T is the total stress tensor of §3.8 and V is an arbitrary volume with boundary S.
Use this result to conclude that confined plasma equilibrium requires external conductors. See
Shafranov (1966).

= Aaa —|—ZL’5

Solution:

We have using the divergence theorem on the left hand side of the relation then

0 (r54Aa8) .3 / 3 / DA 3
— 2 A= | A, d —d 1
/V Pl = [ Apdia e [ 2,5t (51)

A
/naxﬁAaﬁ d%z/Aw d3x+/x5Md3x (52)
S % y - 0xq

Hos 7. T =0 and so the last term is zero, and we have

OTa

Now for T, we have
/ naxslns d’x = / Too 3z . (53)
S %

As for the impossibility of a confined plasma, we take a large enough volume that there is no longer
any pressure (so far outside the plasma) and also far enough that we can be sure that there are no
coils giving any influence, so that B is zero at the large enough distance.

So then the surface term is zero, as the magnetic field due to the plasma will go down as B o %2
at the very least (more likely B o 7%3 as it will be a magnetic dipole far away) and so the surface
term goes to zero as we go out to far enough x.

Then we only have (baby = 1 as b2 + b + b2 = b|? =1 and §4q = 3 as 1 + 1 4+ 1 = 3 and noting
that T, = P, + g;; and Ty = P — ]g—j refer to components of the tensor)

0= / Too &’z = / [(Oaa — baba) T + babo Ty d*x (54)
1% 1% BQ B2
= / 2T + T)] 4z = / {2& +2—+P - —| & (55)
v v 8m 8m
B2
0 :/d% {211 + P+ —} : (56)
v 8T

Note that P, > 0, P > 0, and g;j > 0. If we are confining a plasma inside our volume then this
quantity must be greater than zero, otherwise there is nothing but vacuum in our volume.

However, we see that the integral of the quantity is zero, and the integrand is non-negative. Hence
the integrand is zero, and so we see it’s not possible to have a self-confined plasma.
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11 Large Aspect-Ratio Flux Coordinates Find approximate symmetry coordinates, the
special choice of flux coordinates discussed in §3.4, for shifted-circle geometry considered in §3.12,
as follows. Distinguishing the flux and Shafranov coordinates with “f” and “S” subscripts, re-
spectively, show that through O(e) we must have

ri=rs , Op=0s+epls) , (=(s

Then find the periodic function p by imposing (3.56), dropping O(€?).

RQ
Voo = qX’T ] (3.56)
Solution:
Symmetry coordinates yield (; = —¢. Then it is obvious that we must have (g = (; by the

definition in (3.133).

R = R.(rg) + rscosfs

Y= _CS ’
Z =rgsinfy . (3.133)

It is also clear that r; = rg (to order O(€)) as they both refer to the minor radius. That only
leaves fg and 0. As the other coordinates must correspond to each other, the only direction left
is the same in both cases, but there is nothing forcing g = ;. We need a way of connecting these
two coordinates.

I(r) I(r) rg
Br = R ~ B 1——= 0 57
r R Ry + rgcosfg ro(r) Ry Co8Us (57)
where Bro(r) = 1/Ry
Now we also require for flux coordinates that
1

B'VCZQVCf'VTfX ng:B (58)

R?

Writing this out explicitly in terms of while evaluating in terms of Shafranov coordinates yields

_ Gz (|Orp.  Orfa 00y . 00y -
= RS dars” aese} X [87“5r+ 70,° (59)
_2‘, 87“]0%_87“1089]0 N A
7S Kars 20, a6, 0, ) T <Y (60)
. g 67°f 69f _ an 86f . i (61)
R\Or, 90, 00,0r,) R2
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Thus (using 7y = rs + erg and 67 = 6, + ep we find

oo™ (1) ®
(1 + G%ZI) (1 + 65;1) —(0) = (1 - ;—zcos93> (63)
I+ e(((;;f: + g‘i) = (Z — ;—2 oS 03> (64)
We then note that averaging over 6 yields
rs1 =0 (65)

(at least we can choose 5 = 0) and hence ry = 7, to O(e). Thus (using 75/ Ry ~ )

op
20, cos O (66)

@
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12 Axisymmetric Force Balance Requires Poloidal Field Use (3.78) to show that an
axisymmetric system without poloidal field cannot satisfy force balance. It follows that any system
lacking poloidal magnetic field must be asymmetric; such devices are called bumpy tori.

d
I(v) = cAP ES = cAPI, (3.78)
Solution:
We have J| = B‘Elvp Now, we can see that f s _ 327{?9 as Br has no ¢ dependence. So we see
that ¢ = g gg = 00. Now because J = £V X B, and B = Br then J = Jp.

So then J;, = Jp. So then B x AVP = Jp implies that VP is only in the # direction. Because
B - VP =0 even for VP in the 8 direction as well as the ¥ direction. There is nothing in J x B
in the 8 direction and so there can be no balance.

As all the field lines do not travel poloidally, then we find that a rational surface can be extended
however we want. Now J, is only in the 6 direction and so we see that if AV/|VV)| is the radial
width, then the amount of current flowing across the field line is as given, but we can see that the
current is only flowing in one direction, and the previous result shows the failure of force balance
as we can choose AP = 0 by looking at the current flowing across the line in the radial direction,
as this is still a rational surface.
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13 Elliptic Geometry In the simplest example of non-circular tokamak geometry, the mag-
netic surfaces are elliptical in poloidal cross-section (Harris, 1974). [Note that conventional Shafra-
nov geometry becomes slightly elliptical when O(e?)-terms are included.] For large aspect-ratio
and moderate beta, the corresponding equilibrium is similar to that of Shafranov, the flux-surfaces
being approximately described by shifted ellipses.

Examine the shifted-ellipse case, in a manner parallel to §3.12, as follows:

1. Choose coordinates (e, 8, (.) such that [in the notation of (3.133)],
R=R.r.)+recosb. , ¢o=—-( , Z=EkKr.sinb,

Here the elongation parameter x is a number of order unity.

2. After assuming the poloidal flux depends mainly on 7., as in (3.137), express the Grad-
Shafranov equation in terms of (r, 0., (.). Neglect O(€?) terms as usual,

x(x) = x(rs) + O(¢?) (3.137)

3. Decompose this result into cos(mé)-components, with m = 0,1,2, and 3. Your m = 2
component should have the form

1

(5" = 1) {5 (rex) — x’] =0,

requiring, for k # 1, y oc 72, This fixed radial form for the poloidal flux is the salient

characteristic of the large aspect-ratio, shifted-ellipse geometry.

Solution:

We begin with

B =1(r)V(+ V( x Vx (68)

_ I N I (69)

Re(re) + 1 cosbe N R. (1 + & cos 96>

1
~ E (1 - ]%ec CoS 96) (70)

1
BT:}—%

We then note that

Z = Kresind, (71)
= VZ =k (sinfb, Vre + 7. cos 6, VH,) (72)
r.cos 8, Vi, = vz sin @, Vr, (73)
K

R = R.(r.) + recos b, (74)

R, Vr,
VR = VR, + Vr,cosf, — r.sinf, Vo (75)
VR — Vr.(R. + cosf.) = —r.sin 6, V0, (76)
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so taking [(73) + cot 6.(76)] and find

A
re(cos 6, — cot 6, sin 6,) VO, = cot 8, VR — cot 0.(R., + cosb.) Vr. + VT —sinf, Vr,

cos? 6, A\

re(cos ) V. = cot 0, VR — cot 6. R.. Vr, — Vr, + - sin 8, Vr,

sin 6,
and so multiplying by sin 6, yields

A
0 = cos VR — cos 6. R, Vr, — cos® 0, Vr, — sin® 6, Vr, + vz
K

7
0=cosf@ VR — (1 + cosb.R.) Vr. + VT

B cos 6, VR + %VZ
B 1+ cosO.R,

Vr,

We note that the Jacobian is then given by using Vf, = —Y2— — ta:}o@ Vr, that

KTe COS B¢

M — tan 0M>
Kr cos 6,

_(COS@EVR-F%) ( 7 x ¢ )_ R-R

J = Vr,- Vb, x vge:vre-<

1+ Rl cosb, krRcosf, |  krR(1+ R, cosf,)
1 1

krR(1 + Rl cosf,) kTR, (1 + & cos 96) (1+ R, cosb,)
1 1

- krR,. (1 + (R{: + R%) cos b, + 0(62)> B krR,. ( — RLOA cos 0, + (9(62)>

The Grad-Shafranov equation reads

Vx dl dP
V| &) = T/ _ArR?*——
v (RQ) dx mh dy
Now we use this can be written as
0 1 - df dP
R? | ——Vyx V&) = —]— — 47 R*—
T a6 (sz v ) o

Which if we write out using x = x(r.) so that Vy = x’ Vr we find that this yields

0 1 0 1 dl 1
2 / . / . 0 :—] __4 2 -
R*T [87"6 (R2JX Vr, Vre> + a0, (RQJX Vr, «+ Vi e)} ar TR dro

where the Vr, . Vr, term yields

peg 0 (X ZE+ ol
Ore \ R2J (1 + R cosb,)?

(6)

(88)
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We note

sin® 0, + k% cos? 0, 17C0;(29€) + K2 HCO;(ME) 1+ K>+ (K* — 1) cos(26,) (90)

K2 K2 2K2

Now we need to determine Vr, . V#,. For this, we construct the Jacobian matrix. Thus we have

R=R.re) + recosb, (91)
o =—Ce (92)
Z =z = Rresinb, (93)
x = Rcosy (94)
y = Rsing (95)
yielding
ox OR ,
o cos gpare = cos p(R, + cosb.) (96)
Ox OR ,
0.~ Ccos 4,0896 = —resinf, cos p (97)
0 0 0 :81
v L0cosp  LOdcosp Dp o,
9 R o R 9o 9C Rsin g (98)
Jy . OR . /
o sin @are = sinp(R, + cosb.) (99)
dy . OR . .
20, ~ sin gpaee = —resinf.siny (100)
0 Jsi Jsi :8_1
Yy sin ¢ sing dp
o, R ac. R 9o 9C Rcosp (101)
gi = Ksinf, (102)
0z
2, ~ KTe cos 6, (103)
0z
=0 104
o, (104)

allowing us to evaluate g;; = %Léfgigf so that

oz \° oy\° [0Z\°
gw_(@m) +(87"6> +(8r6> (105)

= cos® (R, + cos 0,)* + sin® (R, + cos 0,)? + Kk*sin® 0, (106)

= cos’ O, + k*sin 0, + 2R, cos 6, + R/ (107)
or\” oy\°  [0Z\°

== 108

goo (ae) " (aae) - <aee) (108)

= r2sin* 0, cos® p + r2 sin® 0, sin® p + r2x* cos® @ = r2(sin® 0, + K cos® ) (109)
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2 2 2
ge¢ = (5—2) + <(§§ye) + <ZZ) = R%sin® p + R*cos? ¢ + 0 = R? (110)
Oor Or Oy dy 0z 0z
9r0 = 90 = B4, or. 09, or. © 98, or,
= —71.sinf, sin? p(R., + cos b)) — 7 sin 0, cos® p(R., + cos 8,) + 1ex* sin B, cos O,
= —resinb, ((1 - £*)cosb, + R)
Or Or Oy dy 0z 0z
e =90 = 36,06, " o0 o, " 96, ¢
= —r.sinf, cos p(Rsinp) — r.sinf. sin p(—Rcosp) +0=0
Or dxr Oy Oy 0z 0z
9 =9 = 56, or, " 90, o, " 90, o,

= cos (R, + cosf.)(Rsinp) + sin (R, + cosf)(—Rcosp) +0=10 117
yielding

9rr  Gro 0
gij = |90 Goo 0 (118)

0 0 g¢

g ) ) 9009cc  —9ro9cc 0
97 =9yl =T | —gre9cc 900 0 (119)
0 0 Grr4o6 — 939

with 1/7% = gcc(grrgoo — g%). Let’s show that this leads to the same results we had before. First
we see

T % = 9cc(9rr 900 — 9r9) (120)
= R*[(cos” 0, + k*sin’ 0, + 2R, cos b, + RZ)r2(sin” 0, + k* cos” 6,
—r2sin® 0.(R, + (1 — k) cos® 6,)] (121)

= R*r? M—i— k2 cost 0, + k?sin* 0, —l—W—FW
+ 2R K% cos® 0, + R2si* 0, + R?k? cos® 0, — R2si* 0, — 2R sim?6-cas 0,
+ 2R K? sin* 0, cos 0, — sin>f#-cos° 0, + 2k7 sin? 4, cos® 0, —W} (122)

= R*r?k? [0084 0, + sin* 0, + 2R, cos® 0, + R cos® 0, + 2R, sin* 0, cos 0, + 2sin 0, cos” 06}

(123)
= R*r?k? [(COSz 0, + sin? 96)2 + R0, (2 cos? 6, + 2sin? 96) + R — % cos? 95] (124)
= R*r2k* (14 2R, cos 0, + R cos” 0, (125)
Thus, we find
1
(126)

J = Rr.k (1 + R cosf,.)

after Taylor expanding and including only O(e) terms, which agrees with our previous result.
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Thus we see

—39r99¢C _ resinf (R, + (1 — K?) cos0.) R?
0, = 127
Vre: V R2r2k2(1 4 2R cosf,) R2?r2k2(1 + 2R/ cosf.) (127)
— _ sinbe (R, + (1 — k% cosf,)(1 — 2R, cos,) (128)
Tk
1
= —(R.sinf + (1 — x*)sinf cos (1 — 2R, cos ,)) (129)
TeK
1 (1 — k?)
= (R’c sin 0, + sin(26,)(1 — 2R, cos 96)> (130)

Note in passing that for x> = 1 we have no O(e") contribution to the Grad-Shafranov equation.

Thus, looking at only the left-hand side of the Grad-Shafranov equation and simplifying the Vr, -
Vr, contribution then yields

1+ K%+ (k% — 1) cos(26,) R? A% r,
1——A 131
22 krele(1 — feAcosO) Ore \ R? porelie Ry cos b (131)
1+ k*+ (k* — 1) cos(26.) 1

(X'rke (1 —e(A+1)cosb,)) (132)

0
1 A 0.) —
p — (I +e(A+1)cosb,) ar.

2k2

Taking the zeroth order component yields

1+ K%+ (52 — 1) cos(20e) Ry 9 (krex"\ _ 1467+ (52 — 1) cos(26,) 1
o e 133
2k2 rek Ore \ R 22 Te X’ (133)
Now let’s look at the V?“e - VO, term and find
R? X' Rrer(l — feAcoste) 1 1 — 42
R! sin0, in(20.)(1 — 2R/ cos 6,
kreRe(1 — g A cosO,.) 00, ( 2 < .sinf, + sin(26,)( . COS )))
(134)
RO(1+Te cosb,) o —”eAcose) 1 — k2
R sinf, in(20,)(1 — 2R, cos 6,
KreRo(1 — A cosb. ) 06, (HRO 1+ 5 cos@) ( ¢S Oe + sin(26. )( ¢ €08 ))
(135)
(1+ Ig—eocoseeﬁ o (xX(1—*Acosb.) ( 1 2
L in 6, in(26,)(1 — 2R’ cos b,
K2re(1 — E—ZA cos ) 00, (1+ }Tz—% cosf.) (RC SIGe + sin (20 )( R, cos ))
(136)
which to O(€%) yields
1 0 1 — K2
(2 |
K21, 00, (X g il 99) (137)
X' (1— k% (1 - k)X
= X T g os(20,) = X og(2 1
o2 cos(26,) e cos(26.) (138)
Thus the entire right hand side of the Grad-Shafranov equation at O(°) is given by
1+ k% + (k2 —1)cos(26,) 1 1— k)Y
( 252 ) ( )r_e(,r,ex/)/ + %COS(QQ ) (139)
14 K? K2 —11[1
T (rex’) + - {5(7’6){)’ — X/} cos(26,) (140)
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The right hand side of the Grad-Shafranov equation will be given by

df dP
—]— —4TR*— 141
Y TR I (141)
dl T dP
—I— —47R*(1 + == cosb,.)*— 142
I TRy (1 + R cosb,) I (142)
and so to zeroth order will yield
dly dF,
—ly— —4TR2—= 14

where Iy and Py are determined by the profiles chosen accurate to O(e®). We suspect that they
have no Fourier components other than m = 0. Given this, then the m = 0 component is

1+ I€2 d]() dPO

——(re)) = —Ip— — 47 R? 144
2K2r, (rex’) de m % dy (144)
and the m = 2 component will be given by
211
il {5(7“@)(,)/ — X/} cos(26,) =0 (145)
Te
1
(6= 1) = | =0 (146)

as stated in the problem statement.
Similarly for the m = 1 and m = 3 terms, except that they will come from the O(¢) equation.

So, first take (132) to O(e).

1+ K%+ (k* — 1) cos(20,) [(A+1) 0 [ krex R 0 ([, r?
5.3 — cos 986_7“6 Ro ) w0 X mﬁ(A + 1) cos b, (147)
remembering that
1
cos(20,) cos b, = 5 (cos B, + cos(36,)) (148)

then take the same order in (136) (defining av = 1_2”2 sin(26.) we get

1+ ;—O(i:;eA) cos . % (X/ (1 — ;—60(1 + A) cos 96) (o + R (sin 6, — 2a cos 96))) (149)
_ &0 . “ 9@% o) + 1% (x'<Rz<sine ~200086,) = T+ A) cos ee>) (150)
_X(1- KQL(QQR—: A) cos b, cos(26,)

+ l;;;e (R;(cos t — % (cos B, + 3cos(36,)) — 7%(;—];‘0/\) (cos O + 3003(36e>>> (151)
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The right hand side we assume at O(€) has components with just cos .. Thus the m = 1 component

reads
1+k%2 K2—1] ((1+A) N (LHEA) S
2 (B ey - Sy
+X’(1—H2)(2+A) N X' (R, re(1+A)
2k2 Ry K2re \ 2 2R,
ol dP,
= _]la_Xl — 87T7’6R()d—xl

while the m = 3 component will read

kK*—1 X (1= k%) (24 A)

[(A+1)(rex) — 1+ M) (r2X)] +

X (3R, B 3re(L4+A)\ 0
K2re \ 2 Ry B

4k2 QHQRO

(152)

(153)
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