
Kyle Bunkers Differential Equation Solution Generation

1 General Idea

Given a differential equation, y(x) like

d2y

dx2
= −λ2y (1)

and the given solution y = A cos(λx)+B sin(λx), it is possible to generate the differential equations
for more general solutions, like xα(A cos(βxγ) +B sin(βxγ)).

This is useful for more complicated differential equations as it gives us a simple way to get the
answer.

I will compile a list of such generalized differential equations and solutions below, but first let’s
outline the approach. It is easiest with linear differential equations, though my final example will
show it is possible to use this method with nonlinear differential equations.

Start with a linear differential equation of the form∑
n

an(x)
dny

dxn
= 0 (2)

with the known solution y = f(x). We then generalize the solution by using the trial solution
fs(x) = xαf(x) into the differential equation. This will yield∑

n

an(x)
dn

dxn
(xαf(x)) (3)

This will have extra terms compared to (2). In fact we can use that

dn

dxn
(xαf(x)) =

n∑
l=0

(
n
l

)
(α)lx

α−ld
n−lf

dxn−l
=

n∑
l=0

(
n
l

)
α!

(α− l)!
xα−l

dn−lf

dxn−l
(4)

with (α)l the falling factorial and

(
n
k

)
= (n)k

k!
= n!

k!(n−k)! corresponding to n choose k. We see that

this implies that the l = 0 term yields

��
�
��*

1
n!

0!n!
(α)0 x

αdnf

dxn
(5)

Note that we then have∑
n

an(x)
n∑
l=0

(
n
l

)
(α)l

dn−lf

dxn−l
=
∑
n

an

(
n
0

)
(α)0x

αdnf

dxn
+
∑
n

an

n∑
l=1

(
n
l

)
(α)lx

α−ld
n−lf

dxn−l
(6)

= xα

��
�
��
�∑

n

an
dnf

dxn
+
∑
n

an

n∑
l=1

(
n
l

)
(α)lx

α−ld
n−lf

dxn−l
(7)

=
∑
n

an

n∑
l=1

(
n
l

)
(α)lx

α−ld
n−lf

dxn−l
(8)

©K. J. Bunkers 1 of 13 Updated April 3, 2020



Kyle Bunkers Differential Equation Solution Generation

We can then rewrite the above in the form

nmax−1∑
k=0

bk(x)
dkys
dxk

(9)

where the ys = xαf(x) is used instead of dkf
dxk

. This simply uses the relationships developed above.

And so the differential equation obeyed by ys = xαf(x) is given by (where we combine the top
equation into a single bottom equation)

∑
n

an
dnys
dxn

−
∑
k

bk(x)
dkys
dxk

= 0 (10)

∑
n

cn
dnys
dxn

= 0 (11)

Now we move on to putting in the f(βxγ) dependence. Then we simply use the chain rule with
fs(βx

γ) ≡ g(t) and so t = βxγ and so we have

∑
k

dk(t)
dkg(t)

dtk
= 0 (12)

(where we note that xα → tα/γ

βα/γ
). This is the same as (11) in form.

We then switch the dl

dtl
terms to terms involving ds

dxs
and we have the fully generalized answer.

One can note that one way of using the chain rule is to use

dn

dxn
f(g(x)) =

∑ n!

(m1!)(1!)m1(m2!)(2!)m2 · · · (mn!)(n!)mn
d(m1+···+mn)f(g)

dg(m1+···+mn)

n∏
j=1

(
djg

dxj

)mj
(13)

dn

dxn
f(g(x)) =

∑ n!

(m1!)(m2!) · · · (mn!)

d(m1+···+mn)f(g)

dg(m1+···+mn)

n∏
j=1

(
1

j!

djg

dxj

)mj
(14)

with m1, . . . ,mn being nonnegative integers satisfying

1 ·m1 + 2 ·m2 + · · ·+ n ·mn = n (15)

This is called Faà di Bruno’s formula.

The following derivations will elucidate the method.
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2 Harmonic Oscillator Differential Equation

Let’s use

d2y

dx2
= −λy (16)

and the given solution y = A cos(x) + B sin(x). For simplicity, let’s work with y = cos(x) alone,
as everything will work equally well for B sin(x). We begin by solving for ys = xαy. First we have

d

dx
(ys) = αxα−1y + xα

dy

dx
= α

ys
x

+ xα
dy

dx
(17)

and so

d2ys
dx2

+ λys =
d2

dx2
(xαy) + λx =

d

dx

(
αxα−1y + xα

dy

dx

)
+ xαλy (18)

= α(α− 1)xα−2y + 2αxα−1 dy

dx
+ xα

d2y

dx
+ xαλy︸ ︷︷ ︸

xα
(

d2y

dx2
+λy

)
=0

(19)

Hence the extra terms are

α(α− 1)xα−2y + 2αxα−1 dy

dx
(20)

α(α− 1)
ys
x2

+
2α

x

(
dys
dx
− αys

x

)
(21)

α (α− 1)
ys
x2

+
2α

x

dys
dx
− 2α2ys

x2
(22)

Hence the differential equation that has the solution ys = xα cos(λx) is given by

d2ys
dx2

+ λys −
[
α (α− 1)

ys
x2

+
2α

x

dys
dx
− 2α2ys

x2

]
= 0 (23)

d2ys
dx2
− 2α

x

dys
dx

+

(
λ+

2α2 − α(α− 1)

x2

)
ys = 0 (24)

d2ys
dx2
− 2α

x

dys
dx

+

(
λ+

α(α + 1)

x2

)
ys = 0 (25)

Now to generalize to yt = xα cos(βxγ) we use that we can rewrite this as yt = tα/γyf (t) = xα/γys(x)
with t = βxγ (and so xα ∝ tα/γ) (we only care about the dependence as multiplying by a constant
doesn’t change the differential equation) and so it satisfies

d2yf
dt2
−

2α
γ

t

dyf
dt

+

(
1 +

α
γ
(α
γ

+ 1)

t2

)
yf = 0 (26)

and now use that dt
dx

= βγxγ−1 so that

dyf
dt

=
dx

dt

dyf
dx

=
1

βγxγ−1

dyf
dx

(27)

d2yf
dt2

=
1

β2γ2xγ−1

(
(1− γ)x−γ

dyf
dx

+
1

xγ−1

d2yf
dx2

)
(28)
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and hence we find

d2yf
dt2
−

2α
γ

t

dyf
dt

+

(
1 +

α
γ
(α
γ

+ 1)

t2

)
yf = 0 (29)

1

β2γ2x2γ−2

d2yf
dx2

+
1− γ

β2γ2x2γ−1

dyf
dx
−

2α
γ

βxγ
1

βγxγ−1

dyf
dx

+

1 +

α
γ

(
α
γ

+ 1
)

β2x2γ

 yf = 0 (30)

1

β2γ2x2γ−2

d2yf
dx2

+
dyf
dx

(
(1− γ)− 2α

β2γ2x2γ−1

)
+

1 +

α
γ

(
α
γ

+ 1
)

β2x2γ

 yf = 0 (31)

d2yf
dx2

+
dyf
dx

(
1− γ − 2α

x

)
+

(
β2γ2x2γ−2 +

α(α + γ)

x2

)
yf = 0 (32)

d2yf
dx2

+
dyf
dx

(
1− γ − 2α

x

)
+

(
β2γ2x2γ−2 +

α(α + γ)

x2

)
yf = 0 (33)

So we see that the generalized harmonic oscillator differential equation

d2y

dx2
+

dy

dx

(
1− γ − 2α

x

)
+

(
β2γ2x2γ−2 +

α(α + γ)

x2

)
y = 0 (34)

has solutions

y = Axα cos(βxγ) +Bxα sin(βxγ) (35)

with A and B constants to fit initial conditions.
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3 Bessel Differential Equation

The differential equation is given by

x2
d2y

dx2
+ x

dy

dx
+ (x2 − n2)y = 0 (36)

d2y

dx2
+

1

x

dy

dx
+

(
1− n2

x2

)
y = 0 (37)

with solutions y = AJn(x) + BJ−n(x) for non-integer n and y = AJn(x) + CYn(x) for integer n
with Yn(x) sometimes denoted Nn(x) to avoid confusion with spherical harmonics. Jn is the nth
order Bessel function of the first kind and Nn(x) is the nth order Bessel function of the second
kind with A,B,C and constants that allow fitting of boundary/initial conditions.

We see that

dys
dx

=
d

dx
(xαy) = αxα−1y + xα

dy

dx
(38)

d2ys
dx2

=
d

dx

(
αxα−1y + xα

dy

dx

)
= α(α− 1)xα−2y + 2αxα−1 dy

dx
+ xα

d2y

dx2
(39)

So let’s put in ys(x) = xαy(x) into the left hand side of (59) and find

d2ys
dx2

+
1

x

dys
dx

+

(
1− n2

x2

)
ys (40)

=
d2

dx2
(xαy) +

1

x

d

dx
(xαy) + xα

(
1− n2

x2

)
y (41)

=

(
α(α− 1)xα−2y + 2αxα−1 dy

dx
+ xα

d2y

dx2

)
+

1

x

(
αxα−1y + xα

dy

dx

)
+ xα

(
1− n2

x2

)
y (42)

xα
(

d2y

dx2
+

1

x

dy

dx
+

(
1− n2

x2

)
y

)
︸ ︷︷ ︸

=0

+2αxα−1 dy

dx
+ xα−2 (α(α− 1) + α) y (43)

= 2αxα−1 dy

dx
+ xα−2

(
α2
)
y (44)

=
2α

x

(
xα

dy

dx

)
+ x−2α2(xαy) =

2α

x

(
dys
dx
− αys

x

)
+
α2

x2
ys (45)

=
2α

x

dys
dx

+
α2 − 2α2

x2
ys =

2α

x

dys
dx
− α2

x2
ys (46)

Hence the differential equation for ys = xαy is given by

d2ys
dx2

+
1

x

dys
dx

+

(
1− n2

x2

)
ys −

[
2α

x

dys
dx
− α2

x2
ys

]
= 0 (47)

d2ys
dx2

+
1− 2α

x

dys
dx

+

(
1 +

α2 − n2

x2

)
ys = 0 (48)

Now to generalize to yt = xαy(βxγ) we use that we can rewrite this as yt = tα/γyf (t) = xα/γys(x)
with t = βxγ (and so xα ∝ tα/γ) (we only care about the dependence as multiplying by a constant
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doesn’t change the differential equation) and so it satisfies

d2yf
dt2

+
1− 2α

γ

t

dyf
dt

+

(
1 +

α2

γ2
− n2

t2

)
yf = 0 (49)

Using that dt
dx

= βγxγ−1 with t = βxγ we have

dyf
dt

=
dx

dt

dyf
dx

=
1

βγxγ−1

dyf
dx

(50)

d2yf
dt2

=
1

β2γ2xγ−1

(
(1− γ)x−γ

dyf
dx

+
1

xγ−1

d2yf
dx2

)
(51)

and hence we find(
1

β2γ2x2γ−2

d2yf
dx2

+
1− γ

β2γ2x2γ−1

dyf
dx

)
+

1− 2α
γ

βxγ
1

βγxγ−1

dyf
dx

+

(
1 +

α2

γ2
− n2

β2γ2x2γ

)
yf = 0 (52)

1

β2γ2x2γ−2

d2yf
dx2

+
dyf
dx

(
1− �γ + γ(�1− 2α

γ
)

β2γ2x2γ−1

)
+

(
1 +

α2

γ2
− n2

β2γ2x2γ

)
yf = 0 (53)

1

β2γ2x2γ−2

d2yf
dx2

+
dyf
dx

(
1− 2α

β2γ2x2γ−1

)
+

(
1 +

α2

γ2
− n2

β2γ2x2γ

)
yf = 0 (54)

d2yf
dx2

+
dyf
dx

(
1− 2α

x

)
+

(
β2γ2x2γ−2 +

α2 − n2γ2

x2

)
yf = 0 (55)

So we see that the generalized Bessel differential equation

d2y

dx2
+

dy

dx

(
1− 2α

x

)
+

(
β2γ2x2γ−2 +

α2 − n2γ2

x2

)
y = 0 (56)

has solutions

y =

{
AxαJn(βxγ) +BxαJ−n(βxγ) n is a non-integer

AxαJn(βxγ) + CxαNn(βxγ) n is an integer
(57)

with A, B, and C constants to fit initial conditions.

4 Modified Bessel Differential Equation

The differential equation is given by

x2
d2y

dx2
+ x

dy

dx
− (x2 + n2)y = 0 (58)

d2y

dx2
+

1

x

dy

dx
−
(

1 +
n2

x2

)
y = 0 (59)

with solutions y = AIn(x) + BI−n(x) for non-integer n and y = AIn(x) + CKn(x) for integer n .
In is the nth order modified Bessel function of the first kind and Kn(x) is the nth order modified
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Bessel function of the second kind with A,B,C and constants that allow fitting of boundary/initial
conditions.

We see that

dys
dx

=
d

dx
(xαy) = αxα−1y + xα

dy

dx
(60)

d2ys
dx2

=
d

dx

(
αxα−1y + xα

dy

dx

)
= α(α− 1)xα−2y + 2αxα−1 dy

dx
+ xα

d2y

dx2
(61)

So let’s put in ys(x) = xαy(x) into the left hand side of (59) and find

d2ys
dx2

+
1

x

dys
dx
−
(

1 +
n2

x2

)
ys (62)

=
d2

dx2
(xαy) +

1

x

d

dx
(xαy)− xα

(
1 +

n2

x2

)
y (63)

=

(
α(α− 1)xα−2y + 2αxα−1 dy

dx
+ xα

d2y

dx2

)
+

1

x

(
αxα−1y + xα

dy

dx

)
− xα

(
1 +

n2

x2

)
y (64)

xα
(

d2y

dx2
+

1

x

dy

dx
−
(

1 +
n2

x2

)
y

)
︸ ︷︷ ︸

=0

+2αxα−1 dy

dx
+ xα−2 (α(α− 1) + α) y (65)

= 2αxα−1 dy

dx
+ xα−2

(
α2
)
y (66)

=
2α

x

(
xα

dy

dx

)
+ x−2α2(xαy) =

2α

x

(
dys
dx
− αys

x

)
+
α2

x2
ys (67)

=
2α

x

dys
dx

+
α2 − 2α2

x2
ys =

2α

x

dys
dx
− α2

x2
ys (68)

Hence the differential equation for ys = xαy is given by

d2ys
dx2

+
1

x

dys
dx
−
(

1 +
n2

x2

)
ys −

[
2α

x

dys
dx
− α2

x2
ys

]
= 0 (69)

d2ys
dx2

+
1− 2α

x

dys
dx
−
(

1 +
n2 − α2

x2

)
ys = 0 (70)

Now to generalize to yt = xαy(βxγ) we use that we can rewrite this as yt = tα/γyf (t) = xα/γys(x)
with t = βxγ (and so xα ∝ tα/γ) (we only care about the dependence as multiplying by a constant
doesn’t change the differential equation) and so it satisfies

d2yf
dt2

+
1− 2α

γ

t

dyf
dt

+

(
1 +

α2

γ2
− n2

t2

)
yf = 0 (71)

Using that dt
dx

= βγxγ−1 with t = βxγ we have

dyf
dt

=
dx

dt

dyf
dx

=
1

βγxγ−1

dyf
dx

(72)

d2yf
dt2

=
1

β2γ2xγ−1

(
(1− γ)x−γ

dyf
dx

+
1

xγ−1

d2yf
dx2

)
(73)
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and hence we find(
1

β2γ2x2γ−2

d2yf
dx2

+
1− γ

β2γ2x2γ−1

dyf
dx

)
+

1− 2α
γ

βxγ
1

βγxγ−1

dyf
dx
−

(
1 +

n2 − α2

γ2

β2γ2x2γ

)
yf = 0 (74)

1

β2γ2x2γ−2

d2yf
dx2

+
dyf
dx

(
1− �γ + γ(�1− 2α

γ
)

β2γ2x2γ−1

)
−

(
1 +

n2 − α2

γ2

β2γ2x2γ

)
yf = 0 (75)

1

β2γ2x2γ−2

d2yf
dx2

+
dyf
dx

(
1− 2α

β2γ2x2γ−1

)
−

(
1 +

n2 − α2

γ2

β2γ2x2γ

)
yf = 0 (76)

d2yf
dx2

+
dyf
dx

(
1− 2α

x

)
+

(
β2γ2x2γ−2 +

n2γ2 − α2

x2

)
yf = 0 (77)

So we see that the generalized Bessel differential equation

d2y

dx2
+

dy

dx

(
1− 2α

x

)
+

(
β2γ2x2γ−2 +

n2γ2 − α2

x2

)
y = 0 (78)

has solutions

y =

{
AxαIn(βxγ) +BxαI−n(βxγ) n is a non-integer

AxαIn(βxγ) + CxαKn(βxγ) n is an integer
(79)

with A, B, and C constants to fit initial conditions.
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5 Airy Differential Equation

Here we have the differential equation

d2y

dx2
− xy = 0 (80)

The solutions are y = AAi(x) + BBi(x) with A and B being integration constants. Following the
method we use ys = xαy and find using (4) that

dys
dx

=
d

dx
(xαy) = αxα−1y + xα

dy

dx
=
α

x
ys + xα

dy

dx
(81)

d2ys
dx2

= α(α− 1)xα−2y + 2αxα−1 dy

dx
+ xα

d2y

dx2
(82)

yielding for the left hand side of (80)

d2ys
dx2
− xys (83)

=

(
α(α− 1)xα−2y + 2αxα−1 dy

dx
+ xα

d2y

dx2

)
− xα(xy) (84)

= α(α− 1)xα−2y + 2αxα−1 dy

dx
+ xα

(
d2y

dx2
− xy

)
︸ ︷︷ ︸

=0

(85)

α(α− 1)xα−2y + 2αxα−1 dy

dx
=
α(α− 1)

x2
ys +

2α

x

(
xα

dy

dx

)
(86)

=
α(α− 1)

x2
ys +

2α

x

(
dys
dx
− α

x
ys

)
(87)

=
α2 − α− 2α2

x2
ys +

2α

x

dys
dx

(88)

=
2α

x

dys
dx
− α(α + 1)

x2
ys (89)

And so the differential equation for ys is given by

d2ys
dx2
− xys −

[
2α

x

dys
dx
− α(α + 1)

x2
ys

]
= 0 (90)

d2ys
dx2
− 2α

x

dys
dx
−
(
x− α(α + 1)

x2

)
ys = 0 (91)

Now to generalize to yt = xαy(βxγ) we use that we can rewrite this as yt = tα/γyf (t) = xα/γys(x)
with t = βxγ (and so xα ∝ tα/γ) (we only care about the dependence as multiplying by a constant
doesn’t change the differential equation) and so it satisfies

d2yf
dt2
−

2α
γ

t

dyf
dt
−

(
t−

α
γ
(α
γ

+ 1)

t2

)
yf = 0 (92)
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And so using that dt
dx

= βγxγ−1 with t = βxγ we have

dyf
dt

=
dx

dt

dyf
dx

=
1

βγxγ−1

dyf
dx

(93)

d2yf
dt2

=
1

β2γ2x2γ−2

d2yf
dx2

+
1− γ

β2γ2x2γ−1

dyf
dx

(94)

and hence we find(
1

β2γ2x2γ−2

d2yf
dx2

+
1− γ

β2γ2x2γ−1

dyf
dx

)
−

2α
γ

βxγ

(
1

βγxγ−1

dyf
dx

)
−

(
βxγ −

α
γ
(α
γ

+ 1)

β2x2γ

)
yf = 0 (95)

1

β2γ2x2γ−2

d2yf
dx2

+

(
1− γ

β2γ2x2γ−1
−

2α
γ

βxγ

(
1

βγxγ−1

))
dyf
dx
−

(
βxγ −

α
γ
(α
γ

+ 1)

β2x2γ

)
yf = 0 (96)

1

β2γ2x2γ−2

d2yf
dx2

+

(
1− γ − 2α

β2γ2x2γ−1

)
dyf
dx
−

(
βxγ −

α
γ
(α
γ

+ 1)

β2x2γ

)
yf = 0 (97)

d2yf
dx2

+

(
1− γ − 2α

x

)
dyf
dx
−
(
β3γ2x3γ−2 − α(α + γ)

x2

)
yf = 0 (98)

So we see that the generalized Airy differential equation

d2y

dx2
+

(
1− γ − 2α

x

)
dy

dx
−
(
β3γ2x3γ−2 − α(α + γ)

x2

)
y = 0 (99)

has solutions

y = AxαAi(βxγ) +BxαBi(βxγ) (100)

with A and B constants to fit initial conditions.
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6 Nonlinear Differential Equation log

Consider

d2y

dx2
+

(
dy

dx

)2

= 0 (101)

with solution y = ln(A + Bx) with A and B integration constants. We will find that we can still
apply our previous rules and generate a generalized differential equation.

Following the method we use ys = xαy/δ. We add in the δ because as it is no longer a linear
differential equation we cannot expect ay(x) with a a complex number and y(x) to be a solution
to the same differential equation. We find using (4)

dys
dx

=
d

dx
(xαy/δ) = αxα−1y/δ +

xα

δ

dy

dx
=
α

x
ys +

xα

δ

dy

dx
(102)

d2ys
dx2

=
α(α− 1)xα−2y

δ
+

2αxα−1

δ

dy

dx
+
xα

δ

d2y

dx2
(103)

yielding for the left hand side of (101)

d2ys
dx2

+

(
dys
dx

)2

(104)

=
xα

δ

d2y

dx2
+

2α

δ
xα−1 dy

dx
+
α(α− 1)

δ
xα−2y +

1

δ2

(
xα

dy

dx
+ αxα−1y

)2

(105)

=
xα

δ

d2y

dx2
+

2α

δ
xα−1 dy

dx
+
α(α− 1)

δ
xα−2y +

x2α

δ2

(
dy

dx

)2

+
2α

δ2
x2α−1y

dy

dx
+
α2

δ2
x2α−2y2 (106)

=
xα

δ

(
d2y

dx2
+

(
dy

dx

)2

︸ ︷︷ ︸
=0

+(
xα

δ
− 1)

(
dy

dx

)2)
+

2α

δ
xα−1 dy

dx
+
α(α− 1)

δ
xα−2y +

2α

δ2
x2α−1y

dy

dx
+
α2x2α−2

δ2
y2

(107)

=
(
x2α − δxα

)(1

δ

dy

dx

)2

+
2α

δ
xα−1 dy

dx
+
α(α− 1)

δ
xα−2y +

2α

δ2
x2α−1y

dy

dx
+
α2x2α−2

δ2
y2 (108)

=
(
x2α − xαδ

)( 1

xα
dys
dx
− α

xα+1
ys

)2

+
2α

x

(
dys
dx
− α

x
ys

)
+
α(α− 1)

x2
ys

+
2α

x
ys

(
dys
dx
− α

x
ys

)
+
α2

x2
y2s (109)

= (x2α − xαδ)

(
1

x2α

(
dys
dx

)2

− 2α

x2α+1
ys

dys
dx

+
α2

x2α+2
y2s

)
+

2α

x

dys
dx
− α(α + 1)

x2
ys +

2α

x
ys

dys
dx
− α2

x2
y2s

(110)

=

(
dys
dx

)2

−
��

��
�2α

x
ys

dys
dx

+
@
@
@

α2

x2
y2s −

δ

xα

(
dys
dx

)2

+
2αδ

xα+1
ys

dys
dx
− α2δ

xα+2
y2s

+
2α

x

dys
dx
− α(α + 1)

x2
ys +

�
��

��2α

x
ys

dys
dx
−
@
@
@

α2

x2
y2s (111)
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and so altogether the left hand side gives(
dys
dx

)2

− δ

xα

(
dys
dx

)2

+
2αδ

xα+1
ys

dys
dx
− α2δ

xα+2
y2s +

2α

x

dys
dx
− α(α + 1)

x2
ys (112)

So our differential equation for ys is

d2ys
dx2

+
�
�
�
��

(
dys
dx

)2

−

[
�
�
�
��

(
dys
dx

)2

− δ

xα

(
dys
dx

)2

+
2αδ

xα+1
ys

dys
dx
− α2δ

xα+2
y2s +

2α

x

dys
dx
− α(α + 1)

x2
ys

]
= 0

(113)

d2ys
dx2

+
δ

xα

(
dys
dx

)2

− 2αδ

xα+1
ys

dys
dx

+
α2δ

xα+2
y2s −

2α

x

dys
dx

+
α(α + 1)

x2
ys = 0

(114)

Now to generalize to yt = xαy(βxγ) we use that we can rewrite this as yt = tα/γ

βα/γ
yf (t) = xα/γ

δ
ys(x)

with t = βxγ. We can no longer ignore the factor β−α/γ because this is no longer a linear differential
equation. So we use that δ = βα/γ in our previous equation and α→ α/γ. We use that dt

dx
= βγxγ−1

with t = βxγ so that we have

dyf
dt

=
dx

dt

dyf
dx

=
1

βγxγ−1

dyf
dx

(115)

d2yf
dt2

=
1

β2γ2x2γ−2

d2yf
dx2

+
1− γ

β2γ2x2γ−1

dyf
dx

(116)

and hence we find

d2yf
dt2

+
δ

tα/γ

(
dyf
dt

)2

−
2α
γ
δ

tα/γ+1
yf

dyf
dt

+

(
α
γ

)2
δ

tα/γ+2
y2f −

2α
γ

t

dyf
dt

+

α
γ
(α
γ

+ 1)

t2
yf = 0 (117)(

1

β2γ2x2γ−2

d2yf
dx2

+
1− γ

β2γ2x2γ−1

dyf
dx

)
+

βα/γ

βα/γxα

(
1

βγxγ−1

dyf
dx

)2

−
2α
γ
βα/γ

βα/γ+1xα+γ
yf

1

βγxγ−1

dyf
dx

+

(
α
γ

)2
βα/γ

βα/γ+2xα+2γ
y2f −

2α
γ

βxγ
1

βγxγ−1

dyf
dx

+

α
γ
(α
γ

+ 1)

β2x2γ
yf = 0 (118)(

1

β2γ2x2γ−2

d2yf
dx2

+
1− γ

β2γ2x2γ−1

dyf
dx

)
+

1

xα

(
1

βγxγ−1

dyf
dx

)2

−
2α
γ

β2γxα+2γ−1
yf

dyf
dx

+

(
α
γ

)2
β2xα+2γ

y2f −
2α

β2γ2x2γ−1

dyf
dx

+

α
γ
(α
γ

+ 1)

β2x2γ
yf = 0 (119)

1

β2γ2x2γ−2

d2yf
dx2

+
dyf
dx

(
1− γ

β2γ2x2γ−1
− 2α

β2γ2x2γ−1

)
+

1

β2γ2xα+2γ−2

(
dyf
dx

)2

− 2α

β2γ2xα+2γ−1
yf

dyf
dx

+
α2

β2γ2xα+2γ
y2f +

α(α + γ)

β2γ2x2γ
yf = 0 (120)

d2yf
dx2

+
1

xα

(
dyf
dx

)2

− 2α

xα+1
yf

dyf
dx

+
α2

xα+2
y2f +

dyf
dx

(
1− γ − 2α

x

)
+
α(α + γ)

x2
yf = 0 (121)
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So we see that the generalized logarithm differential equation

d2yf
dx2

+
1

xα

(
dyf
dx

)2

− 2α

xα+1
yf

dyf
dx

+
α2

xα+2
y2f +

dyf
dx

(
1− γ − 2α

x

)
+
α(α + γ)

x2
yf = 0 (122)

has solutions

yf = xα ln(A+Bβxγ) (123)

with A and B constants to fit initial conditions.
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