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Foreword by K. Bunkers

I say most things several times: at first in English, and later with additional devices. If
one of these variations makes sense and another is puzzling, then it is safe to continue
reading. Truly, when has it ever been unsafe to continue reading? If you encounter an
insurmountable obstacle in your reading, walk around it, continue to the next section
or chapter with no concern or regret, and never look back.

— Paul Rosenbaum[1, p. xii]

Wisdom is rooted in watching with affection the way people grow.

— W. W. Sawyer quoting Confucius[2, p. 7]

This is a primer for those wanting to get into magnetic fusion. It is primarily aimed at senior
undergraduates and especially new graduate students into the field, with a strong emphasis on
explaining the mathematics well, rather than covering the entire breadth of plasma physics. This
means that I will let some subjects be covered somewhat quickly and not delve deeply into them.
There are plenty of other textbooks that can fill in the areas I do not cover in plasma physics. For
what I have explained, though, I have striven to either show my work or cite a work that gives the
steps.

With all that said, I will go over many concepts that I wish I had had a stronger background
in when entering graduate school. Because this is my textbook, I will also cover subjects that
I find intrinsically interesting and so I hope this text will provide a single useful reference for
mathematical and physical problem solutions.

The mathematics section should serve as a good reference for many of the tools a plasma physicist
(and really, any physicist) uses. While it is by no means complete, it touches on subjects that
are often less investigated when doing an undergraduate mathematics, physics, or engineering
curricula. However, one can easily go through plasma physics without using the Hamiltonian
nature of magnetic field lines or even curvilinear coordinates beyond the cylindrical and primitive
toroidal systems. However, I believe it is best to be aware of the type of approximations you can
use. I also strongly believe in giving an example with the steps explicitly laid out, and so you will
see that I try not to skimp on showing my steps or reasoning.

The second chapter serves as an introduction to plasma physics, but should be considered a very
brief introduction. I have focused on plasma kinetics and plasma fluid theory in relation to magnetic
confinement. Sheath theory and astronomical uses are not covered, and plasma waves are hardly
touched upon. This is because I view the plasma chapter as serving a supplementary role to a
standard plasma physics textbook. It offers extra explanations and points of view that are often
skipped over in many textbooks.
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10 CONTENTS

The fusion and economics of fusion chapters serve as a general overview of the challenges and
possible promises of thermonuclear fusion. They were the primary reason I wrote this, and so I
hope that you do not just skip them. I found that this was very underrepresented in my formal
education, and so I hope that it answers questions you may have as to why people think fusion
could provide energy to humanity in the future. My personal experience is that people assume
that these calculations give the obvious answer that fusion is a good idea. However, fewer than
I would have thought have actually thought about where the resource numbers have come from,
and to what degree those numbers are optimistic or pessimistic predictions. The questions about
practicality are hard to answer, and so it is rather understandable that without a working prototype
that these questions are less focused upon.

There are some sections that I think deserve special mention because they are not normally pre-
sented to undergraduates, or that if they are, they are presented in a somewhat misleading way.
The first is that of the Hamiltonian nature of the magnetic fields in Section 1.10. This helps dis-
prove the commonly held notion that magnetic field lines must be closed. The “derivation” of the
Plemelj formula in Section 1.13 shows how these actually come from reasonable definitions (rather
than the flawed “proof” using a half-circle integration). The frozen flux theorem uses a general-
ized Leibniz integral rule that is usually presented without emphasizing that ∇ ·B is playing an
enormous role in the proof. I explain this and offer the fuller, more general Leibniz integral rule in
Section 2.7.1. A proof for the form of the perturbed normal is presented in Section 2.9.3. I have
never found a proof in the literature, though it probably exists somewhere. I still think you should
read the other sections of the book, but these particular topics are things I have not seen covered
as well elsewhere.

When you write (and publish) your own book you get to write about whatever you like. This
is both great and terrible. Great because you can cover what you want. Terrible because you
realize that it is hard to say something other people will understand and want to read. I have
tried to inject some personality into this textbook, and not have the tone of a “normal” textbook.
If you have ever read Boyd’s Chebyshev and Fourier Spectral Methods or any of W. W. Sawyer’s
mathematics books (see references in the chapters), you will know what I mean by injecting some
personality into the chapters. I hope that this tone does not put you off; in fact, I hope that you
find it, at least, a little enjoyable.

There are a couple of other things I’d like to say before you start. Feel free to skip these next parts
if you just want to start getting into the physics rather than my opinions.

First, never believe a physicists’ history. It is almost always a warped tale that sees the end result
as a clear goal that the scientists stepped toward without any backward or sideways steps. Unless a
physics textbook gives a reference to interviews, an actual history book, or their personal anecdote
of discovery, it is safe to assume that the story is probably wrong or distorted such that it at best
sort of correct.1 Even in this book, apply the same precepts: without a citation to a historical

1A good example is Tycho Brahe’s Tychonic model where the sun and moon revolve around Earth, and all the
other planets around the sun. Many scientists take this to be Tycho wanting to keep the Earth at the center of the
universe, but in fact he was simply using that the stars appear to the naked eye to be spheres rather than points
(due to atmospheric effects nobody at the time recognized). If you calculate the size of the stars in the Tychonic
model, you get them reasonably similar to the sun. If you use a Copernican model, you have the stars extremely
far away (due to the lack of parallax), and so the distant stars would have have radii at least ten times as large as
the size of our solar system to appear at the size they do on Earth. Tycho thought that our star alone shouldn’t be
the tiniest dwarf in the universe. Copernicans only response at the time was that God could have made all those
stars that enormous. Later there were better arguments to be made against the Tychonic model, but it was not
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document, the story is probably distorted.

Second, it is customary to explain how the author sees the chapters of a textbook. The first chapter
is entirely skippable if none of the subjects interest you. They are useful, but only when you need
them. The plasma chapter is a quick introduction to different plasma physics ideas, usually with a
problem to illustrate the method. The fusion chapter is a generic treatment of nuclear fusion with
applications to stellar and terrestrial (that is fusion by humans on Earth) fusion. The final chapter
goes into more depth into what is necessary for fusion power to be a major industry providing
energy for the world. While the chapters build off of each other, they can be read separately
without much problem. The two fusion chapters certainly make more sense as read one after
another, but it is not strictly necessary.

Finally, I thank you for taking the time to look at this. I did this mostly for my own edification,
though I did so hoping it would be of general use to others. Feel free to use any content from the
text so long as you properly attribute it.2 Feel free to contact me with any corrections. I thank
all of my friends and colleagues who helped proofread and make suggestions [TODO: list them].
All errors in the text are mine, and mine alone, however. I hope you have an enjoyable read.

Wish you the best,

K. J. Bunkers

2020-03-22

Changes since this foreword:

2020-09-02: Fixed minus sign error in summary formula at the end of appendix 2 2020-09-03:
Fixed Kν(z) for z →∞ formula in modified Bessel functions.

some crazy idea.
2I have done my very best to ensure that anything I used from others is properly attributed. To the very best of

my understanding, I have not needed permission to use any of the public domain images as they are under Creative
Common licences that do not require it.
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Chapter 1

Mathematical Beginnings

“Everyone knows what a curve is, until he has studied enough mathematics to become
confused through the countless number of possible exceptions.”

— Felix Klein

This chapter begins with notation, which will be explained within the text as it appears, as well.
It then explores coordinate systems and vector and tensor analysis suitable for physics. It is
heavily indebted to W. D. D’haeseleer, et. al.’s Flux Coordinates and Magnetic Field Structure[9]
which serves as an excellent reference for curvilinear coordinate systems and flux coordinates. I
think it treats curvilinear coordinates in a way that is less math intensive and more intuitive
from a physics perspective. The nature of Fourier series, Fourier transforms, Laplace transforms,
ballooning transforms are reviewed and explained. The idea of asymptology, or the study of
systems in limits, is then explored briefly. Taylor series are given a special section because of
their importance in all physics analyses. Multiple Scale Analysis, a type of perturbation series,
and an explanation of linearization follows. The Calculus of Variations is then explained, and
its uses in theoretical physics is discussed. Hamiltonian mechanics is developed so that we can
discuss the Hamiltonian nature of magnetic field lines. This includes a discussion of Frenet-Serret
and Darboux frames, which are of importance for magnetic field line coordinates. The JWKB
approximation follows, as it can be used most easily with Hamiltonian systems. Complex contour
integration and an explanation of analytic continuation are then given. Finally, I give some of my
personal experiences with probability and statistics, and warn you of ways intuition on probability
can mislead you.

Other than the Notation Section 1.1 and the useful skill of reading contour plots for Fourier
components in Section 1.3.2, all of the material should be viewed as supplementary for plasma
physics. This is a good reference or review when you need to use the mathematical operations.
The complex contour integration 1.13 is rather brief, because I think other texts adequately explain
the ideas.

I have structured this chapter such that notation comes first for easy reference, and then a bunch
of topics that I have had to come back to over the course of my career, or that I had questions
about and did not want an overly technical explanation. That is, I did not want to have to learn
an entire new branch of mathematics.

Curvilinear coordinates are important for analysis of magnetically confined devices, but generally
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speaking, unless you are using a simulation code or doing analytic work, you will not have to deal
with the flux coordinate systems for complicated calculations. You will use our plasma cylindrical
coordinate system (R,Z, ζ) or primitive toroidal coordinates (r, θ, ζ).

Fourier series are used all of the time and this section is worth looking at if you feel rusty with
Fourier series or transforms. Interpreting pictures and learning how to see the Fourier structure
is an important skill for plasma physics as you will be asked to describe plasma motion and per-
turbations by their Fourier components. The Laplace transform is touched on, which is important
for some theoretical plasma physics calculations. The ballooning transform is useful specifically to
plasmas with magnetic flux surfaces.

Taylor series are incredibly useful and ubiquitous in physics. I have collected the multi-dimensional
analogues and the complex variables analogue as well. It can be annoying to find or derive these
series, and so this makes a good reference. Asymptology is simply a generally useful set of skills
for finding solutions when things are in a certain limit. It is best to have some rules and some
example problems to see how the ideas are applied.

The section on linearization explains the concepts and goes through how to linearize equations.
It is simply the idea of using perturbation series. It shows how one could generalize to smaller
contributions, as well. Multiple scale analysis is essentially an extension of this idea that works
better in certain circumstances.

The calculus of variations is a useful tool in computations, but also can help in solving some
optimization problems in general. It is also good to know how to get results from principles of
least action, which will enrich anyone’s understanding of physics.

The Hamiltonian form of the magnetic field lines is included mainly because of my own interest
in the subject. I go through Hamiltonian physics so that the full machinery that a Hamiltonian
gives can be appreciated. It is also a proof that magnetic field lines do not necessarily close on
themselves or go to “infinity” as so many textbooks assert.

The Frenet-Serret trajectory formulation (and Darboux frame) goes along with particle and mag-
netic field line trajectories, and so is included mainly because of my own interest. It can be useful
for some plasma calculations if you want to follow a known magnetic field line and understand
attributes of the field line structure. In some theoretical plasma stability considerations this frame
is very natural.

The JWKB approximation is an important approximation in general. I cover it and explain its
connection to Hamiltonians so that you can see how it can be a powerful approximation tool.

Finally, complex integration is covered so we can talk about analytic continuation. Analytic
continuation is included to help you through theoretical plasma physics calculations that seem like
they should be ill-defined (usually in waves doing complex contour integrals). In addition it serves
to explain how we can assign values to what are divergent series [it should always be emphasized
that the divergent series does not sum to the assigned value].

1.1 Notations

I do not know if any idea ever achieves complete precision. But all that matters for a
formal theory, is that the idea is sufficiently precise for what you intend to do with it.
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— W. W. Sawyer[29, p. 145]

This section is simply an overview of the various notation and what they mean. They include
general comments and notation specific for this book. Many of the comments will be repeated in
the main text, because notation will be commented on as it occurs in addition to the references
here.

1.1.1 Functions, Vectors, and Tensors

No theory is kind to us that cheats us of seeing.

— Paul Rosenbaum quoting Henry James[27, p. 215]

I will assume a certain familiarity with common mathematical notations, such as f(x) means a
function of the variable x, and f(x(t), y(t), t) (often abbreviated to just f(x, y, t) with assumed
dependence of t for other variables) would be a function of x, y, and t with x and y both functions
of t. I will use the common convention of using bold face (non-italic) letters to represent vectors
(such as a, A). In addition, I will occasionally use bold Greek letters for vectors, as well (α, τ ,
etc.). When handwritten, one sees a variety of notations for vectors including using a blackboard-
like font, A, arrows on top ~A, or lines below a letter A with the arrow notation being the most
common. I will also use a typewriter-like font for what I will call a vector array. For me, a vector
array is an array of numbers that mathematicians would call a vector, but is not a geometric
vector. These will look like A or a.

When we come to n-polyadics or tensors of order n, the notation becomes far less universal. I will
use a double-headed arrow with a bold face letter to denote tensors of order 2, like

↔
A. In other

places this is sometimes instead rendered ~~A (or sometimes bold face is used ~~A), and the underline
notation also becomes simple A (sometimes A). For higher order tensors, the underline and arrow
notation are easily extendible, though become increasingly burdensome, with the number of lines
corresponding to the order of the tensor.

This is somewhat simplified by using index or Einstein summation notation,1 though this requires
choosing a representation of a vector or tensor, as will be discussed later. Then the number of
indices (as superscripts or subscripts) determines the order of the tensor. This is the most common
case for higher order tensors. Ai or Ai represents a vector; Aij, Aij, Ai·j, A·ij are second order tensors;
Aijk, Aijk,... are third order tensors; etc.

I will also sometimes use the notation A to indicate a matrix or a higher order tensor, but it will be
specifically remarked upon. Using a different font is often used to indicate tensors in textbooks,2
though I will stick with indices or the double-headed arrow except in limited circumstances.

While limited in use, I will use blackboard bold fonts for four-vectors A and four-tensors
↔
A.

To summarize, my notation for functions is standard f(x(t), t), vectors are non-italic bold face

characters such as A, second order tensors are shown by
↔
T, matrices and higher order tensors

may be denoted by M. In addition, index or Einstein summation notation may be used where the
number of indices determines the order of the tensor.

1It is called variously index notation, Einstein notation, the Einstein summation convention, Einstein summation
notation, etc.

2Using upper case for tensors and lower case for vectors is another convention used in other textbooks.
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1.1.2 Differentiation and Integration

In mathematics you don’t understand things. You just get used to them.

— John von Neumann

We can now talk about integration and differentiation. Contrary to the actual difficulty of doing
the operation, differentiation has a multitude of notations whereas integration has essentially only
two.

1.1.2.1 Integration

The common notation for (indefinite) integration of a function f(x) with antiderivative F (x) (and
then for a definite integration with a < b) is given by

F (x) =

ˆ
f(x) dx (1.1.1)

F (b)− F (a) =

ˆ b

a

f(x) dx (1.1.2)

I will call this the standard or mathematician’s integration notation. As a physicist, it is common
to not want exactly the antiderivative, because we want proper boundary conditions enforced (that
is F (x0) = y0 to be enforced). We want to find F (x), and so a dummy integration variable x′ is
used to find our desired antiderivative. So in some textbooks you will see

F (x) =

ˆ x

f(x′) dx′ ≡
ˆ x

x0

f(x′) dx′ (1.1.3)

with x0 often left undefined, but implicitly understood to give the proper boundary conditions.

Notice that integration is an operator and is therefore somewhat odd, in that most notation has
operators act on things to the right of the operator. This operator notation puts what is operated
on it “inside” of it. For multiple integrations, it is also more difficult to determine which limits go
with which variables

ˆ b

a

ˆ d

c

ˆ f

e

f(x, y, z) dx dy dz (1.1.4)

where (e, f) bounds are with x, (c, d) bounds are with y, and (a, b) bounds are with z. Despite
the logic of this, it is easily confused when doing integration since the integral limits are in the
opposite order to the differentials. So physicists often just put the dx right next to the

´
. So the

above integral would be represented as

ˆ b

a

dz

ˆ d

c

dy

ˆ f

e

dx f(x, y, z) (1.1.5)

which is much easier to read off the limits. It sometimes requires putting brackets around what is
integrated, but this is a small price to pay for the extra clarity on integration order. As we will see,
it will also be more logical for some extensions of integration where dx becomes a vector applied
to the integrand.
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For this book, I will employ some of my own integration notation. I didn’t invent it, but it is not
standard. If I write˚ ∞

−∞
d3x f(x, y, z) ≡

ˆ ∞
−∞

dz

ˆ ∞
−∞

dy

ˆ ∞
−∞

dx f(x, y, z) =

˚
all space

dV f(x, y, z) (1.1.6)

Generalizations are of course also possible with this notation, such as d2x when only two variables
are being used. The dV = d3x here and simply emphasizes the 3D nature of the integral. The
reason to avoid using V is that when we do velocity integrals there could be confusion between
volume and velocity. I should note that my d3x literally means a volume in three coordinates and
so should not be interpreted as dx dy dz. It could be r2 sin θ dr dθ dφ for spherical coordinates for
example. The same caveat holds for d2x.

You shouldn’t forget that improper integrals are just limits. That is
ˆ ∞
a

dx f(x) ≡ lim
b→∞

ˆ b

a

dx f(x) (1.1.7)
ˆ b

−∞
dx f(x) ≡ lim

a→∞

ˆ b

−a
dx f(x) (1.1.8)

ˆ ∞
−∞

dx f(x) ≡ lim
a,b→∞

ˆ b

−a
dx f(x) (1.1.9)

For the last integral to be defined, we must get the same answer for any way of choosing a and
b. This also leads us to the idea of Cauchy principal values. If we have a singularity of f(x) at
a < m < b, then we define

−
ˆ b

a

dx f(x) ≡ lim
ε→0+

[ˆ m−ε

a

dx f(x) +

ˆ b

m+ε

dx f(x)

]
(1.1.10)

to be the Cauchy principal value. The 0+ notation means go to zero from positive values, not from
negative values. This works with a and b being ±∞ using the previous definitions, as well. This
is an equal balance of both sides of the singularity, and so sometimes makes the most sense as an
interpretaion of an integral with singularity. There is an excess of notation including

−
ˆ b

a

dx f(x) = P
ˆ b

a

dx f(x) = PV
ˆ b

a

dx f(x)

= p.v.
ˆ b

a

dx f(x) =

ˆ ∗
L

dx f(x)

(1.1.11)

and sometimes P , PV , Pv, CPV , or V P are put in front of the integrals. I will confine myself to
the line through the integral notation as it is concise and not easy to mistake.

The largest difference that comes about from the physicists’ and mathematicians’ notation is in
how to write Gauss’s law for tensors, where the order of dot products matters. This is completely
due to the convention of changing from a volume differential d3x = dV to a vector component
like surface differential dS = dSn̂ = d2xn̂ with outward normal to the surface n̂. Thus,

¨
dS ·

↔
A =

¨
d2x n̂ ·

↔
A 6=

¨
↔
A · n̂ d2x =

¨
↔
A · dS (1.1.12)
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because n̂·
↔
A 6=

↔
A·n̂ in general. The mathematician’s definition of tensors leads to the unfortunate

implication that the divergence operator on a tensor should default to operating on the second
index of the tensor. That is [for Cartesian components xi ∈ (x1, x2, x3) = (x, y, z)]

∇math ·
↔
A

math
=

3∑
i=1

∂

∂xi
Ajix̂j (1.1.13)

which I find to be unintuitive though it can be made to be consistent. I still much prefer operators
acting directly on the objects closest to them on the right. However, the mathematician’s definition
makes sense for ˚

V

∇math ·
↔
A d3x =

¨
∂V

↔
A · dS =

¨
∂V

↔
A · n̂ d2x (1.1.14)

with ∂V indicating the boundary of the volume V . This notation will never be used in this
textbook which is why I attached the math superscript. I will instead adhere to the differentials
on the left notation

∇ ·
↔
A

physics
=

3∑
i=1

∂

∂xi
Aijx̂j (1.1.15)

So that ˚
V

d3x ∇ ·
↔
A =

¨
∂V

dS ·
↔
A =

¨
∂V

d2x n̂ ·
↔
A (1.1.16)

which seems more intuitive to me, and makes it easy to understand differentiation order on tensors.
Remember that order matters for tensors, and so when looking up tensor identities inside integrals
it is important to know which convention is being used.

Finally, putting a circle around the stylized s’s for the integral indicates an integral over a closed
path or surface. So

˛
C

d` · f(x) (1.1.17)
‹
S

dS · f(x) (1.1.18)

are a closed line integral along a closed path C and a surface integral over the closed surface S,
respectively. A closed path connects back on itself, and a closed surface, is a surface that encloses
a volume. In other words, if a surface S1 is closed, then one can find a volume whose surface S2

coincides with the original surface S1.

1.1.2.2 Differentiation

Now we can get to the surfeit of notation for derivatives. The problems are many-fold, because
despite scant attention paid to the fact there are different types of derivatives, we usually don’t
think hard about this. When functions are only of a single variable, all these distinctions collapse,
and so there is no need to worry. But most functions of interest involve multiple variables, and so
it is important to know what the notation is saying.

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



Mathematical Beginnings 19

First, there are two main notations for differentiation: Leibniz and Lagrange notation. Leibniz
notation looks like fractions and Lagrange notation has primes (or apostrophes). They both have
advantages and disadvantages for displaying different properties. For our prototypical function
f(x), the derivative of f(x) is written as df

dx
in Leibniz notation and f ′(x) in Lagrange notation. If

we want to specify the derivative at a certain point a, we see that Lagrange is more concise with
f ′(a) compared to Leibniz df

dx
|x=a. However, Leibniz notation provides simpler mnemonics for the

chain rule. Suppose x = x(y) and we want df
dy
, then Leibniz notation suggests

df

dy
=

df

dx

dx

dy
(1.1.19)

which makes it look like the dx’s just cancel. This notation is suggestive, even if this cancellation is
essentially an abuse of notation, and the rule actually does work this way. The Lagrange notation
is messier looking saying

f ′(x(y)) = f ′(x)x′(y) (1.1.20)

where one must intuit that f ′(x) means take a derivative with respect to x rather than y. That
or realize that f ′(x) can be read as f ′(y)|y=x so that you take the derivative of f with respect to
y but replace y with x(y). The nth order derivative is often represented as

dnf

dxn
= f (n)(x) (1.1.21)

with superscript (n) standing in for n primes in the Lagrange notation.

Note that in physics, Newton dot notation is often used, but it really should only be used for time
derivatives (or analogues). This notation is exactly the same as the Lagrange notation, but instead
of apostrophes, we put dots over the function. Because it is assumed to be time, if we have f(t)
we just write ḟ (and not ḟ(t) generally, though one can do so to be precise) for f ′(t). Multiple
dots means multiple derivatives of t, so f̈ = f ′′(t).

Now, we may get to the more convoluted derivatives of multiple dimensions. Let’s take

f(x(t), y(t), z(t), t) = f(x1(t), x2(t), x3(t), t)

as our typical function. When we take a derivative now, we need to think hard about what is
being kept constant, and what is being allowed to vary. Thus, we introduce partial derivatives.
Full derivatives have a roman letter d, whereas partial derivatives use ∂ symbols. Generally
speaking, only Leibniz notation is used for partial derivatives, though there is another useful
mathematician’s notation. In the mathematician’s notation fx = ∂f

∂x
and fz = ∂f

∂z
, fxy = ∂2f

∂x∂y
, etc.

I won’t use this notation but it can be useful. Problems arise with the mathematician’s notation
if you need subscripts for other ideas. Thus, if we want to know how f changes holding y, z, and
t fixed, then we desire ∂f

∂x
. Physicists have often augmented this notation to explicitly say what is

fixed, (including having another function g(x, y, z, t) fixed) via(
∂f

∂x

)
g(x,y,z,t)=a,h(x,y,z,t)=b,...

(1.1.22)

although bare Leibniz partial derivative notation should be assumed to mean

∂f

∂x
=

(
∂f

∂x

)
y=a,z=b,t=c

(1.1.23)
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where often a, b, and c are not really specified, and so we simply leave y, z, and t as simply that
rather than putting in the values a, b, and c at a specified point. That is y, z, and t are held
constant. One does not need the separate variables to be completely independent of each other for
partial derivatives. So if we want to know how f changes with time t holding x, y, and z fixed, we
would want ∂f

∂t
. But we also know that in general x, y, and z may depend on time, and so ∂f

∂t
will

not tell us how f actually changes as t changes. That is, we are often interested in the case where
we do not want to hold x, y, and z fixed in time as we let t vary. Another way of viewing this is
because x, y, and z change as t changes, ∂f

∂t
does not tell us how a function changes as t changes

if we are at an actual fixed location. The ∂f
∂t

says what the change would be if you keep your
location at x(t), y(t), z(t). In fluid mechanics, ∂f

∂t
answers the question how does f change for fluid

parcels if I move with them (for then x(t), y(t), and z(t) are the trajectories of the fluid parcels
and the fluid parcel “location” is fixed because we keep track of location changes through time and
velocity). If we are standing at a specific location (and so different fluid parcles are flowing past
us) and want to know the change in f , we want the total derivative, which recycles “standard”
derivative notation

df

dt
=
∂f

∂t
+
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt
(1.1.24)

If we think of (x, y, z) = x, dx
dt

= v, and introduce the del operator ∇ for representing a gradient
(or using ∂

∂x
for this as well), then this is written as

df

dt
=
∂f

∂t
+ v · ∇f =

∂f

∂t
+

dx

dt
· ∇f =

∂f

∂t
+

dx

dt
· ∂f
∂x

(1.1.25)

with the last term being a generalization of Leibniz notation that also displays what looks like a
simple chain rule.

This total derivative df
dt

has a variety of names when we view xi(t) as position variables and t
as time. It is called the full, total, absolute, convective, or advective derivative.3 Unfortunately,
there is no universal name, and convective or advective derivative may in fact be referring only
to the v · ∇f portion of the total derivative. In fact, there are even more names given to it,
such as derivative following the motion, hydrodynamic derivative, Lagrangian derivative,4 particle
derivative, substantial derivative, substantive derivative, or Stokes derivative. I will try to refer
only to the total derivative. There is one more factor to consider with the total derivative. If we
have multiple species of particles with different velocity vectors, the total derivative notation can
be a bit ambiguous. Suppose species s has velocity vs. Then we can use

dfs
dt

=
∂fs
∂t

+ vs · ∇fs (1.1.26)

If, however, we want to use a center-of-mass or some other velocity then it becomes ambiguous
what the df

dt
is referring to. Thus, we can write

dsfs
dt

=
∂fs
∂t

+ vs · ∇fs (1.1.27)

3The difference between convective (from convective flows) and advective (all flow including conduction and
convection) transport is also sometimes used so that these two terms may not be interchangeable.

4I view this name as especially poor, since the Lagrangian derivative only shows up in an Eulerian specification.
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and use as a definition that
dfs
dt

=
∂fs
∂t

+ V · ∇fs (1.1.28)

with V referring to a center-of-mass velocity

V =

∑
s nsmsvs∑
s nsms

(1.1.29)

with ms being the mass of particles of species s moving at flow velocity vs with local number
density ns (remember the flow velocity of a species is not the velocity of the individual particles,
but the velocity of a fluid “parcel” of particles over time).

Sometimes a notation of using capital D’s is used to indicate the total derivative such as

Dfs
Dt

=
∂fs
∂t

+ V · ∇fs (1.1.30)

Dsfs
Dst

=
∂fs
∂t

+ vs · ∇fs (1.1.31)

I will not use this notation.

As a separate note, many math and physics texts use an italic d (or D) in the derivatives. While
this is common, it is a little unfortunate from my personal perspective. Using roman (non-italic) d
or D in the derivatives helps keep the notation separate from what it is acting on (in my opinion)
and is very easy to implement with today’s typesetting software. In any case, you should be aware
that it is very common to use dx/dt rather than dx/dt, but both mean the same thing. It almost
never causes confusion which is why it continues to be used.

It is now worth delving a bit into notation for gradients, divergences, and curls in general. I will use
ξi = ξi(x, y, z) and basis vectors as defined in Section 1.2.3, using the associated basis vectors in
velocity space [I have added subscript v to basis vectors in velocity space] with σi = σi(vx, vy, vz).
The vector f = f(x) with the x standing in for all the xi, which form a position (geometric) vector.
We analogously write f = f(v) for a velocity space position vector v. We can also have a scalar
f = f(x) or f = f(v).

∂f

∂x
= ∇f ≡

∑
i

ei
∂f

∂ξi
(1.1.32)

∂f

∂v
= ∇vf ≡

∑
i

ev,i
∂f

∂σi
(1.1.33)

∂

∂x
· f =∇ · f ≡

∑
i

1

J
∂(J f i)
∂ξi

(1.1.34)

∂

∂v
· f =∇v · f ≡

∑
i

1

J
∂(J f i)
∂σi

(1.1.35)

∂

∂x
× f =∇× f =

∑
i,j

∂fi
∂ξj

ej × ei (1.1.36)

∂

∂v
· f =∇v× f =

∑
i,j

∂f i

∂σj
ejv × eiv (1.1.37)
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with representations of the vectors as described in Section 1.2.5. The ∂/∂x notation is often more
useful than ∇ because it specifies what the derivative is with respect to, and it naturally suggests
chain rule relations with tensors that are true.

1.1.2.3 Basis Vector Terminology

As a quick reminder if you are not delving into the curvilinear coordinates section, ei = ∂x
∂ξi

are called tangent basis vectors, and ei = ∂ξi

∂x
= ∇ξi are tangent-reciprocal basis vectors (often

shortened to reciprocal basis vectors with an assumption that they are reciprocal to the tangent
basis set). One can remember this via ei has a lower index and so ξi is in the “denominator”, whereas
ei has an upper index and so ξi is in the “numerator”. Superscript indices on tensor components
mean a contravariant representation (both “super” and “contra” have an “r”) and subscript indices
on tensor components mean a covariant representation (neither “sub” nor “co” contain an “r”).

Unfortunately, there is no common terminology for “standard” vector representations. That is
there is no terminology with unit vector bases rather than tangent or reciprocal bases. In this
text, we normalize the ei or ei with a hat, so “standard” vector representations will have êi or êi.
In addition, I use x̂i = x̂i for the Cartesian unit vectors with x̂1 = x̂, x̂2 = ŷ, and x̂3 = ẑ. Many
math texts prefer î = x̂, ĵ = ŷ, and k̂ = ẑ for historical reasons. There is no clear advantage to
the ijk notation over the xyz notation other than being widespread in math. The ijk notation
requires remembering that i is associated with x, etc., which is a small burden, but mostly it
becomes annoying when we wish to put indices on things. For then we have to continually explain
the unit vectors are different that the index sums or worry that a missed hat will cause confusion.

1.1.3 Big and Little O Notation

Nota res mala, optima (a known evil thing is best).

— Erasmus

Finally, a comment on notation for approximations. It is common to employ “big O” and “little
O” notation.5 Non-mathematicians tend to be fairly cavalier in this notation, but it usually does
not cause much confusion. For big O notation I will use O(·). Little O notation uses o(·). This
notation is used to show that asymptotic expansions are “accurate” in the relevant sense. So for
some k <∞ we say

f(x) = O
(
g(x)

)
as x→ a⇔ lim sup

x→a

∣∣∣∣f(x)

g(x)

∣∣∣∣ ≤ k (1.1.38)

with lim sup meaning the supremum limit which is the “largest” possible limiting value of the
function. Note that this means the (usual, i.e., not a supremum type) limit itself may not be
defined. If you don’t like this lim sup definition we can alternatively say that we can always find
positive real numbers M and δ such that

f(x) = O
(
g(x)

)
as x→ a⇔ |f(x)| ≤Mg(x) when 0 < |x− a| < δ (1.1.39)

5These are the letter O and not zeros.
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If a is unspecified, then it will imply a = 0 here. Note how this does not mean |f(x)− g(x)| → 0.
We often write the error in series this way. So for

exp(x) = 1 + x+
x2

2!
+
x3

3!
+O(x4) (1.1.40)

Here this should be interpreted as for some k

f(x) = exp(x)−
(

1 + x+
x2

2!
+
x3

3!

)
(1.1.41)

lim sup
x→0

∣∣∣∣∣∣
exp(x)−

(
1 + x+ x2

2!
+ x3

3!

)
x4

∣∣∣∣∣∣ = k (1.1.42)

(1.1.43)

or for any δ > 0 there is a non-negative M such that

|f(x)| ≤Mg(x) when 0 < |x− a| < δ (1.1.44)

This can be read as saying that the error in the approximation is limited by a value near kx4 as x
gets small.

We can note that the big O notation satisfies

f1 = O(g1) , f2 = O(g2)⇒ f1f2 = O(g1g2) (1.1.45)
⇒ f1 + f2 = O(max(g1, g2)) (1.1.46)
⇒ f1O(g1) = O(f1g1) (1.1.47)

Little O notation is a stronger statement and not generally used outside of mathematical contexts.
It says (for g(x) 6= 0)

f(x) = o
(
g(x)

)
as x→ a⇔ lim

x→a

f(x)

g(x)
= 0 (1.1.48)

If g(x) is a problem (it equals zero but perhaps f(x) does not in the limit) then one is forced into
saying for the case x→∞ that for every ε there exists a constant N such that

f(x) = o
(
g(x)

)
x→∞⇔ |f(x)| ≤ εg(x) (1.1.49)

for all x ≥ N . In the case x→ a, we say that for every constant ε, there exists a δ > 0 such that

|f(x)| ≤ εg(x) when 0 < |x− a| < δ (1.1.50)

Little O notation satisfies

f1 = o(g1) , f2 = o(g2) , f1 = o(g1)⇒ kf1 = o(g1) (1.1.51)
⇒ f1f2 = o(g1g2) (1.1.52)
f1 = o(g1) , g1 = o(h1)⇒ f1 = o(h1) (1.1.53)
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Mathematically, big O notation does not guarantee we actually have a good approximation, though
when it is applied it almost always is. For example

sin(x) = x+O(x) (1.1.54)

but we generally would write

sin(x) = x+O(x2) (1.1.55)

to give the most information on our approximation. One can think of big O and little O notation as
saying the relative error |f(x)−g(x)|

|f(x)| (rather than the absolute error |f(x)− g(x)|) in approximating
f(x) with g(x) gets very small.
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Mathematical Beginnings 25

1.1.4 Differentials

If civilizations capable of supporting mathematics continue, two things appear almost
certain — that practical methods, such as Lebesgue integration, will remain as a per-
manent possession of ours, and that the theories of infinity, used to justify such appli-
cations, will continue to fluctuate as the centuries pass.

— W. W. Sawyer[28, pp. 153–154]

Differentials and differential forms are related concepts that often serve as useful mnemonic to
incredibly useful analysis tool for functions that are used in physics. In some ways, they are
generalized derivatives. It is common to use a differential of a function in physics. Given a
function f(x, y, z), we write

df =

(
∂f

∂x

)
y,z

dx+

(
∂f

∂y

)
x,z

dy +

(
∂f

∂z

)
x,y

dz (1.1.56)

From a physicist’s perspective, this is a shortcut to writing out the change in f is the change in
f due to x alone times the change in x which is dx, plus the change in f due to y alone times
the change in y which is dy, plus the change in f due to z alone times the change in z which
is dz. It is possible to mathematically make this a rigorous statement with hyperreal numbers
and “nonstandard analysis”,6 but this should really be seen as a shortcut to not have to write out
partial derivatives over and over for each variable. It so happens that if we view the dx operator
as a gradient, we can translate this into

∇f =

(
∂f

∂x

)
y,z

∇x+

(
∂f

∂y

)
x,z

∇y +

(
∂f

∂z

)
x,y

∇z (1.1.57)

and it is quite possible, to use this connection to derive results. In addition one can find the partial
derivatives by saying we “divide through” by dx which means we keep y and z constant, and so(

df

dx

)
y,z

=

(
∂f

∂x

)
y,z

dx

dx
+

(
∂f

∂y

)
x,z �

�
�dy

dx
+

(
∂f

∂z

)
x,y

A
A
A

dz

dx
(1.1.58)

where we realize that left hand side is not actually the full differential but a partial differential
because we kept y and z constant. This can also work as a mnemonic.

In fact, let’s explore this just a bit more, and we will find the useful concept of a differential
form. Differential forms are important because they restrict our view to certain functions that
have really convenient properties. We note that ∇xi = x̂i and dx fulfill the same function, and
that this justifies ∇∇xi = d dxi = 0, just as with differential forms. What if we looked at ∇∇f?
Let’s define

∇f = fx∇x+ fy∇y + fz∇z (1.1.59)
∇∇f = ∇fx∇x+ ∇fy∇y + ∇fz∇z

=
∂fx
∂x
∇x∇x+

∂fx
∂y
∇y∇x+

∂fx
∂z
∇z∇x

+
∂fy
∂x
∇x∇y +

∂fy
∂y
∇y∇y +

∂fy
∂z
∇z∇y

+
∂fz
∂x
∇x∇z +

∂fz
∂y
∇y∇z +

∂fz
∂z
∇z∇z

(1.1.60)

6Nonstandard analysis refers to rigorous calculus with infinitesimals.
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Now in order for ∇∇f to be well defined, we must have f satisfying certain properties, such as

∂fx
∂y

=
∂2f

∂y∂x
=

∂2f

∂x∂y
=
∂fy
∂x

(1.1.61)

∂fy
∂z

=
∂2f

∂z∂y
=

∂2f

∂y∂z
=
∂fz
∂y

(1.1.62)

∂fz
∂x

=
∂2f

∂x∂z
=

∂2f

∂z∂x
=
∂fx
∂z

(1.1.63)

With this, it is clear that ∇∇f is a symmetric tensor. It is also clear that there are no restrictions
on ∂2f

∂x2 , ∂
2f
∂y2 , or ∂2f

∂z2 other than that they exist. Given this, we see that ∇∇f is a totally symmetric
tensor. We’d like to ignore the diagonal entries, so we create an antisymmetric tensor from the
components that have restrictions on them from (1.1.61)-(1.1.63), where I will define A(

↔
T) as

A(∇∇f) = ∇x∇x+
∂fx
∂y
∇y∇x+

∂fx
∂z
∇z∇x

− ∂fx
∂y
∇x∇y + 0∇y∇y +

∂fy
∂z
∇z∇y

− ∂fx
∂z
∇x∇z +−∂fy

∂z
∇y∇z + 0∇z∇z

(1.1.64)

However, this has a lot of duplicate information in the entries since it is antisymmetric. We could
instead only look at the upper diagonal entries, recognizing that the lower diagonal entries are
simply the negative of the upper diagonal entries. That is we recognize that A(∇∇f)+A(∇∇f)ᵀ =
0.

With differential forms, we simplify this notation. Instead of writing ∇x∇y, we write dx ∧ dy
and we simply interpret dy ∧ dx = − dx ∧ dy because we recognize that we are imposing this
antisymmetry condition on the constructed tensor above. This is a bit like saying A(∇∇f)ᵀ =

−A(∇∇f). However with differential forms we simply enforce d df =
∑3

i,j=1

∂fxj
∂xi

dxi ∧ dxj = 0

via the antisymmetric nature of our wedge product ∧, often called the exterior product.7 Thus we
have

d df = 0 =
3∑

i,j=1

∂2f

∂xi∂xj
dxi ∧ dxj (1.1.65)

which enforces that our function satisfy ∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

naturally for us rather than having to deal
with the entire tensor ∇∇f and making sure that f is a suitable function. What we have actually
done is ensure that we have a conservative vector ∇f , and called it a differential 1-form. This
differential 1-form is simply a perfect differential (or exact differential), which is a restatement
that it can be integrated by only considering the endpoints because there is no path dependency
when integrating such a function. You can note this is a very special kind of function. Just like
analytic functions are a special type of complex function, differential forms are a special type of
differentiable/integrable function.

If we go to higher dimensions, we might want to construct such perfect differentials for vectors
themselves, and higher order tensors. For a vector A, we can construct ∇A. Here A =

∑
iAix̂i

7In fact, our dd operation is called the exterior derivative.
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Mathematical Beginnings 27

which we easily see can be translated into a differential 1-form as A =
∑

iAi dxi and so

∇A =
∑
i

∇Aix̂i =
∑
i,j

∂Ai
∂xj

x̂jx̂i (1.1.66)

which can be translated into a differential 2-form. First we recognize that we can write the above
in a matrix form. If we care only about the antisymmetric part, then we can translate this part
into the differential 2-form

dA =
∑
i,j

∂Ai
∂xj

dxj ∧ dxi (1.1.67)

Note that we are losing information about the components ∂Ai
∂xi

which form the diagonal of ∇A.
From a differential form point of view, these components are not important because differential
2-forms are a special type of function, and they do not worry about the symmetric parts. Indeed,
differential forms can be viewed as the constructed antisymmetric tensors (like that of (1.1.64)).
Clearly in order for the Ai to form a perfect differential, we will require d dA = 0 because we want
∂2Ai
∂xj∂xk

= ∂2Ai
∂xk∂xj

, just as we did for f by the exactly analogous reasoning. That is we can write out

∇∇A = ∇
∑
i

∇Aix̂i =
∑
i

∇∇Aix̂i =
∑
i,j

∇
(
∂Ai
∂xj

x̂j

)
x̂i = (1.1.68)

=
∑
i,j,k

∂(∂Ai
∂xj

x̂k)

∂xk
x̂jx̂i =

∑
i,j,k

(
∂

∂xk

∂Ai
∂xj

)
x̂kx̂jx̂i (1.1.69)

We can again realize that what we want is that ∂2Ai
∂xk∂xj

= ∂2Ai
∂xj∂xk

is something we desire for our
function to be a perfect differential (integrable). Thus we could form A(∇∇A), and use that it
is an antisymmetric matrix (so that flipping any two vector components leads to a minus sign).
Alternatively, we can encode this information more concisely using the wedge product and the
properties of differential forms that the sum over all indices equals zero. This is again saying that
∇A is a perfect differential and so could be integrated only caring about the endpoints.8 We can
perform this for any tensor order n, making the same translation into differential n-forms and
differential n + 1 forms. With our differential forms, however, the enforcement of our tensors to
being perfect differentials is automatically enforced. Thus, differential forms force us to work only
with special types of functions, ones that are guaranteed to have a conservative form.

So now we can write out the “vector components”, actually a differential 1-form, as α =
∑

i αi dxi
and we automatically can form the perfect differential second order tensor, called a differential
2-form via

dα =
∑
i

dαi ∧ dxi =
∑
i,j

∂αi
∂xj

dxj ∧ dxi (1.1.70)

8For the interested reader, I have been fairly careless in this description, as there are subtleties in making
differential forms more rigorous. For example, a differential form is usually considered to be in the dual space of
a corresponding vector. Consult a mathematics book on differential forms such as ?? if you want a more rigorous
examination. Note that for ease of presentation, I considered Cartesian vector representations, as well.
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for any number of dimensions. Differential k-forms are formed in an exactly analogous manner.
We always have d dα = 0 for any k-form α as previously stated. We want to only work with
perfect differentials and this enforces it. The only other rule, which is unintuitive at first, is

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ (1.1.71)

for α a k-form. This property is easy to understand for α = αi dxi and β = βj dxj, as

d(α ∧ β) = dαiβj dxi ∧ dxj =
∑
k

∂αiβj
∂xk

dxk ∧ dxi ∧ dxj

=
∑
k

(
βj
∂αi
∂xk

+ αi
∂βj
∂xk

)
dxk ∧ dxi ∧ dxj

=
∑
k

(
βj
∂αi
∂xk

dxk ∧ dxi ∧ dxj − αi
∂βj
∂xk

dxi ∧ dxk ∧ dxj

)
= dα ∧ β − α ∧ dβ

(1.1.72)

whereas if k is even, then we will have to flip two wedge products which leaves the sign unchanged.

The important thing to recognize is that the differential form notation makes it easy to form
perfect differentials (that is functions that can be integrated in the exact same way that it is easy
to integrate a derivative). When we restrict ourselves to no wedge products, however, things are
analogous to using gradients. Differential forms make it possible to write down proofs of things
that are somewhat more complicated to work out in general for tensors in a tidy way. For example
Gauss’s theorem and Stokes theorem are easily proven with generalizations for multiple dimensions

via differential forms. Since 1 : ∇A = ∇ ·A and 1
×· ∇A = ∇ ×A this should not be all that

surprising. For then we can have perfect differentials for ∇A by seeing how the exterior derivative
acts on certain differential forms.

For example, clearly for a 0-form α, then dα corresponds to the gradient of a scalar. For a 1-form
β in three dimensions, then dβ looks like a curl. We could then interpret d dα = 0 as the curl of
a gradient being zero. For γ a 2-form in three dimensions, then we see

γ =
∑
ij

γij dxi ∧ dxj (1.1.73)

dγ =
∑
ij

∂γij
∂xk

dxk ∧ dxi ∧ dxj =

[
∂

∂x3

(γ12 − γ21) +
∂

∂x1

(γ23 − γ32) +
∂

∂x2

(γ31 − γ13)

]
dx1 ∧ dx2 ∧ dx3

(1.1.74)

= 2

(
∂γ23

∂x1

+
∂γ31

∂x2

+
∂γ12

∂x3

)
dx1 ∧ dx2 ∧ dx3 (1.1.75)

which is reminiscent of a divergence. Indeed, we can interpret d dβ = 0 as the divergence of a curl
being zero.

1.1.4.1 Flipping Derivatives

Let’s now prove a couple of interesting differentiation properties that appear to “flip” derivatives.
First, that for full derivatives we actually can just “flip” the derivative and get what you might
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expect. Consider f(x) with df
dx
6= 0.

df

dx
=

1
dx
df

(1.1.76)

Then we can write f(x) = y and apply the chain rule.

1 =
dy

dy
=

dy

dx

dx

dy
=

df

dx

dx

df
(1.1.77)

which yields the desired relation. Note that if df
dx

= 0 then dx
df

= 0 since f and x are independent
of each other then.

Now let’s look at flipping a partial derivative. We write f(xj) = z as before. We must also have(
∂z
∂xj

)
xi 6=j

=
(
∂f
∂xj

)
xi6=j

so that df
dz

= dz
df

= 1. Indeed, we can replace z by f and vice versa wherever

they appear. Then consider

1 =
df

dz
=

(
∂f

∂xj

)
xi6=j

(
∂xj
∂z

)
xi 6=j

(1.1.78)

1 =

(
∂f

∂xj

)
xi 6=j

(
∂xj
∂f

)
xi 6=j

(1.1.79)(
∂f

∂xj

)
xi6=j

=
1(

∂xj
∂f

)
xi 6=j

(1.1.80)

This rule is less useful than it might appear since usually we don’t want to hold the same things
constant when flipping a partial derivative, but it can still come in handy sometimes.

Let’s now look at the relationship between xj in an implicit function f(xj) = 0. If we don’t have an
equation for f(xj), then we can always consider forcing f(xj) = z then consider the new function
g(xj, z) = 0. We could then add z to the xj group. We will just assume we have f(xj) = 0 from
the onset for this proof. This means that the xj are not all independent since we can move an xj
to the right-hand side of the f(xj) = 0 relation and solve for it in terms of the xi 6=j9 Again we
assume

(
∂f
∂xj

)
xi 6=j
6= 0 for all j.

We then have (xi 6=j is all xi except that the xj one)

df =
∑
j

(
∂f

∂xj

)
xi6=j

dxj (1.1.81)

We also have via the implicit relations that

dxj =
∑
i 6=j

(
∂xj
∂xi

)
xi 6=j

dxi (1.1.82)

9In practice this may be impossible to do in a convenient way, but it is always possible to actually do for a
well-defined function.
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Let’s replace xk in the above relation and we have

df = 0 =

(
∂f

∂xk

)
xi 6=k

dxk +
∑
j 6=k

(
∂f

∂xj

)
xi 6=j

dxj (1.1.83)

=

(
∂f

∂xk

)
xi 6=k

∑
i 6=k

(
∂x1

∂xi

)
xi 6=k

dxi +
∑
j 6=k

(
∂f

∂xj

)
xj 6=k

dxj (1.1.84)

which simply says (rewriting the sum over i to a sum over j)

0 =
∑
j 6=k

[(
∂f

∂xk

)
xj 6=k

(
∂xk
∂xj

)
xj 6=k

+

(
∂f

∂xj

)
xj 6=k

]
dxj (1.1.85)

All of these dxj are independent of each other within this formulation (that is, each coefficient of
each of our dxj with j 6= k are independent now)10 so that each coefficient of dxj must equal zero.
So (

∂f

∂xk

)
xi6=k

(
∂xk
∂xj

)
xj 6=k

+

(
∂f

∂xj

)
xj 6=k

= 0 (1.1.86)

(
∂xk
∂xj

)
xj 6=k

= −

(
∂f
∂xj

)
xj 6=k(

∂f
∂xk

)
xj 6=k

(1.1.87)

which is the somewhat surprising relationship between variables in an implicitly defined function.
You may not have expected the − sign.

If we then consider a function f(xj) = f(x, y, z) = 0 we can see this as implicitly defining xj =
xj(xi) for each j. For ∂f

∂xj
6= 0 we have

(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= (−1)

���
��(

∂f
∂y

)
x,z

HH
HH

(
∂f
∂x

)
y,z

 (−1)

����HH
HH

(
∂f
∂z

)
x,y

�
�
�
��(

∂f
∂y

)
x,z

 (−1)

(HH
HH

(
∂f
∂x

)
y,z

�
��
�HH
HH

(
∂f
∂z

)
x,y

)
= −1 (1.1.88)

which will often even surprise your mathematician friends.

10This is simply saying that we have that the dxi are all independent now because we used that xk = xk(xi).
The previous possible interrelationships between the xj were eliminated by putting in the expression for xk in terms
of the xi.
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Mathematical Beginnings 31

1.1.5 Summary of Notation

The invention of things comes more easily to the human mind than words, which ac-
counts for the use of so many unsuitable terms and half-baked expressions.

— Alexis de Tocqueville[30, p. 184]

I have summarized my notation in the following tables, Tables 1.1-1.4.

Operation Here Other
Single-Variable Function f(t)

Multi-Variable Function f(x, y, z) or f(x(t), y(t), z(t), t)

Vector A, a,α ~A,~a, ~α, A, a, α,A

Vector function A(x) = A(xi, t) = A(x, y, z) ~A(~x, t), A(x, t)

Second Order Tensor
↔
T,
↔
s or Tij, T ij, T i·j, T

·i
j

~~A , A

General Tensor T, s or T i1...inj1...jn

Matrix M,m M

Four-Vector A
Second Order Four-Tensor

↔
A

Indefinite Integral
ˆ

dx f(x)

ˆ x

dx′ f(x′)

ˆ
f(x) dx,

ˆ x

f(x′) dx′

Definite Integral
ˆ b

a

dx f(x)

ˆ b

a

f(x) dx

Multiple Integration
ˆ b

a

dx

ˆ d

c

dy f(x, y)

ˆ d

c

ˆ b

a

f(x, y) dx dy

Volume Differential dV = d3x dx, dVol

Volume Integral
˚

V

d3x f(x) =

˚
V

dV f(x)

˚
V

dx f(x)

Table 1.1: My notation (“Here”) with common alternative notations (“Other”) for mathematical
and physical operations. Note that upper and lower case letters are not used to distinguish different
objects in my general notation.
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32 Notations

Operation Here Other

Cauchy Principal Integral −
ˆ b

a

dx f(x)
P ,PV , p.v., CPV
PV, V P, or, P
in front of integral

Surface Integral
¨
S

d2x n · f(x) =

¨
S

dS n · f(x)

Surface Integral (cont.)
¨
S

dS · f(x)

Closed Surface Integral
‹
S

d2x n · f(x) =

‹
S

dS n · f(x)

Closed Surface Integral (cont.)
‹
S

dS · f(x)

Line Integral
ˆ
C

d` · f =

ˆ
C

dx · f

Closed Line Integral
˛
C

d` · f =

˛
C

dx · f

First Derivative
df

dt
= f ′(t) = ḟ ft,

df

dt

nth Derivative
dnf

dtn
= f (n)(t)

dnf

dtn

Partial Derivative
∂f(x, t)

∂t
=

(
∂f(x, t)

∂t

)
x

ft(x, t), f,t, f;t

Total Derivative
df(x, t)

dt
=
∂f

∂t
+
∂x

∂t
· ∂f
∂x

or
dsf(x)

dt

Df(x, t)

Dt
=
Df(x, t)

Dt

Gradient operator ∇f =
∂f

∂x
or ei∂if grad(f)

Divergence operator ∇ · f =
∂

∂x
· f or ∂i(J fi)J ∇ · f , div(f)

Convergence operator (rare) Not used con(f) = −∇ · f

Curl operator ∇× f =
∂

∂x
× f or ekεijk∂i(fj)/J ∇× f , curl f , rot(f)

Table 1.2: My notation (“Here”) with common alternative notations (“Other”) for mathematical
and physical operations. Note that I use the comma notation for covariant derivatives rather than
partial derivatives.
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Operation Here Other

Velocity Gradient operator ∇vf =
∂f

∂v

Velocity Divergence operator ∇v · f =
∂

∂v
· f ∇v · f

Velocity Curl operator ∇v× f =
∂

∂v
× f ∇v× f

Four-Gradient � = eµ
∂

∂ξµ
= e0 ∂

∂ξ0
+ ei

∂

∂ξi

d’Alembertian Operator �2f = � ·�f

Dot Product A ·B AB, dot(A,B)
Cross Product A×B [AB], [A,B],A ∧B, cross(A,B)
Asymptotic Expansion
Order xn O(xn)

Einstein Summation aibijcjkdk =
∑
i,j,k

aibijcjkdk

Even Cyclic
Permutation Indices (i′, j′, k′) =


(1, 2, 3)

(3, 1, 2)

(2, 3, 1)

Tangent Basis Vectors ei =
∂x

∂ξi

Tangent Basis Unit Vectors êi =
∂x

∂ξi
/ ∣∣∣∣ ∂x

∂ξi

∣∣∣∣
Tangent-Reciprocal
Basis Vectors ei =

∂ξi

∂x
= ∇ξi

Tangent-Reciprocal
Basis Unit Vectors êi =

∂ξi

∂x

/ ∣∣∣∣∂ξi∂x

∣∣∣∣ =
∇ξi

| ∇ξi|

Cartesian Unit Vectors x̂i = x̂i, x̂, ŷ, ẑ î, ĵ, k̂

Dyad AB A⊗B

Table 1.3: My notation (“Here”) with common alternative notations (“Other”) for mathematical
and physical operations. The (i′, j′, k′) is for indices, and the prime indicates no summation in
these formulas. Also Greek indices indicate summation from 0 to 3 whereas Roman indices indicate
summation from 1 to 3 so the d’Alembertian operator is for 4D spacetime.
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34 Coordinate Systems and Vectors

Operation Here Other
Double Dot Product AB : CD = (A ·D)(B ·C) AB : CD = (A ·C)(B ·D)

Cross Dot Product AB
×· CD = (A×C)(B ·D) AB

×· CD = (A×D)(B ·D)

Dot Cross Product AB
·
×CD = (A ·C)(B×D) AB

·
×CD = (A ·D)(B×C)

Cross Cross Product AB
×
×CD = (A×C)(B×D) AB

×
×CD = (A×D)(B×C)

Covariant Derivative
(
∂V

∂ξj

)k
= V k

;j V k
,j , V

k
||j

Covariant Derivative
(
∂V

∂ξj

)
k

= Vk;j Vk,j, Vk||j

Frenet-Serret Quantities T̂, N̂, B̂ T,N,B, t,n,b, t̂, n̂, b̂

Magnetic Frenet-Serret b̂, κ̂, β̂ t̂, n̂, b̂

Vector Array A, a, z, x

Complex Conjugation z̄, z∗

Table 1.4: My notation (“Here”) with common alternative notations (“Other”) for mathematical
and physical operations. I use the semicolon for covariant differentiation rather than a comma
(which is sometimes used for partial differentiation) or a pipe | or double pipe ||.

1.2 Coordinate Systems and Vectors
It is conceivable (though presumably not desirable) that young children could be led to
associate the symbol (2,3) with the idea of 2 cats and 3 dogs.

— W. W. Sawyer[28, p. 28]

This section is a broad overview of curvilinear coordinate systems. It is based on the fact that we
deal with a single Euclidean space11 when we use physics, and so roots itself to vectors as geometric
objects with particular representations given a coordinate system for our Euclidean space. Given
a vector basis set, that is a set of vectors that allow us to point to any location in our space,12 we
will show it has a natural reciprocal basis, which then allows us to represent all vectors in the space
in a very concise form. Note that the basis and reciprocal basis can have their constituent vectors
change in space so long as at each location the vector basis can still span the entire space (that is,
they can represent a vector “pointing” to anywhere else within the space we are using). This leads
naturally to contravariant and covariant components of vectors and so the tangent basis and its
reciprocal basis, the tangent-reciprocal basis are then emphasized and developed for any coordinate
choice,13 regardless of whether the basis set is orthonormal. We will also explore extensions beyond
three dimensions. A brief explanation of Einstein summation notation is shown with its translation

11This is not true in general relativity, but even then one uses Euclidean space ideas locally. In any case, I
am trying to say that in classical physics, the dual space is not really relevant, except insofar as it is a useful for
simplifying operations.

12We usually say the basis spans the space.
13Any, meaning, any admissible coordinate system. You must choose coordinates that do allow you to specify

locations everywhere unambiguously.
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Mathematical Beginnings 35

capabilities from abstract geometric vectors to a Cartesian representation and back, which allows
us to find generic vector identities quickly. Generalizations of vectors to polyadics and tensors are
explained and some important relations for these in curvilinear coordinates are derived. Finally,
some extra properties of geometric vectors that are of use in physical situations are examined, with
different types of geometric vectors appearing under certain coordinate transformations.

1.2.1 An Analogy

Analogy pervades all our thinking, our everyday speech and our trivial conclusions as
well as artistic ways of expression and the highest scientific achievements.

— George Pólya[26, p. 37]

What is a vector? Do you think you could give a good definition? Generally, we have an intuitive
idea of what a vector is. Usually something like a direction and magnitude. Unfortunately,
there is a certain vagueness about vectors due to the word being used in math and physics for
different ideas. Below we will deal with the specifics of what this means (physics usually deals
with what I will call “geometric vectors” while math has a more general definition). For now, I
would like to explain why it is important to recognize that the language around vectors can be
confusing with an analogy to real numbers. This analogy will help us realize that the notation for
something, and what that something is, are different things, even though we often talk as if they
are interchangeable.

If I ask you if 10.1 is a real number, what would you say? Most likely you will say yes. If I say
“10.1” is a real number, what now? If you understand the quotations as indicating the symbols “1”,
“0”, “.” and “1”, then of course that representation is not a real number. It is a representation of
a real number but not the number itself! (What the number itself is, is a problem for philosophy.
I would just say it is an abstract object or pattern rather than a single physical thing.) This is
why we must always be careful about using the word “is”14 when referring to such objects. We
are using conventions to represent the actual object corresponding to the actual number15 ten and
one-tenth when writing 10.1. This representation could just as easily be binary, in which case the
real number being represented would be two and one-half.

Why bring this up? This may all seem obvious. The problem comes when we turn to other ideas.
It is burdensome to say that 10.1 is the representation of a real number, and so we shorten it to
“10.1 is a real number”. It is implicitly understood we are referring to the idea rather than to the
representation, just as when we use words.16 This does not usually cause any confusion, and so
we continue our daily lives content and not thinking about the fact that the number seems to be
in some way more primitive and basic than the representation we use. When it comes to vectors,
a question arises of whether the representation actually is the vector. That is if I write a vector X
representing a position at x = 1, y = 1, and z = 1 in a particular coordinate system, is

X
?
=

1
1
1

 =
[
1 1 1

]ᵀ (1.2.1)

14You always have to ensure you are using the same meaning of “is” when you’re being precise. The meaning of
“is” has even led a U.S. President into trouble.

15Whatever an actual number is.
16This convention is easy to see in natural speech. If someone asks for a dollar, and you hand them a sheet of

paper with the word “dollar” on it, they will not be satisfied.
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36 Coordinate Systems and Vectors

Or is
[
1 1 1

]ᵀ simply a representation of the vector X in a specific coordinate system? If you
think it is just a representation, then you can speak of vectors in different coordinate systems being
represented differently, but that they all refer to the same vector. If you think that the array of
values is the vector, then you are forced to say that vectors are changing in different coordinate
systems. This is just a way of saying it matters whether you consider a vector to be an array
of numbers or to be a geometric object that can be represented by an array of numbers. This
is exactly analogous to asking if the real number ten and one-half is 10.5, or if that is simply its
representation in base 10. For in base 8, we have ten and one-half as 12.4, in base 16 it would be
a.8, etc. Yet, we know that all of these refer to the same number.

This book will take the view that vectors are geometric objects represented in coordinate systems,
but that any single representation is not the vector, but a representation of the vector. Just as 10.1
is not ten and one tenth, but a representation of ten and one tenth in base 10. This will clear up
some confusions, and seems more true to the sense that vector is used in physics. In mathematics
textbooks, it may make sense to make the array of numbers a “vector”, in which case, different
terms and nomenclature may be more enlightening. I will refer to such “vectors” as vector arrays
to emphasize they are not geometric, and have no such geometric properties.

One of the best advantages of considering vectors as abstract geometric objects is that if we relate
an abstract vector to a specific representation (say Cartesian coordinates) and perform operations
on the representation, then translate back into abstract vector notation, we will have proved the
vector relation for any representation. To see why it is so, we need only remind ourselves that if
all specific representations are equal for the abstract object, and if we can translate from a specific
representation back to the abstract, then it must be true for any other specific representation. This
may sound difficult, but in practice it is straightforward reasoning. Suppose you have a specific
coordinate system for a vector and that you can relate it to the abstract representation without a
coordinate system. If you then know that there are vector identities in the abstract representation
system, these abstract representations when translated into any specific coordinate representation
must also be true. So you can use them there, and then translate back into your specific coordinate
system. Because this is a requirement, it means that if you have two equivalent forms in a specific
coordinate system, and both can be translated into the abstract vector representation, then the
two abstract vector representations must identically be equal.

Thus, if we have an equation for a specific coordinate representation but can translate both sides
into the abstract representation, we know the abstract representation identity is true, and can be
used for any other specific coordinate representation. The real trick is in learning the translation
from abstract to a specific representation and back.

To make this less abstract and more concrete for ourselves, let’s go back to our real number example.
Suppose we have real numbers a, b, and c with the operations of addition + and multiplication ·.
Suppose we only know how to add and multiply integers (and implicitly fractions). We wish to
“prove” a · (b + c) = a · b + a · c for any representation of a, b, and c. One way of doing this is to
represent a, b, and c, as numbers in decimal notation (all of ai, bi, ci are integers in [0, 9]).

a =
∑
i

ai(10)i (1.2.2)

b =
∑
i

bi(10)i (1.2.3)
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c =
∑
i

ci(10)i (1.2.4)

b+ c =
∑
i

(bi + ci)(10)i (1.2.5)

a · b =

(∑
i

ai10i

)(∑
j

bj10j

)
=
∑
i,j

aibj10i+j (1.2.6)

Note that the above doesn’t tell us what the decimal representation for a+ b actually is, because
ai + bi is not necessarily in [0, 9]. If we view these as the way to translate between abstract and a
specific representation then we can consider a · (b+ c).

a · (b+ c) =

(∑
i

ai(10i)

)[∑
j

(bj + cj)(10)j

]
=
∑
i,j

ai(bj + cj)10i+j

=
∑
i,j

aibj10i+j +
∑
i,j

aicj10i+j = a · b+ a · c
(1.2.7)

Which via our translation rules shows that we must have a · (b+ c) = a · b+ a · c even though we
only proved it for a base 10 representation. For completeness, the steps of combining the sums is
via (∑

i

ai10i

)(∑
j

bj10j

)
=
∑
i

[
ai10i

∑
j

(bj10j)

]
=
∑
i

[∑
j

(aibj10i+j)

]
≡
∑
i,j

aibj10i+j

(1.2.8)

where we use that we can bring constants into the summations twice. That is, the
∑

j bj10j is a
constant with respect to the sum over i, and ai10i is a constant with respect to the sum over j.

This is of course an overcomplicated way of “proving”17 the result of associativity, but it gives us
one way of seeing why it must be true. All our specific multiplications and additions were done
with integers ai, bi, and ci, rather than with real numbers (other than multiplying by the factor
10i when i is negative, which introduces fractions). The intermediate steps depend on the specific
representation, but because we know the abstract version and can translate, we know that the first
term a · (b+ c) and the last a · b+ a · c are equal for any representation (that is, base).

1.2.2 Coordinate Systems

Appearances are a glimpse of the obscure.

— Anthony Gottlieb quoting Anaxagoras[16, p. 94]

Let’s now start getting into what exactly is meant by the terms vector and coordinate system
for this text. We will begin with what may seem very simple, the coordinate systems. First, we
must deal with what a coordinate system is. Let’s first consider a simple Cartesian grid in two
dimensions (See Figure 1.1). A coordinate system is then simply a way of assigning an origin and
thus unambiguously giving a position on a plane. The simplest way is to have two orthogonal

17It is not really a proof, since I have not gone through the details rigorously.
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38 Coordinate Systems and Vectors

Figure 1.1: A simple Cartesian grid. Note that the lines are all perpendicular, and so a direction
in on coordinate direction has no projection onto the other direction. Here c2 > c1 and d2 > d1.

directions (orthogonal, perpendicular, and normal18 are all synonymous. That is, the projection
of one axis direction on the other is zero; there is no overlap in the axes’ directions). Projection
here simply means that were I to take a step along one coordinate axis, would this necessarily
involve taking any movement in a direction along another coordinate axis.19 If it does, then they
are not orthogonal. If I can move along the coordinate axis and this would not involve movement
in a direction along another coordinate axis, then that coordinate axis is orthogonal to the others.
This orthogonality is of course not necessary for coordinate systems, but it is almost always useful.

The important thing is that a coordinate system can specify a position in a space unambiguously.
So a coordinate system is often specified as (n1, n2, · · · , nj) where the j are different (though not
necessarily orthogonal) directions. If the j are orthogonal, however, then it makes life much easier
when trying to formulate equations for the coordinate system, as we will see.

For example, in Figure 1.2, the two axes are not independent/orthogonal. This opens up different
ways of measuring positions. Say the axes are ξ1 and ξ2. We can either measure a direction
by going along a coordinate’s axis (say ξ1 by fixing ξ2 and following ξ1 as it varies) or by going
perpendicular to the axis. We will call the vectors that go along coordinate axes eξ1 and eξ2 . This
corresponds to the tangent basis because it goes along the axis. Alternatively, we can form the

18Normal comes from Latin normalis “forming a right angle” which comes from carpenter squares. So normal as
perpendicular is the original meaning.

19This is saying given vectors pointing along a coordinate axes, say ei, then the projection of e1 upon e2 is given
by Proje2

(e1) = e2
e1 · e2
e2 · e2

where I have used the norm is the same as the square root of the dot product between
two vectors.
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Mathematical Beginnings 39

Figure 1.2: A slanted grid with horizontal coordinate ξ1 = x− y and “vertical” coordinate ξ2 = y
with x and y Cartesian coordinates. There is clearly overlap of directions between eξ

1 and eξ
2 .

Note that eξ1 and eξ2 also overlap and point in different directions than eξ
1 and eξ

2 . Here c2 > c1

and d2 > d1. Finally, note that one must do this analysis at every point generally. Here our basis
vectors are not changing direction throughout space so we have an easier job.
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40 Coordinate Systems and Vectors

surfaces (or lines for us in 2D) by letting ξ1 vary with ξ2 held constant and following the normal
to this surface (line) [call it eξ

1 ]. Similarly, we can let ξ2 vary with ξ1 held constant and follow the
normal to this surface (line) [call it eξ

2 ]. This corresponds to the tangent-reciprocal basis. We see
that the tangent-reciprocal and tangent basis vectors (even for the same associated coordinate) do
not necessarily point in the same direction. While not necessarily apparent geometrically we will
also require a tangent-reciprocal basis to have a dot product of zero with all vectors in the tangent
basis except their corresponding one (So eξ

1 · eξ1 = eξ
2 · eξ2 = 1 and eξ

1 · eξ2 = eξ
2 · eξ1 = 0).

In 2D this is very easy to do. Set ξ1 = c1 and let ξ2 vary. This will form a curve. If you go
along the curve you are in the tangent basis (determining the tangent ξ2 direction). If you form
many curves for different ci you can find the normal direction to the curves and you are using the
tangent-reciprocal basis (determining the tangent-reciprocal ξ2 direction).

This brings us to geometric vectors,20 which are in a sense coordinate-free. All this means, is
that when you are given such a vector, you don’t need to worry about writing the equations for a
given coordinate system. This is advantageous because certain vector identities allow us to derive
generally true equations which then can be adapted to specific useful coordinate systems for the
problem at hand. This is why it is useful to not call the specific array of numbers the vector.

Some of the geometric properties I am speaking of are translating the origin does not change
what the vector represents and a proper rotation21 of the vector does not change what the vector
represents. In mathematics and computer science textbooks you may have a vector defined as an
object over a field F and scalars S such that with u, v, w ∈ F (and 0 ∈ F ) and a, b ∈ S

u+ (v + w) = (u+ v) + w (1.2.9)
u+ v = v + u (1.2.10)
v + 0 = v (1.2.11)

v + (−v) = 0 with −v ∈ F (1.2.12)
a(bv) = (ab)v (1.2.13)
(1)v = v with 1 ∈ S (1.2.14)

a(u+ v) = au+ av (1.2.15)
(a+ b)u = au+ bu (1.2.16)

These types of vectors do not have the same properties as geometric vectors, because they are
more general. I will call these “vector arrays” rather than vectors to make this clear. When I use
them, I will use the font a or A which is a typewriter-like font to indicate they only have the above
properties.

Geometric vectors have additional properties to vector arrays. For example, when converting
coordinate systems for geometric vectors one can find a general transformation law. It is also
worth briefly explaining a vector as a magnitude and direction. Let V be a geometric vector
represented in Cartesian coordinates as Vx = (Vx,1, Vx,2, . . . , Vx,n), and let yi = (x1, x2, . . . , xn) be
a set of coordinates y in terms of the Cartesian coordinates xj. Then yi is a position vector. We
can define a magnitude or norm for a vector via |Vx| ≡

√
Vx · Vx =

√∑n
i=1(Vx,i)2. The direction

20Sometimes people call these Euclidean vectors, but I stay with geometric to point to the fact that these vectors
have geometric properties

21A rotation without any mirror reflection. Mathematicians consider mirror reflections to be an improper rotation.
Most people would not call mirror reflection any type of rotation.
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can then be determined by the relative contributions of the Vx,i. We then can say that a vector
has a magnitude and a direction in this sense.

The rotation and translation properties of the general vector arrays are not going to satisfy geo-
metric vector properties in general. Those vector arrays, for example, can contain quantities where
it does not make sense to move the origin system because the elements cannot mix. For example,
the quantity (x, y) with x, y ∈ R and scalars in R would qualify as a vector if x represented money
earned by a company and y represented temperature at a specific location on Earth.22 However, if
we had an example (15, 20) it would not make sense to “change coordinates” (for example by rotat-
ing and translating our coordinate system) so that we now have (3, 0). The new coordinates would
be a mix of the original variables, but there is no connection between them like there are between
spatial directions. This new coordinate system would be complicated and nonsensical since there
aren’t general properties (such as symmetries for the space spanning money and temperature) that
there are for space (rotational and translation symmetries).

So now let’s deal with vectors that we usually care about as physicists, three dimensional geometric
vectors. I will use boldface for vectors such as V or v. For a unit vector (a vector whose magnitude
is 1 in the system we are using), I will append a hat, so V̂ or v̂.

I am going to quickly talk about dot and cross products because I suspect you already know what
they are. A dot product between two (three dimensional) vectors (either geometric vectors or
vector arrays) is given by

V ·W = |V||W| cos θ =
3∑
i=1

V iei · V iei (1.2.17)

where ei is a basis vector for a representation of V. For vector arrays we can enforce ei = êi
for orthogonal unit vectors. The dot product’s cos θ interpretation is the angle between the two
vectors. Also, |V| is the norm or magnitude of V and is given by

√
V ·V. For vector arrays we

can generalize to N rather than three. The angle interpretation can still hold, though its physical
meaning may be ephemeral.

The cross product is peculiar to three dimensions only. We write for n̂ perpendicular to both V
and W with the angle between V and W being θ again

V ×W = n̂|V||W| sin θ (1.2.18)

For a Cartesian representation we have

V ·W =
3∑

i,j=1

Vixi ·Wjxj =
3∑

i,j=1

δijViWj =
3∑
i=1

ViWi (1.2.19)

In general we have

V ×W =
3∑

i,j=1

V iW jxi × xj (1.2.20)

22If you are not familiar with R, this means the real numbers so x ∈ R means x is an element of the real numbers.
In normal-speak, x is a real number. The “blackboard” font is used for other common number systems, with Z
meaning the integers, C meaning the complex numbers, and Rn meaning a vector array of real numbers of dimension
n.
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42 Coordinate Systems and Vectors

with the Cartesian unit vectors (xi) satisfying

x̂× ŷ = −ŷ × x̂ = ẑ = x̂3 (1.2.21)
ŷ × ẑ = −ẑ× ŷ = x̂ = x̂1 (1.2.22)
ẑ× x̂ = −x̂× ẑ = ŷ = x̂2 (1.2.23)

This can be represented with the Levi-Civita tensor for Cartesian vector representations as

V ×W =
∑
i,j=1

εijkViWj (1.2.24)

When we get to curvilinear coordinates we will explore the more general representations possible
for geometric vectors.

Now we need to think about spanning a space. Mathematics tells us that for an N dimensional
space we need at least N vectors. For us, we then need three linearly independent vectors (that is
they actually have components pointing in three directions). To find out if we have independent
vectors, take three vectors a,b, c and we can find

A = a · b× c = b · c× a = c · a× a (1.2.25)

In three dimensions we are lucky and the cross and dot product provide us an easy way to find
the volume (here A) spanned by the three vectors. If A = 0, then there are not three independent
directions. If it is non-zero, then we can use these three vectors to span all of 3D space (that
is, we can get to any coordinate in 3D space with combinations of these three vectors). In N
dimensions, we are forced to represent the vectors ai in Cartesian form ai =

∑N
j=1 ai(j)xj and find

the determinant of the matrix

A ≡


a1(1) a2(1) · · · aN(1)
a1(2) a2(2) · · · aN(2)
...

... . . . ...
a1(N) a2(N) · · · aN(N)

 (1.2.26)

If A = det(A) is not equal to zero, then the vectors ai are linearly independent.

Now, we can normalize each vector so that A = 1 by using

â = a/|a| (1.2.27)

b̂ = b/|b| (1.2.28)
ĉ = c/|c| (1.2.29)

where |v| is the magnitude of vector v. This is useful because then |â| = |b̂| = |ĉ| = 1 and A = 1
if all are unit vectors. Generally speaking, unit basis vectors are often written with hats such as
êi or êi with i ∈ [1, 2, . . . , N ] for N dimensions. When we are referring to vectors at this point, it
is not important whether it is a subscript of superscript, but when we learn about contravariant
and covariant components of vectors, care will need to be taken, as we should stay within usual
convention to minimize confusion.

Now when we are given a basis vector set that is not singular (that is A 6= 0), you can form a
reciprocal basis vector set. For Cartesian vectors, this is hard to understand because the basis
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vector and reciprocal basis set are the same vectors. Given the (three dimensional) basis set above
of â, b̂, and ĉ, the reciprocal set (subscript r) is given by

ar =
b× c

A
(1.2.30)

br =
c× a

A
(1.2.31)

cr =
a× b

A
(1.2.32)

One can then check that
ar · a = br · b = cr · c = 1

ar · b = ar · c = 0

br · a = br · c = 0

cr · a = cr · a = 0

(1.2.33)

Now the usefulness of a set of reciprocal vectors is that they can be used to write any vector V
very simply.

V = (V · a)ar + (V · b)br + (V · c)cr (1.2.34)
V = (V · ar)a + (V · br)b + (V · cr)c (1.2.35)

For example, the Cartesian basis vectors are usually denoted

ê1 = x̂ = î (1.2.36)

ê2 = ŷ = ĵ (1.2.37)

ê3 = ẑ = k̂ (1.2.38)

Note that x̂r = ŷ× ẑ = x̂, and so on, so that indeed, the reciprocal set is just the normal Cartesian
vectors we are used to. Thus, we can write any vector V as

V = Vxx̂ + Vyŷ + Vzẑ = V1ê1 + V2ê2 + V3ê3 (1.2.39)
Vi = V · êi (1.2.40)

Remember that the above is general. If we choose a basis set that is the tangent basis, then we
have the interesting relationships with the tangent-reciprocal basis that are more fully developed
below.

Even with our simple slanted example, we saw that the tangent-reciprocal and tangent basis do
not have to coincide. We will now consider three dimensions and more complicated coordinates.

1.2.3 Curvilinear Coordinate Systems

Unfortunately, the change of coordinates alters the coefficients of the differential equa-
tion by inserting “metric factors” that depend on the mapping. The transformation of
first derivatives is messy but not too bad. The transformation of second derivatives
is very messy. The transformation of third and fourth derivatives — the programmer
shudders and turns away in horror.

— J. P. Boyd[5, p. 69]
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44 Coordinate Systems and Vectors

Let’s now look at the more interesting and difficult case of a non-Cartesian coordinate system.
We will base everything off of Euclidean space, and so things will be implicitly referenced to the
Cartesian coordinates (x, y, z) = (x1, x2, x3).23 Suppose we wish to use some arbitrary set of
coordinates (ξ1, ξ2, ξ3). We want these to be expressible in terms of Cartesian coordinates

ξ1 = ξ1(x1, x2, x3) (1.2.41)
ξ2 = ξ2(x1, x2, x3) (1.2.42)
ξ3 = ξ3(x1, x2, x3) (1.2.43)

and if these uniquely point out coordinates, this needs to be a one-to-one transformation, so that
we can find

x1 = x1(ξ1, ξ2, ξ3) (1.2.44)
x2 = x2(ξ1, ξ2, ξ3) (1.2.45)
x3 = x3(ξ1, ξ2, ξ3) (1.2.46)

One can test if the set of transformations ξi are one-to-one via calculating the Jacobian matrix

J ≡ ∂(x1, x2, x3)

∂(ξ1, ξ2, ξ3)
=


∂x1

∂ξ1
∂x1

∂ξ2
∂x1

∂ξ3

∂x2

∂ξ1
∂x2

∂ξ2
∂x2

∂ξ3

∂x3

∂ξ1
∂x3

∂ξ2
∂x3

∂ξ3

 (1.2.47)

and seeing if the determinant is everywhere non-zero.24 The Jacobian determinant is then

J = |J | ≡
∣∣∣∣∂(x1, x2, x3)

∂(ξ1, ξ2, ξ3)

∣∣∣∣ =

∣∣∣∣∣∣∣
∂x1

∂ξ1
∂x1

∂ξ2
∂x1

∂ξ3

∂x2

∂ξ1
∂x2

∂ξ2
∂x2

∂ξ3

∂x3

∂ξ1
∂x3

∂ξ2
∂x3

∂ξ3

∣∣∣∣∣∣∣ (1.2.48)

with the conventional definition of matrix determinants. In addition, we will redefine (ξ1, ξ2, ξ3)
so that they ensure J > 0. This can be done for J < 0 by switching two labels, such as 2 ↔ 3,
so that the new coordinate system is (ζ1, ζ2, ζ3) = (ξ1, ξ3, ξ2). Similarly, we can define the inverse
Jacobian

J = J −1 ≡ ∂(ξ1, ξ2, ξ3)

∂(x1, x2, x3)
=

 ∂ξ1

∂x1
∂ξ1

∂x2
∂ξ1

∂x3

∂ξ2

∂x1
∂ξ2

∂x2
∂ξ2

∂x3

∂ξ3

∂x1
∂ξ3

∂x2
∂ξ3

∂x3

 (1.2.49)

The inverse Jacobian determinant is then

J = |J| = 1/J ≡
∣∣∣∣ ∂(ξ1, ξ2, ξ3)

∂(x1, x2, x3)

∣∣∣∣ =

∣∣∣∣∣∣∣
∂ξ1

∂x1
∂ξ1

∂x2
∂ξ1

∂x3

∂ξ2

∂x1
∂ξ2

∂x2
∂ξ2

∂x3

∂ξ3

∂x1
∂ξ3

∂x2
∂ξ3

∂x3

∣∣∣∣∣∣∣ (1.2.50)

23It’s probably time to justify the superscript notation. It could be easily confused with powers, but in practice it
is not. The reason to use superscripts is because there are few other places to put indices. Thus we must be careful
if we want the square of a coordinate and it is safer to put the coordinate in parentheses when taking powers, such
as (x2)2 for the square of coordinate x2.

24If there are points that are singularities, you can use the system as long as you avoid those points. Similarly, if
you only care about a certain region of space, you only need the Jacobian determinant non-zero in the region you
care about.
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Note that there is always confusion in any comparison of texts about the direction of the Jacobian
and the inverse Jacobian. As long as one is consistent, it does not actually matter, but I prefer
the Jacobian determinant to be in the numerator when calculating integrals, so that˚

dx1 dx2 dx3 F (x1, x2, x3) =

˚
dξ1 dξ2 dξ3 JF (ξ1, ξ2, ξ3) (1.2.51)

Some authors prefer to call the Jacobian determinant what I call the inverse Jacobian determinant.
Even worse, there is no convention on whether the “Jacobian” refers to the matrix itself, or the
determinant of the matrix. In this text, Jacobian is reserved for the matrix and Jacobian determi-
nant is used for the determinant of the matrix. But readers be warned, the Jacobian determinant
is used far more often in plasma literature so Jacobian usually means Jacobian determinant there.

It can be shown fairly easily by the definition of a determinant and our later definitions of basis
vectors that

J = e1 · e2 × e3 (1.2.52)
J = e1 · e2 × e3 (1.2.53)

Now, we can use the ξi and plot them as curves on the Cartesian coordinate plane, just as we did
in 2D. We can then define basis vectors such that the basis vector ei points along the coordinate
curve of ξi. This means that ei = ei(x

1, x2, x3) and so is not necessarily constant in space. They
are also not necessarily unit vectors, hence the lack of a hat. Such basis vectors are usually called
coordinate basis vectors or tangent basis vectors. Now if we want these basis vectors to point along
the coordinates, we want them to be tangent to the curves defined by the ξi. Luckily, we know
from calculus how to find the tangent curve for a given function, the derivative. Thus, if we have
a given position vector x we have

ei =

(
∂x

∂ξi

)
ξk|k 6=i

=
∂x

∂ξi
(1.2.54)

for each i ∈ [1, 2, 3]. Because we chose our transformation to have non-zero Jacobian, we can now
show that e1 · e2 × e3 6= 0 because

e1 · e2 × e3 =
∂x

∂ξ1
· ∂x

∂ξ2
× ∂x

∂ξ3
=

∣∣∣∣∂(x1, x2, x3)

∂(ξ1, ξ2, ξ3)

∣∣∣∣ = J (x) 6= 0 (1.2.55)

where x’s Cartesian components are x1, x2, x3 [and we know for all xi the Jacobian determinant
should be non-zero (or at least over the regions we care about, and we can note the equivalence to
the Jacobian determinant calculation above (1.2.48))].

These tangent basis vectors do not need to have the same units, can be dimensionless or not, and
do not need to be orthogonal. We can still define unit vectors via (there is no summation in the
following equation)

êi =
ei
|ei|

=
∂x

∂ξi

/∣∣∣∣ ∂x

∂ξi

∣∣∣∣ =
ei
hi

(1.2.56)

with scale factors hi defined by

hi =

∣∣∣∣ ∂x

∂ξi

∣∣∣∣ (1.2.57)
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ξ 1 
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e 3 

Figure 1.3: This shows the two ways of creating a vector basis. The left plot shows the tangent
vector basis (along coordinate axes) and the right plot shows the reciprocal basis (perpendicular
to coordinate surfaces). The image is a slightly modified version of an image created by Maschen
on 2012-09-02, under a CC0 1.0 license [found on Wikipedia].

We have chosen to use subscripts for these tangent basis vectors. Later this will be justified by
convention.

We can now use the alternative method of using the ξi to define coordinates. We can view each ξi
as defining a set of contours. For example, we can form a surface for ξ1 by keeping it constant and
allowing ξ2 and ξ3 to vary. We can then use these constant surface values for the ξi to label each
surface, and we can then use the gradient (that is follow the steepest descent or ascent) to define a
direction on each surface. These new directions will be perpendicular to the other coordinate lines,
and hence perpendicular to the corresponding other tangent basis vectors (ensuring that ei ·ej = 0
for i 6= j). See Figure 1.3 for an example of what is happening in a simplified picture.

A particularly simple way to find the gradient directions is to consider dx. If we want to relate
this differential to changes in our coordinates ξi we can use that the gradient along the vector to
find what small changes would be. This is typically written

dξi = ∇ξi · dx (1.2.58)

Suppose we would like to do the opposite, though. We can then use the chain rule on x(ξ1, ξ2, ξ3)

dx =
3∑
i=1

∂x

∂ξi
dξi (1.2.59)
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We can use that ∂x
∂ξi

= ei. Then

dξi = ∇ξi · dx = ∇ξi ·
3∑
j=1

ej dξj (1.2.60)

where I have relabeled the i in the summation to j so that there is no confusion. It then also
makes it clear that

∇ξi · ej = δij (1.2.61)

as otherwise dξi 6= dξi which is nonsensical. We then can see that ∇ξi are the reciprocal vectors
to the ej and so we identify

ei = ∇ξi (1.2.62)

Note that this derivation is basically just using that the gradient points normal to contour surfaces.

Alternatively, we can recognize with our notation and generalized chain rules that

∇ξi · ej =
∂ξi

∂x
· ∂x

∂ξj
=
∂ξi

∂ξj
= δij (1.2.63)

So long as you are comfortable with the generalized chain rule, this is a much clearer method of
showing that the tangent-reciprocal basis is indeed the reciprocal basis to the tangent basis.

This means that we can use the relationships previously stated to find the reciprocal vectors from
the basis vectors and vice versa. If we consider (i′, j′, k′) to be an even permutation of (1,2,3).25

ei
′
= ∇ξi′ =

ej′ × ek′

ei′ · ej′ × ek′
=

ej′ × ek′

J
=

∂x
∂ξj′
× ∂x

∂ξk′

∂x
∂ξi′
·
(
∂x
∂ξj′
× ∂x

∂ξk′

) (1.2.64)

ei′ =
∂x

∂ξi′
=

ej
′ × ek

′

ei′ · ej′ × ek′
=

ej
′ × ek

′

J
=

∇ξj′ × ∇ξk′

∇ξi′ · ∇ξj′ × ∇ξk′ (1.2.65)

Finally, it is easy to confuse the tangent basis and the reciprocal basis vectors. One helpful
mnemonic is that for ei the i is on top, so ∂ξi

∂x
has the ξi on top, while for ei the i is on bottom so

∂x
∂ξi

has ξi on the bottom.

1.2.4 Contravariant and Covariant “Vectors”

Despite the section name, I will argue that we should not label vectors as contravariant or covariant
when talking about coordinate transformations unless we are very clear about what is meant.

Generally a “contravariant vector” is defined by its transformation properties. When I say con-
travariant vector, I mean a vector viewed as an array of numbers. This is most easily illuminated
by introducing a change in scale for a specific vector. Suppose instead of measuring length in

25This means that there exists a way we can read the numbers left to right as 1,2,3 so long as we view it cyclically.
That is, the number on the right can be considered to the left of the leftmost number. Alternatively, write 1, 2,
3 in a circle increasing counterclockwise. Then (i′, j′, k′) are an even permutation if you can read i′, j′, and k′

counterclockwise along the 1, 2, 3 circle.
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meters, we now measure in millimeters. If we look only at the numbers, then for a vector pointing
to a particular position, it will suddenly increase by 1000. Thus, when we multiply our scale by
0.001, the contravariant vector is multiplied by 1000, hence the vectors vary against (“contra”) the
scale change.

On the other hand, we could consider a vector that represents the gradient of the temperature.
Then this “covariant vector” (again, meaning a vector viewed as an array of numbers) will increase
by 1000 when we do the scale change and so varies with (“co”) the scale change.

Mathematically, if we consider a vector to be its components, then the above makes perfect sense.
We can then write a “contravariant vector” [written as V i with i ∈ (1, 2, 3)] as one that varies from
initial coordinate ζ i to ζ ′i via

V ′i =
3∑
j=1

∂ζ ′i

∂ζj
V j (1.2.66)

where as a “covariant vector” ∇f [written Vi = ∂f/∂ζ i for i ∈ (1, 2, 3)]

V′i =
∂f

∂ζ i
=

3∑
j=1

∂ζj

∂ζ ′i
∂f

∂ζj
=

3∑
j=1

∂ζj

∂ζ ′i
Vj (1.2.67)

Remember that if you consider a vector to be an array of numbers, that is, the vector components
themselves, then vectors may change. But we want the vectors themselves to not depend any
specific coordinates. We want them to be a general representation. In the next section we will
explain why we should only talk of vector components being contravariant or covariant, rather
than of vectors. As I have emphasized, in certain mathematical contexts, it makes sense to talk
of vectors as essentially arrays, but for us it will introduce confusion. If you want to get into the
mathematics of dual spaces, it is a rich environment that can help prove useful relations, but it
is not what we are concerned with here. In a real physical sense, we are only dealing with one
Euclidean space, so the dual space formalism is extraneous. In the end, we want our vectors to
have geometric properties and so we don’t want the “vectors” to change when changing coordinate
systems (that is, changing representations).

1.2.5 Contravariant and Covariant Components of Vectors

We can now consider covariant and contravariant components of vectors, which is my preferred
interpretation and what will be adopted from now on in this text. There is some confusion about
these terms, but on a simplistic level, you can remember that components with superscript indices
are contravariant and that components with subscript indices are covariant.

It is important to keep in mind the word “components” above. In this formulation or interpretation,
it does not make sense to talk of covariant and contravariant “vectors” as we did in the previous
section because the vectors are geometric objects that do not change; just their representations are
changed when changing coordinate systems.26 We can still care about properties of our specific
representation of geometric vectors for the specific coordinate systems. Thus, we care about the

26An example in mathematics where it may make sense to call vectors contravariant or covariant is when one can
find a dual space to the vector space one is interested in. These cases consider arrays of numbers to be vectors,
however.
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components of the vector and how they transform. The vector, then, is the primary geometric
object, and so cannot be called contravariant or covariant.

So what do contravariant and covariant mean? Consider a general vector V. Then we could write

V =
3∑
i=1

(V · ei)ei =
3∑
i=1

Vie
i =

3∑
i=1

Vi∇ξi (1.2.68)

V =
3∑
i=1

(V · ei)ei =
3∑
i=1

V iei =
3∑
i=1

V i ∂x

∂ξi
(1.2.69)

Vi ≡ V · ei (1.2.70)
V i ≡ V · ei (1.2.71)

Then (1.2.68) is a covariant representation and (1.2.69) is a contravariant representation. The
covariant representation uses the tangent basis vectors where as the contravariant representation
uses the tangent-reciprocal basis vectors. It is important to note that the components of the vector
Vi or V i need not have any specific units, and do not have to have the same units as the vector
itself. This is because the basis vectors can have units. As we will see, we will use the previous
definitions (1.2.66) and (1.2.67), for contravariant and covariant components, respectively.

It is important that we recognize the basis vectors should not be labeled as covariant or contravari-
ant because as vectors they can be represented in a covariant or contravariant way. That is, given
ej which is one of the tangent-reciprocal basis set vectors (being the reciprocal basis to the tangent
basis set), then it’s covariant representation will be

ej =
3∑
i=1

(ej · ei)ei =
3∑
i=1

(ej)ie
i ≡

3∑
i=1

gjie
i (1.2.72)

using the notation of (ej)i = gij. And, of course, the contravariant representation will be

ej =
3∑
i=1

(ej · ei)ei =
3∑
i=1

(ej)
iei = ej (1.2.73)

which is quite simple (we must have (ej)
i = δij or else we do not have tangent and reciprocal

bases). Sometimes people will call the ei the covariant basis vectors, because they pair with the
contravariant vector components and have a subscript. This should be avoided in our formulation
because the basis vectors are vectors27 and hence could be represented with a contravariant or a
covariant representation. In fact, one could just as justifiably argue that they should be called the
contravariant basis vectors since the contravariant representation of a tangent basis vector e1 =
1e1 +0e2 +0e3 is much simpler than the covariant representation e1 = g11e

1 +g12e
2 +g13e

3! In fact,
sometimes people claim the dx is naturally contravariant because its contravariant representation
is very simple. Therefore it is a contravariant vector. Following this logic, then what are usually
called “covariant basis vectors” should actually be the contravariant basis vectors. Hence, we
ignore the issue altogether and call them tangent basis vectors (though you should be aware that
tangent basis vectors are often called the covariant vectors or covariant basis vectors). Similarly,
we refer only to the tangent-reciprocal basis vectors (again, you should be aware other texts refer
to reciprocal basis vectors as contravariant vectors or contravariant basis vectors).

27It should be obvious, but sometimes tautologies are useful.
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Now, let’s explore the gij = ei · ej and gij = ei · ej coefficients. We remember that for any generic
vector V that

V =
3∑
i=1

V · eiei =
3∑
i=1

V · eiei (1.2.74)

Vi = V · ei (1.2.75)
V i = V · ei (1.2.76)

Thus

Vi = V · ei =
3∑
j=1

V jej · ei =
3∑
j=1

gjiV
j =

3∑
j=1

gijV
j (1.2.77)

V i = V · ei =
3∑
j=1

Vje
j · ei =

3∑
j=1

gjiVj =
3∑
j=1

gijVj (1.2.78)

so that we have a simple rule of changing contravariant components into covariant components
and vice versa. We can also use the expression for V with the basis vectors themselves to write

ei =
3∑
j=1

ei · ejej =
3∑
j=1

gije
j (1.2.79)

ei =
3∑
j=1

ei · ejej =
3∑
j=1

gijej (1.2.80)

Thus, if we take

ei · ej = δji =
3∑

k=1

gike
k · ej =

3∑
k=1

gikg
kj (1.2.81)

ei · ej = δij =
3∑

k=1

gikek · ej =
3∑

k=1

gikgkj (1.2.82)

Which gives use
∑

k gikg
kj = δji ≡ gij and

∑
k g

ikgkj = δij = δji ≡ gij = gji . If we view g as the
matrix form of gik and G as the matrix form of gkj then these statements mean

gG = Gg = 1 (1.2.83)
g = [G]−1 (1.2.84)
g ≡ det(g)⇒ g−1 = det(G) (1.2.85)

so that we can find these gij and gij metric components by forming a matrix from one of those and
inverting the matrix. The determinants are inverses by the properties of their respective matrices.
As a reminder, we can write

gij =
3∑

i,j=1

ei · ej =
3∑

i,j=1

∂x

∂ξi
· ∂x

∂ξj
(1.2.86)

gij =
3∑

i,j=1

ei · ej =
3∑

i,j=1

∂ξi

∂x
· ∂ξ

j

∂x
=

3∑
i,j=1

∇ξi · ∇ξj (1.2.87)
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If we write the tensor ∂x
∂ξ

in matrix form, then we can think of ourselves as taking the determinant
of the product of two of the same matrices

det(g) = det

(
∂x

∂ξ
· ∂x

∂ξ

)
= det

(
∂x

∂ξ

)
det

(
∂x

∂ξ

)
=

(
∂x

∂ξ1
· ∂x

∂ξ2
× ∂x

∂ξ3

)2

= (J )2

(1.2.88)

which means g =
√
J . Thus we see the connection between the Jacobian and the metric coeffi-

cients. The analogous result holds for the inverse

det(G) = det

(
∂ξ

∂x
· ∂ξ
∂x

)
= det

(
∂ξ

∂x

)
det

(
∂ξ

∂x

)
=

(
∂ξ1

∂x
· ∂ξ

2

∂x
× ∂ξ3

∂x

)2

= (J)2 = (J )−2

(1.2.89)

This makes sense of seeing vectors as geometric objects. Why do contravariant components vary
that way? Because it keeps the vector object from changing. For if we changed our tangent basis
from ξi to ξ′i, we require

V =
3∑
i=1

V iei =
3∑
i=1

V ′ie′i (1.2.90)

Remember that ei = ∂x
∂ξi

and e′i = ∂x
∂ξ′i

so

3∑
i=1

V iei =
3∑
i=1

V i ∂x

∂ξi
=

3∑
i,j=1

V i∂ξ
′j

∂ξi
∂x

∂ξ′j
=

3∑
i,j=1

V i∂ξ
′j

∂ξi
e′j =

3∑
j=1

V ′je′j (1.2.91)

We know that this must be true for each component j, so

3∑
i=1

V i∂ξ
′j

∂ξi
= V ′j (1.2.92)

just as we required in (1.2.66). This is the transparent justification from our geometric vector
point of view.

Similarly, consider the reciprocal basis representation

V =
3∑
i=1

Vie
i =

3∑
i=1

V ′i e
′i (1.2.93)

3∑
i=1

Viei =
3∑
i=1

Vi
∂ξi

∂x
=

3∑
i,j=1

Vi
∂ξi

∂ξ′j
∂ξ′j

∂x
=

3∑
i,j=1

Vi
∂ξi

∂ξ′j
e′j =

3∑
j=1

V ′j e
′j (1.2.94)

and so this must be true for each component j giving

3∑
i=1

Vi
∂ξi

∂ξ′j
= V ′j (1.2.95)
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the same as our proposed law in (1.2.67), except now the justification is transparent.

While it may feel as if I am preaching when I say vectors are not covariant or contravariant, it is
important to realize this to avoid confusion when comparing what I say to other texts. Vectors (in
this text) have covariant and contravariant representations where the components are covariant or
contravariant. When using the tangent basis vectors, the components are contravariant, and when
using the reciprocal basis vectors, the components are covariant. The contravariant components
are superscripted and the covariant are subscripted by convention (this is universally followed, and
the mnemonic “contra” and “super” both contain an “r” whereas neither “co” nor “sub” do is often
used to remember how these go together).

1.2.6 Multiple Dimensions

There may be three dimensions in this room and five next door. As a professional
mathematician, I have no idea; I can only ask some competent physicist to instruct me
in the facts.

— G. H. Hardy

Mathematically, there is no obvious reason for stopping at 3 rather than any other
number. In this universe, North is perpendicular to East, and up is perpendicular to
both, but we cannot find a fourth direction perpendicular to all three. There is however
no reason why a universe should not exist with four or five or six dimensions. We have
got used to three, but that is not a reason.

— W. W. Sawyer[29, p. 68]

You may be wondering about four-dimensional or higher cases. This is of special importance
for special relativity or general relativity. All of the previous machinery works with only minor
changes, other than the reciprocal basis definition. Given a basis {b1, · · · ,bn} the reciprocal basis
{b1, · · · ,bn} satisfies

bi · bj = δji (1.2.96)

In our case, by employing two different basis vector sets, we can simply use the normal dot
product. The signs will be taken care of in gij and gij when considering purely contravariant or
purely covariant component dot product forms. Were we to generalize to complex values we would
write (bi)

∗ · bj = bi · (bj)∗ = δji and (bi)∗ · bj = bi · (bj)∗ = δij. Note that again this says nothing
about bi · bj which we say is gij. We use bi(j) to mean the jth component of bi in the Cartesian
vector representation of bi (so bi(j) = bi · x̂j). Then we can form two n× n matrices

Bb =
[
b1 · · · bn

]
≡

b1(1) · · · bn(1)
...

...
...

b1(n) · · · bn(n)

 (1.2.97)

Bb =
[
b1 · · · bn

]
≡

b1(1) · · · bn(1)
...

...
...

b1(n) · · · bn(n)

 (1.2.98)
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Then by our definitions of reciprocal basis we must have

(Bb)
ᵀBb = (Bb)ᵀBb = 1 (1.2.99)

Bb = [(Bb)ᵀ]−1 (1.2.100)

Bb = [(Bb)
ᵀ]−1 (1.2.101)

Thus, given any basis vectors we can figure out the form of the reciprocal basis by inverting the
transpose of the basis vector matrix. Usually inverting a 4 × 4 matrix is painful, but it is not
difficult and one can then define the reciprocal basis.

Given a basis, we can form the reciprocal basis one at a time, as well. To find reciprocal basis bj

we use

(Bb)
ᵀbj = 1j (1.2.102)

where 1j represents a column vector with 1 in the jth row and zeros elsewhere. We can then find
the components of bj through a solve or through Cramer’s rule which says

bj(i) =
det(Bᵀb)i
detBᵀb

(1.2.103)

where (Bᵀb)i means replace the ith column of (Bᵀb) with bj.

As an example, consider special relativity in Cartesian coordinates. We have four dimensions, with
ct28 as a new dimension of spacetime. There are two ways to generalize. One can let i go from 0
to 3 or from 1 to 4. I will choose 0 to 3, so that e0 points in the time direction (actually the ct
direction though I will just choose c = 1 for convenience) chosen so that e0 · e0 = −1. This means
this is not the Cartesian orthonormal basis! This would cause problems if we didn’t already have
the machinery to deal with non-orthogonal bases already developed. With this choice, we have
to think about how to develop this. We can either change the dot product definition or we are
forced to introduce the imaginary unit i. With i, we have the advantage of using the standard dot
product and so we can construct our reciprocal basis with the reciprocal matrix approach above.
It is more common, I think, to define a new dot product as

X · Y =
3∑
i=1

XiY
i −X0Y

0 =
3∑
i=1

gijXiYj − g00X0Y0 =
3∑
i=1

gijX
iY j − g00X

0Y 0 = X iYi −X0Y0

(1.2.104)

It is conventional to use Greek letter indices to indicate a sum over all four dimensions and Latin
letters for sums over 1 through 3. So

X · Y ≡ XµY
µ ≡ XiY

i −X0Y
0 (1.2.105)

is the conventional notation. We then need to modify our approach slightly. We begin with the
tangent basis and start with e0. We use the underlying Cartesian coordinates x̂i for the other

28Note that we could just use t as for our system we don’t require our basis vectors to have the same units, but
we would then find the components always include a factor of c.
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components since clearly ei = x̂i = ∂X
∂xi

. We want e0 = x̂0 where we think of this as e0 = ∂X
∂x0 ≡ x̂0.

That is, we define the tangent basis in the normal way and find

e0 = x̂0 (1.2.106)
e1 = x̂1 (1.2.107)
e2 = x̂2 (1.2.108)
e3 = x̂3 (1.2.109)

which I will call the standard basis (even though x̂0 is technically not a unit vector with our defined
dot product). We then want (use i′ is one of either 1, 2, or 3) [we expand ei in terms of ej with
ei · ej = ei · xj = (ei)j]

e0 · e0 = x̂0 ·
[
(e0)0x̂0 + (e0)1x̂1 + (e0)2x̂2 + (e0)3x̂3

]
= −(e0)0 (1.2.110)

e0 · ei
′
= x̂0 ·

[
(ei
′
)0x̂0 + (ei

′
)1x̂1 + (ei

′
)2x̂2 + (ei

′
)3x̂3

]
= −(ei

′
)0 (1.2.111)

Thus for e0 · e0 = 1 we need −(e0)0 = 1 or (e0)0 = −1 with (ei
′
)0 = 0. Note how this process is

exactly the same as inverting our matrix before, but now we can’t represent it as simply matrix
multiplication. Similarly we have

ei′ · e0 = x̂i′ · [−x̂0] = 0 (1.2.112)

e1 · ej
′
= x̂1 ·

[
(ej
′
)0x̂0 + (ej

′
)1x̂1 + (ej

′
)2x̂2 + (ej

′
)3x̂3

]
= (ej

′
)1 = δj

′

1 (1.2.113)

e2 · ej
′
= x̂2 ·

[
(ej
′
)0x̂0 + (ej

′
)1x̂1 + (ej

′
)2x̂2 + (ej

′
)3x̂3

]
= (ej

′
)2 = δj

′

2 (1.2.114)

e3 · ej
′
= x̂3 ·

[
(ej
′
)0x̂0 + (ej

′
)1x̂1 + (ej

′
)2x̂2 + (ej

′
)3x̂3

]
= (ej

′
)3 = δj

′

3 (1.2.115)

Clearly this implies that the tangent-reciprocal basis must satisfy

e0 = −x̂0 (1.2.116)
e1 = x̂1 (1.2.117)
e2 = x̂2 (1.2.118)
e3 = x̂3 (1.2.119)

which is the tangent-reciprocal basis of the standard tangent basis. Thus our original, standard
basis and reciprocal basis can be used to represent vectors in special relativity with our special dot
product.

Another method is to introduce operator F(x) which switches the sign on the first row of the
matrix or vector it operates on.29 Clearly the inverse is F−1 = F as this switches the sign twice.
Thus

(Bb)
ᵀF(Bb) = (Bb)ᵀF(Bb) = 1 (1.2.120)

Bb = F[(Bb)ᵀ]−1 (1.2.121)

Bb = F[(Bb)
ᵀ]−1 (1.2.122)

29F can be represented as a matrix. It’s easier to just switch the first row’s sign, though. As a matrix, F is the
same as 1 but with the furthest upper-left 1 switched with a −1. If we had decided on the other sign convention,
then F would switch the sign of the lower three rows of the matrix and the matrix is the same as −1 except the
furthest upper left has a +1 instead of a −1.
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In this case we use

Bb =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (1.2.123)

[(Bb)
ᵀ]−1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (1.2.124)

Bb = F([(Bb)
ᵀ]−1) =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (1.2.125)

which reproduces our previous argument’s results.

It is worth looking at the road less traveled. In this case, we keep our non-time Cartesian vectors
real, so we don’t worry about complex conjugates. What if we had introduced complex values and
kept our original dot product? We would find that we must have e0 = ix̂0 and so

Bb =


i 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (1.2.126)

Bb = [(Bb)
ᵀ]−1 =


−i 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (1.2.127)

and so we have

e0 = ix̂0 (1.2.128)
e1 = x̂1 (1.2.129)
e2 = x̂2 (1.2.130)
e3 = x̂3 (1.2.131)
e0 = −ix̂0 (1.2.132)
e1 = x̂1 (1.2.133)
e2 = x̂2 (1.2.134)
e3 = x̂3 (1.2.135)

This may feel more natural and is easier, but is rarely what is chosen. Four vectors use the modified
dot product route, instead. With the operator F, it isn’t much of a change in difficulty and there
are no worries about the interpretation of i.

One final note. I chose a signature (−+ ++) for my dot product, but one often chooses (+−−−).
With (+−−−) the energy-momentum vector “squared” yields the rest mass, whereas with mine,
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you get the negative of the rest mass. My signature is often called the East Coast,30 spacelike,
relativity, Pauli, or mostly pluses convention. The (+ − −−) is often called the West Coast,
timelike, particle physics, Landau-Lifshitz, or mostly minuses convention.

1.2.7 Index and Einstein Notation Summation

It is now worth looking at simplifying some of our notation. There is a common practice of using
repeated indices to indicate a summation. Therefore we write

V ·W =
3∑
i=1

3∑
j=1

ViW
j(ei · ej) = ViW

jei · ej = ViW
i =

3∑
i=1

3∑
j=1

V iWj(ei · ej) = V iWjei · ej = V iWi

(1.2.136)

It is easier to omit the summations, and the notation is unambiguous when only two indices are
repeated. It is important to realize that when using the summation convention, that indices can
only be repeated twice without ambiguity. This summation convention is sometimes called Einstein
notation or Einstein summation notation.31 Any two repeated indices (which are summed) are
called dummy indices or dummy variables (because we can switch any of the dummy symbols used
without changing the meaning of the term). Any index that is not repeated is a non-dummy, or
free index. It can only be changed if you change all the corresponding indices on all sides of the
equation on each term. As an example in AijkBjil, k and l are non dummy indices and i and j are
dummy indices. Thus we can write AijkBjil = AmnkBnml. But if we have AijkBjil = CkDl but we
cannot write(((((

((((hhhhhhhhhAijkBjil = CmDl. We could write AijmBjin = CmDn, however.

For the dot product, we could also define gij = ei · ej and gij = ei · ej with gij = δij the Kronecker
delta (that is, it is equal to one only when i and j are the same). We will call gij and gij the metric
coefficients and later show that indeed they are metric tensor coefficients. Then other equivalent
dot product forms would be

V ·W = gijViW
j = gijV iWj = gijV

iWj = gijViW
j (1.2.137)

For
√

V ·V ≡ |V| we define this as the magnitude of vector V. If you are worried I haven’t defined
dot products for vectors, then remember we can always write ei and ei in terms of Cartesian x̂, ŷ,
ẑ and use the known relations for dot products and cross products to determine the values. We
have the same properties of the normal dot product where A · B = |A||B| cos θAB where θAB is
the angle between the two vectors. Thus we can use dot products to test for orthogonality.

It is also useful to define a cross product using a symbol called the Levi-Civita symbol εijk or εijk32

30The East Coast and West Coast convention names come from the US. East Coast schools like Princeton and
Harvard mostly used the East Coast convention, while West Coast schools in California mostly used the West Coast
convention in the past. I was once told that you could remember the West Coast metric signature because it has
the + on the left (West) in the signature (+ − −−) and the West Coast is warm. One could make the mnemonic
that the side of the pluses corresponds with the left (West) and right (East) coasts.

31Sometimes it is called index notation, but at other times index notation means there is no implied sum.
Generally repeated indices imply summation unless otherwise noted.

32The upper or lower indices have no meaning at this point. We can make the Levi-Civita symbol into a third
order tensor so that it would correspond to contravariant and covariant components, but I will not do so. It is just
convenient to have both so that it appears to act like a regular tensor in many of our formula.
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such that

εijk = εijk =


1 i, j, k form a even permutation of (1,2,3)
−1 i, j, k form an odd permutation of (1,2,3)
0 otherwise

(1.2.138)

Then a cross product can be written as

V ×W = Vie
i ×Wje

j = V iei ×Wjej (1.2.139)

which via our reciprocal relations (1.2.64)-(1.2.65) means (the primes on i, j, k indicating cyclical
relations)

(V ×W)k
′
= J (Vi′Wj′ − Vj′Wi′)e

k′ (1.2.140)

(V ×W)k′ = J(V i′W j′ − V j′W i′)ek′ (1.2.141)

and we can summarize this with the Levi-Civita symbol more nicely as

(V ×W)k = J εijkViWj (1.2.142)
(V ×W)k = JεijkV

iW j (1.2.143)

remembering that J = J−1. Finally, we can again use V ×W = n̂|V||W| sin θVW where n̂ is a
unit vector pointing perpendicular to V and W in a right-handed fashion, and θVW is the angle
between V and W.

1.2.8 Parallel and Perpendicular Vector Directions

One useful way of decomposing a vector is into components parallel and perpendicular to a specific
direction. Let’s consider a unit vector b̂ and a general vector V. We can then decompose the
vector V along and perpendicular to b̂. This is usually denoted by V‖ and V⊥ for the parallel
and perpendicular components. We find that we can project the part of V along b̂ to find

V‖ ≡ V‖b̂ = V · b̂b̂ (1.2.144)

The rest of the vector is the perpendicular portion, so

V⊥ = V −V‖ (1.2.145)

A more convenient representation is

V⊥ = −b̂× (b̂×V) = (b̂×V)× b̂ (1.2.146)

For this we use (for vectors A, B, C, and D)

A× (B×C) = B(A ·C)−C(A ·B) (1.2.147)

so that

V⊥ = V(b̂ · b̂)−V · b̂b̂ = V −V‖ (1.2.148)
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Thus, the decomposition can be written

V = V‖ + V⊥ = V‖b̂− b̂× (b̂×V) (1.2.149)

We can also note that for another vector W that

V⊥ ·W = V⊥ ·
(
W‖ + W⊥

)
= V⊥ ·W⊥ = (V −V‖) ·W⊥ = V ·W⊥ (1.2.150)

V‖ ·W = V‖ · (W‖ + W⊥) = V‖ ·W‖ =
(
V‖ + V⊥

)
·W‖ = V ·W‖ (1.2.151)

Thus, we can move parallels and perpendiculars across vectors when doing dot products.

It is also often convenient to define gradients in directions analogously. Then for a scalar function
f we have

∇f = b̂b̂ · ∇f − b̂× (b̂× ∇f) = ∇‖f + ∇⊥f (1.2.152)

In addition, sometimes people define parallel and perpendicular divergences so that (with l along
b̂)

∇‖ ·V ≡∇ ·V‖ =∇ ·V −∇⊥ ·V =∇ · (V‖b̂) =
∂V‖
∂l

(1.2.153)

∇⊥ ·V ≡∇ · (V⊥) (1.2.154)

It is then obvious that

∇⊥ ·V‖ =∇‖ ·V⊥ = 0 (1.2.155)

The above definitions also have the added benefit of meaning that we can move the parallels and
perpendiculars across vectors in dot products when using del.

For the case when ∇ ·V = 0 we further have

0 =∇ · (V‖ + V⊥) =∇‖ ·V‖ +���
��∇⊥ ·V‖ +���

��∇‖ ·V⊥ +∇⊥ ·V⊥ (1.2.156)
∇‖ ·V‖ = −∇⊥ ·V⊥ (1.2.157)

Note that (1.2.157) only holds when ∇ ·V = 0.

1.2.8.1 Transport Parallel, Cross, and Perpendicular Components

It is sometimes useful to write some formula such that we consider a parallel, a perpendicular,
and a “cross” direction. One should always remember in this case that while the cross direction is
necessarily perpendicular to the perpendicular direction, this does not mean that we can decompose
the vector into a parallel, perpendicular, and cross direction in the way we did before! The definition
of a cross component is usually given with the cross component using a subscript wedge, ∧. The
reason to pick out a cross direction is that the perpendicular and the cross direction can have
different behavior, for example in the Braginskii closure for the stress tensor. In these cases it is
important to make sure each component of the vector actually follows the correct physics. What
happens is that we define

q = q‖ + q∧ + q⊥ (1.2.158)
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but then this comes from defining components of a distribution function as

f(v) = f‖(v) + f∧(v) + f⊥(v) = α‖v‖ + α∧b× v⊥ + α⊥v⊥ (1.2.159)

Then if q comes from the moment of Q(v) of the distribution function we define

q‖ =

˚ ∞

−∞
d3v f‖Q(v) (1.2.160)

q∧ =

˚ ∞

−∞
d3v f∧Q(v) (1.2.161)

q⊥ =

˚ ∞

−∞
d3v f⊥Q(v) (1.2.162)

In this case the notation has a separate meaning from our decomposition above. One might expect
q∧

?
= b × q. But if there were so, the notation would need to be consistent with our previous

definitions (1.2.144)-(1.2.146). This means we would require

b× q =���
�b× q‖ +

=−q⊥︷ ︸︸ ︷
b× q∧+b× q⊥ (1.2.163)

−q⊥︷ ︸︸ ︷
b× (b× q) = −b× q⊥ +

−q⊥︷ ︸︸ ︷
b× b× q⊥

0 = −b× q⊥

(1.2.164)

which would mean q⊥ is parallel to b or 0, an enormous contradiction! Thus, when looking at
transport literature, be aware of the danger of interpreting parallel ‖ and perpendicular⊥ directions
relative to the cross direction. In these cases it is defined by components of a distribution function
rather than purely in terms of a vector direction. It is important to just look at the definitions. For
example, the flow velocity u given by moment v of the first order electron distribution function f
(the zeroth order is a Maxwellian) for a Lorentz plasma model such as considered in Helander[21]
yields

neu‖ =
32

3π

τei
me

(
∇‖pe + neeE‖ +

3

2
nekB∇‖Te

)
(1.2.165)

neu∧ =
b× ∇pe
meΩe

+ ne
E×B

B2
(1.2.166)

neu⊥ = − 1

meΩ2
eτei

(
∇⊥pe + neeE⊥ −

3

2
nekB∇⊥Te

)
(1.2.167)

You can then confirm for yourself that u∧ · u⊥ 6= 0.

If we had ∨ (representing ∧ as a separate decomposition from perpendicular and parallel) as a
cross component based purely off of b we would require

u∨ = b× u (1.2.168)
u⊥ = −b× (b× u) (1.2.169)

u∨ · u⊥ = 0 (1.2.170)

Thus we see that the cross component q∧ for vector q does not have the simple interpretation of
simply b× q.
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1.2.9 Tensors

Now that we have looked at vectors, it is worth delving into generalizations of vectors. In order
to treat them as objects similar to vectors, we will have to explain some of the subtleties and
requirements for writing tensors in unambiguous ways.

First of all, what is a tensor. It is an object that transforms similarly to vectors under coordi-
nate transformations, but describes more complex geometric information than simply direction for
quantities. For example if you have a surface of a cube, a stress tensor can tell you the stress in a
particular direction along the surface when applying a force per area in specified directions on the
cube. We can begin to see the properties of tensors by looking at dyads, a specific type of tensor.
A dyad is an object that is essentially two vectors pushed together into a single object. That is, it
takes two basis vectors to give it its direction. Suppose we have two different vectors V and W.
Then the dyad is written

VW ≡ V ⊗W (1.2.171)

when using a basis set (and its reciprocal basis set) we can identify four possible representations
of the dyad

VW = V iW jeiej = V iWjeie
j = ViW

jeiej = ViWje
iej (1.2.172)

It is often convenient to then define
↔
S ≡

∑
j VjWj as a second order tensor (vectors are first

order tensors). If the tensor is made of a single dyad VW we can write it as

↔
S = VW = Sijeiej = Sijeie

j = Sji e
iej = Sije

iej (1.2.173)

We could of course extend to triads and so on by “adding” more vectors, but I will not delve into
it, as the same principles apply as before.33 There is also a question of whether all second order
tensors can be represented as dyads. I hinted at this by writing a sum of dyads, and the answer
is no. Dyads cannot form all second order tensors. If we expand with Cartesian vectors with a
matrix notation we can see why fairly quickly34. Let A and B be the vectors forming dyad AB
and BA

AB = (Axx̂ + Ayŷ + Azẑ)(Bxx̂ +Byŷ +Bzẑ) (1.2.174)
= AxBxx̂x̂ + AxByx̂ŷ + AxBzx̂ẑ

+ AyBxŷx̂ + AyByŷŷ + AyBzŷẑ

+ AzBxẑx̂ + AzByẑŷ + AzBzẑẑ

(1.2.175)

=
[
x̂ ŷ ẑ

] AxBx AxBy AxBz

AyBx AyBy AyBz

AzBx AzBy AzBz

x̂
ŷ
ẑ

 (1.2.176)

BA = (Bxx̂ +Byŷ +Bzẑ)(Axx̂ + Ayŷ + Azẑ) (1.2.177)

33The terminology uses Greek number roots, so vectors could be considered monads, then dyads, triads, tetrads,
pentads, etc. Scalars could then be considered 0-ads or medenads or oudenads. When we get to explaining polyadics
the same notation applies but now with -adic instead of -ad.

34Note that this matrix form is mnemonic, as the unit vectors inside a matrix would require far more motivation
to be rigorous
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= BxAxx̂x̂ +BxAyx̂ŷ +BxAzx̂ẑ

+ByAxŷx̂ +ByAyŷŷ +ByAzŷẑ

+BzAxẑx̂ +BzAyẑŷ +BzAzẑẑ

(1.2.178)

=
[
x̂ ŷ ẑ

] BxAx BxAy BxAz
ByAx ByAy ByAz
BzAx BzAy BzAz

x̂
ŷ
ẑ

 (1.2.179)

Thus we see the sense in which (AB)ᵀ = BA. If we ignore the two vectors of vectors on the sides
of the matrix, then we can identify the central matrix as the matrix representation of our dyad.
We also see that it will not in general be possible to choose 6 numbers such that we can form the
nine entries making up a second order tensor. It turns out that one can express a tensor as a sum
of dyads (called a dyadic), however. The same holds true for triads, tetrads, etc. with the sum of
them then being called triadics, tetradics, etc.

One of the most important things to remember when using tensors is that we must be very
careful of order. In the above representations I was very careful to include the basis vectors in a
specific order. This is because if we use a dot product with a dyad/tensor we no longer can use

commutativity. That is for
↔
S = VW

V ·
↔
S = (V ·V)W 6=

↔
S ·V = V(W ·V) (1.2.180)

Thus we see it is generally true that V ·
↔
S 6=

↔
S ·V, though in specific cases it may be true for a

specific
↔
S or V.

Now we run into the same problems of “contravariant”, “covariant”, and “mixed” tensors. If we view
a second order tensor as its components, then it makes sense to talk of covariant tensors and such,
but if we view the tensor as the geometrical object, then it is the representation of the tensor that
is covariant, contravariant, or mixed. With our new freedom, we can also introduce new operators
to act on tensors. An important new one is often called the double dot operator :. This is defined
by

↔
T : VW = W ·

↔
T ·V (1.2.181)

(this is the most common plasma physics definition, some literature will use
↔
T : VW = V ·

↔
T ·W

but this will never be used here). We can make similar definitions for two tensors. We can also

define a unit tensor such that 1 ·
↔
T =

↔
T · 1 =

↔
T and 1 · V = V · 1 = V. Then the trace of a

tensor (the sum of its diagonal elements in matrix form) is given by

Tr
↔
T = 1 :

↔
T (1.2.182)

In addition we can define the
×· ,
·
×, and

×
× operators between two dyads or tensors. We have

VW
×· YZ = (V ×Y)(W · Z) (1.2.183)

↔
T
×· VW = (−V ×

↔
T) ·W (1.2.184)

VW
·
×YZ = (V ·Y)(W × Z) (1.2.185)
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↔
T
·
×VW = V ·

↔
T ×W (1.2.186)

VW
×
×YZ = (V ×Y)(W × Z) (1.2.187)

↔
T
×
×VW = −V ×

↔
T ×W (1.2.188)

Note that with these definitions

VW
×· YZ = −YZ

×· VW = −(Y ×V)(Z ·W) (B.89)

VW
·
×YZ = −YZ

·
×VW = −(Y ·V)(Z×W) (B.90)

VW
×
×YZ = YZ

×
×VW = (Y ×V)(Z×W) (B.91)

In addition, we can consider the forms of tensors or dyads. We define the transpose of a dyad or
tensor with ᵀ such that

(VW)ᵀ = WV (1.2.189)

Thus we define the symmetric and antisymmetric parts of an order two tensor or dyad via

↔
TS =

↔
T +

↔
T
ᵀ

2
(1.2.190)

(VW)S =
VW + WV

2
(1.2.191)

↔
TA =

↔
T −

↔
T
ᵀ

2
(1.2.192)

(VW)A =
VW −WV

2
(1.2.193)

When we get to tensors of higher order, we have to consider making it symmetric (or antisymmetric)
index by index. That is for an nth order tensor

TS =
1

n!

∑
ik

Tik1,ik2,...,ikne
ik1eik2 · · · eikn ≡ T(i1,i2,...,in) (1.2.194)

TA =
1

n!

∑
b1,b2,...,bn

δb1,b2,...,bni1,i2,...,in
Tb1,b2,...,bne

b1eb2 · · · ebn ≡ T[i1,i2,...,in] (1.2.195)

when considering a specific representation. Here the generalized Kronecker delta, is used and the
sum over ik means sum over all possible combinations of the indices. This notation is cumbersome
without index notation, but the (i1, . . . , in) and [i1, . . . , in] notation can be extended by writing
Ti1,[i2,...,in], for example, to only antisymmetrize on indices i2 through in. Indeed, we can do this
for any representation T

[i1,...
...,in] . There is simply no easy way to represent this in general with our

abstract notation beyond putting the A or S subscripts to indicate antisymmetric or symmetric.

Now we consider operators that contract dyads or tensors or create dyads or tensors from vectors.
One is called the vector operation which contracts a second order tensor or dyad down to a vector.
We define

vec (VW) = (VW)× = V ×W (1.2.196)
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with the analogous definition for the tensor notation. Another operator we can call the dyad
operator, as it takes a vector and changes it into a dyad. It is defined by

dyad(V) = −1

2
1×V = −1

2
V × 1 (1.2.197)

Now the important thing to note is that

dyad(vec(VW)) = −1

2
1× (VW)× = −1

2
1× (V ×W) =

−1

2
[(1 ·W)V − (1 ·V)W]

=
VW −WV

2
= (VW)A

(1.2.198)

dyad(vec(
↔
T)) =

↔
TA (1.2.199)

The BAC-CAB rule for 1 × (V ×W) = (V ×W) × 1 is not obvious and you should check it
yourself with Einstein summation notation.

Finally, the identity

vec(dyad(V)) = vec(−1

2
1×V) = (−1

2
1×V)× = V (1.2.200)

is what one might naively expect. Again, showing it for yourself with index notation is a good
idea (you will use δii = 3).

We can find the covariant Tij, contravariant T ij, and mixed representations (T j·i and T i·j where the
· in front of an index indicates that the other index is the first one) via the use of the double dot
product with tangent and reciprocal basis vectors

Tij =
↔
T : ejei (1.2.201)

T ij =
↔
T : ejei (1.2.202)

T i·j =
↔
T : ejei (1.2.203)

T ·ij =
↔
T : eje

i (1.2.204)

These follow the same rules for transformation as vectors of the same name, namely

T ′ij =
∂ζ ′i

∂ζk
∂ζ ′j

∂ζ l
T kl (1.2.205)

T ′ij =
∂ζk

∂ζ ′i
∂ζ l

∂ζ ′j
Tkl (1.2.206)

T ′i·j =
∂ζ ′i

∂ζk
∂ζ l

∂ζ ′j
T k·l (1.2.207)

T ′·ij =
∂ζ l

∂′ζj
∂ζ ′i

∂ζk
T ·kl (1.2.208)

For higher order objects we can use multiple dot products to form the covariant, contravariant
and mixed representations. Note that when the components of

↔
T are represented as purely con-

travariant they are called tensor components of type (2, 0), when they are purely covariant the
components are called type (0, 2), and for either mixed representation they are type (1, 1). This
also generalized so that tensor components of type (p, q) have p upper indices (so p tangent basis
vectors) and q lower indices (so q reciprocal basis vectors).

With this diversion, let’s now look at tensor calculus with these objects.
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1.2.10 Tensor Calculus

Tensor calculus identities are summarized in many books, but here we will focus on giving meaning
to some of the symbols I have been using before. For example, the del or nabla operator ∇. This
symbol is a representation of a certain type of derivative for vector and tensor quantities. In
Cartesian coordinates one can remember its form via associating ∇ .

= x̂ ∂
∂x

+ ŷ ∂
∂y

+ ẑ ∂
∂z

so that the
differential operators act on whatever is to the right of the del. Thus for a general scalar function
f we would have

∇f =
∂f

∂x
x̂ +

∂f

∂y
ŷ +

∂f

∂z
ŷ (1.2.209)

The problem with defining it this way is that in other coordinate systems you cannot write ∇ as
just derivatives and the associated coordinate direction. What should ∇ be thought of as, then?
We should recognize it as an operator mnemonic for three different operations, taking a gradient,
taking the divergence, and taking the curl of objects. I will make this a bit more clear by using
∇· and ∇× for divergence and curl as a subtle reminder that these are three different types of
operators and the use of a single symbol is for convenience. In addition, I will use a less-often used
notation that is extremely convenient. As we saw above, I would use ∂

∂x
≡ ∇ with ∂

∂x
· and ∂

∂x
×

as the divergence and curl, respectively. This is often useful because we can then easily see that
∂x
∂x

= ∇x = 1 and that the chain rule becomes easier to recognize.

1.2.10.1 Gradient

So now let’s consider the gradient. Let’s focus on scalars first. The gradient is a type of deriva-
tive, so we can think of it in general curvilinear coordinates as looking at the change along each
coordinate direction. Thus

∇f =
∂f

∂x
=
∂f

∂ξi
∂ξi

∂x
=
∂f

∂ξi
∇ξi =

∂f

∂ξi
ei (1.2.210)

Thus, the covariant representation of ∇f is especially simple. That is

(∇f) = (∇f · ei)ei =
∂f

∂ξj
ej · eiei =

∂f

∂ξj
δji e

i =
∂f

∂ξi
ei (1.2.211)

(∇f)i =
∂f

∂ξi
(1.2.212)

The contravariant representation is

∇f = ∇f · eiei =
∂f

∂ξj
ej · eiei =

∂f

∂ξj
gijei (1.2.213)

(∇f)i =
∂f

∂ξj
gij (1.2.214)

where we remember gij = ei · ej (which is clearly symmetric) and gij = ei · ej, and finally
gij = δij = ei · ej.
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We can then move on to vectors. Given a vector V we then have

∇V =
∂V

∂x
=
∂ξi

∂x

∂V

∂ξi
= ∇ξi∂V

∂ξi
= ei

∂V

∂ξi

= ei
∂

∂ξi
[
V jej

]
=
∂V j

∂ξi
eiej + V jei

∂ej
∂ξi

= ei
∂

∂ξi
[
Vje

j
]

=
∂Vj
∂ξi

eiej + Vje
i∂ej

∂ξi

(1.2.215)

It is important to note that to keep with our convention we must put the ∇ξi = ei on the left so
that when doing A· ∇V we have the components of A dotted into the gradient and not into the V.
As this quantity is a second order tensor, we can of course use whatever mixed, contravariant, or
covariant representation that we wish. The complexities occur because ∂ei

∂ξj
and ∂ei

∂ξj
are not known

until we decide upon what the ξi are. Both ei and ei generally change in space so we cannot take
them outside of the derivative term. We will consider the gradient of a vector in more detail in
Section 1.2.10.5. For now we use the Christoffel symbols of the first and second kind

Γk,ij =
1

2

[
∂gik
∂ξj

+
∂gjk
∂ξi
− ∂gij
∂ξk

]
(1.2.216)

Γkij =
gkl

2

[
∂gil
∂ξj

+
∂gjl
∂ξi
− ∂gij
∂ξl

]
(1.2.217)

and write

(∇V)·kj ≡
(
∂V

∂ξj

)k
ejek =

[
∂V k

∂ξj
+ V iΓkij

]
ejek (1.2.218)

(∇V)jk ≡
(
∂V

∂ξj

)
k

ejek =

[
∂Vk
∂ξj
− ViΓikj

]
ejek (1.2.219)

(∇V)jk ≡
(
∂V

∂ξj

)k
gjlelek =

[
∂V k

∂ξj
gjl + V igjlΓkij

]
elek (1.2.220)

(∇V)j·k ≡
(
∂V

∂ξj

)
k

gjlele
k =

[
∂Vk
∂ξj

gjl − VigjlΓikj
]

ele
k (1.2.221)

1.2.10.2 Curl

We will use that the curl of a gradient is zero and that the curl of a scalar times a vector can be
decomposed. Then we can write

∇× ei =∇× ∇ξi = 0 (1.2.222)
∇× fV = ∇f ×V + f∇×V (1.2.223)

Thus for a vector represented covariantly, we have

∇×V =
∂

∂x
×V =∇×

(
Vie

i
)

=���
��Vi∇× ei + ∇Vi × ei =

∂Vi
∂ξj
∇ξj × ei =

∂Vi
∂ξj

ej × ei (1.2.224)

Note that but i and j are dummy variables because they are summed over. Using the reciprocal
vector relations (1.2.64)-(1.2.65) with the Levi-Civita symbol εijk we then have

∇×V =
εijk

J
∂Vj
∂ξi

ek (1.2.225)
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via

ei × ej =


0 i = j

ek/J if (i, j, k) are an even permutation of (1,2,3)
−ek/J if (i, j, k) are an odd permutation of (1,2,3)

(1.2.226)

For tensors we can use the same sort of calculation. We have when the tensor is represented
covariantly that (using (B.156))

∇×
↔
T =∇× (Tije

iej) =∇× (Tije
i)ej − Tijei × ∇ej

=
∂Tij
∂ξk

ek × eiej − Tijei × ek
∂ej

∂ξk

=
∂Tjl
∂ξi

ei × ejel − Tilei × ej
∂el

∂ξj

=
εijk

J

(
∂Tjl
∂ξi

eke
l − Til

∂el

∂ξj

)
=
εijk

J
ek

(
∂Tjl
∂ξi

el + TilΓ
l
jpe

p

)
=
εijk

J
eke

l

(
∂Tjl
∂ξi

+ TipΓ
p
jl

)
=
εijk

J
ek

(
∂Tjl
∂ξi

el + Tilg
prΓljper

)

(1.2.227)

While not very simple, this is not a terribly difficult form to deal with. Some other representations
of
↔
T yield nice forms, as well. If we use

↔
T = T ·ji eiej we find

∇×
↔
T =

εijk

J
ekel

(
∂T ·lj
∂ξi
− T ·pi Γpjl

)

∇×
↔
T =

εijk

J
ek

(
∂T ·lj
∂ξi

el − T ·pi Γp,jle
l

) (1.2.228)

In Cartesian coordinates any formula will yield

∇×
↔
T = εijk

∂Tjl
∂xi

x̂kx̂
l = εijk

∂Tjl
∂xi

x̂kx̂l = εijk
∂Tkl
∂xj

x̂ix̂l (1.2.229)

which is what we would get assuming that ∇× acts on the first index of
↔
T. One should be wary

that in some literature the curl acts on the second index. I will not even write down such a thing
so as not to cause any confusion.

1.2.10.3 Divergence

Now let’s consider the divergence. This can be applied to tensors or vectors. First we’ll consider
vectors. Then we can use that the divergence of a curl is zero, so that with

ei′ = J ∇ξj′ × ∇ξk′ = J ej
′ × ek

′
(1.2.230)

∇ξj′ × ∇ξk′ =∇×
(
ξj
′ ∇ξk′

)
(1.2.231)

ei′/J = ej
′ × ek

′
=∇×

(
ξj
′ ∇ξk′

)
(1.2.232)
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Thus, if we take the divergence, we get zero and hence

∇ · (ei′/J ) = 0 (1.2.233)

and so

∇ ·V =∇ · (V jej) =∇ ·
([
J V j

] ej
J

)
= J V j

��
�
��
�

∇ ·
(

ej
J

)
+

ej
J
· ∇

(
J V j

)
=

ej
J
· ∂(J V j)

∂ξk
ek =

δkj
J
∂ (J V j)

∂ξk
=

1

J
∂(J V j)

∂ξj

(1.2.234)

In addition, there is another form that is sometimes useful. As we have shown above ∇V = ∇ξi ∂V
∂ξi

therefore

1 : ∇V =∇ ·V = ∇ξi · ∂V

∂ξi
=
∂V

∂ξi
· ∇ξi =

∂V

∂ξi
· ei (1.2.235)

And we can use for a tensor that (with (B.67)).

∇ ·
↔
T =∇ · (T ijeiej) =∇ · (T ijei)ej + T ijei · ∇ej

=
1

J
∂(J T ij)
∂ξi

ej + T ijei · ek
∂ej
∂ξk

=
1

J
∂(J T ij)
∂ξi

ej + T ijδki Γljkel

=
1

J
∂(J T ij)
∂ξi

ej + T ijΓljiel

=

(
1

J
∂(J T ij)
∂ξi

+ T ilΓjli

)
ej

(1.2.236)

Which is a fairly simple form in the end. One other useful form is given by

∇ ·
↔
T =∇ · (T i·jeiej) =∇ · (T i·jei)ej + T i·jei · ∇ej

=
1

J
∂(J T i·j)
∂ξi

ej + T i·jei · ek
∂ej

∂ξk
=

1

J
∂(J T i·j)
∂ξi

ej − T i·jδki Γljke
l

=
1

J
∂(J T i·j)
∂ξi

ej − T i·jΓljiel

=

(
1

J
∂(J T i·j)
∂ξi

− T i·lΓ
j
li

)
ej

(1.2.237)

One last cautionary note is in order, again. Online and in some texts you will see ∇ ·
↔
T
ᵀ

as the
“divergence”. This has been done so that Gauss’s Law can be written simply as

((((
((((

(((
((((

(((
((((

((hhhhhhhhhhhhhhhhhhhhhhhh

˚
div(

↔
T) dV =

˚
∇ ·

↔
T
ᵀ

dV =

‹
↔
T · dS (1.2.238)

We don’t need to worry about such problems in our text because we have
˜

dS · f rather than˜
f · dS so the normal vector applies to the tensor from the left. This will be more fully discussed

in the next section.
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1.2.10.4 Derivatives on Tensors

Let’s actually talk about derivatives when applied to tensors. For this textbook, an operator acting
on a tensor acts on the nearest index to its right. Thus, as we saw in the previous Section 1.2.10.3
we have in Cartesian coordinates

∇ ·
↔
T = x̂k ·

∂(T ijx̂ix̂j)

∂xk
= x̂k · x̂i

∂Tij
∂xk

x̂j = δik
∂Tij
∂xk

x̂j =
∂Tij
∂xi

x̂j (1.2.239)

and not on the second index so

∇ ·
↔
T 6= ∂T ij

∂xj
êi (1.2.240)

This latter definition can be convenient in certain situations (when you put the normal associated
with a differential surface to the right side in an integral, this definition does not require tensors
to be transposed when dotting into it), but becomes a source of confusion because then the del
operator is no longer directly operating on the thing to its right. Thus, expressions become more
difficult to understand in more complicated expressions. If we wish to act on the second index of a
tensor, it makes more sense to use a special symbol such as ∇R or transposes so that (again with
Cartesian vectors only)

∇R ·
↔
T =∇ ·

↔
T
ᵀ

=
∂T ij êj
∂xj

(1.2.241)

Luckily, such an operation is rarely needed, and so this will be the only time this operator ∇R·
is seen in this book. With the principle that operators act on the nearest index we see the
generalizations for cross products as well

(V ×
↔
T) = Vie

i × Tjkejek = V iei × T jkejek = · · · (1.2.242)

with all the different representations of course possible. However the most useful representations
are

(V ×
↔
T)·lk = εijkJV

iT jl (1.2.243)

(V ×
↔
T)kl = εijkJV

iT j·l (1.2.244)

(V ×
↔
T)kl = εijkJ ViT ·lj (1.2.245)

(V ×
↔
T)k·l = εijkJ ViTjl (1.2.246)

(
↔
T ×V)il = εjklJT

·j
i V

k (1.2.247)

(
↔
T ×V)i·l = εjklJT

ijV k (1.2.248)

(
↔
T ×V)il = εjklJ T i·lVk (1.2.249)

(
↔
T ×V)·li = εjklJ T i·jVk (1.2.250)

One can also look at the curl, but it is defined analogously, but not often used. See Section 1.2.10.2
for how the curl acts on a tensor.
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1.2.10.5 Vector Differentiation

Now let’s focus on vector differentiation and explain what ∂ei/∂ξ
j means. Once again we will see

the danger of confusion when we confuse the components of a vector with a geometric vector. When
we have a vector V, we can represent it however we wish, covariantly V = Vie

i or contravariantly
V = V iei. We can write the differential as

dV =
∂V

∂ξi
dξi (1.2.251)

and so the partial derivates can thus be formed via substitution for contravariant and covariant
representations

∂V

∂ξj
=

∂

∂ξj
[
V iei

]
=
∂V i

∂ξj
ei + V i ∂ei

∂ξj
(1.2.252)

∂V

∂ξj
=

∂

∂ξj
[
Vie

i
]

=
∂Vi
∂ξj

ei + Vi
∂ei

∂ξj
(1.2.253)

Now, we can then find what these vectors are in contravariant form

∂V

∂ξj
· ekek =

(
∂V

∂ξj

)k
ek =

∂V i

∂ξj
ei · ekek + V i ∂ei

∂ξj
· ekek

=
∂V k

∂ξj
ek + V i ∂ei

∂ξj
· ekek

(1.2.254)

or covariant form

∂V

∂ξj
· ekek =

(
∂V

∂ξj

)
k

ek =
∂Vi
∂ξj

ei · ekek + Vi
∂ei

∂ξj
· ekek

=
∂Vk
∂ξj

ek + Vi
∂ei

∂ξj
· ekek

(1.2.255)

It is less useful, but also possible to find alternate contravariant and covariant forms

∂V

∂ξj
· ekek =

(
∂V

∂ξj

)k
ek =

∂Vi
∂ξj

ei · ekek + Vi
∂ei

∂ξj
· ekek

=
∂Vi
∂ξj

gikek + Vi
∂ei

∂ξj
· ekek

(1.2.256)

∂V

∂ξj
· ekek =

(
∂V

∂ξj

)
k

ek =
∂V i

∂ξj
ei · ekek + V i ∂ei

∂ξj
· ekek

=
∂V i

∂ξj
gike

k + V i ∂ei
∂ξj
· ekek

(1.2.257)

which require metric elements from gij or gij.

We can then note that if we want to use the contravariant components of V for computations we
should use (1.2.254). If we want to use the covariant components of V for the computation we use
(1.2.255).

The notation and terminology used is that (∂V/∂ξj)k and (∂V/∂ξj)k are the components of the
covariant derivative of V. It is called a covariant derivative because if you view the components
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of a vector as what a vector is, then the derivative of a vector is simply the derivative of its
components. The covariant derivative then takes into account that ei and ei can vary in space.
Thus a covariant derivative of V is not the same as a derivative of the components of V. Thus we
see that the “derivative of V” is confusing because some people mean that V is its components,
in which case the extra terms coming from basis vectors are not easy to see as necessary. In our
formulation where V is a geometric object, then it is clear that the derivative (indeed, the covariant
derivative) is the proper object for looking at changes because we explicitly show our coordinates
in the representation through the basis vectors.

People then call

dV =
∂V

∂ξj
dξj

=
∂V k

∂ξj
ek dξj + V i ∂ei

∂ξj
· ekek dξj

=
∂Vk
∂ξj

ek dξj + Vi
∂ei

∂ξj
· ekek dξj

(1.2.258)

the absolute differential or the intrinsic differential.

These “extra” terms are intuitive and transparent with vectors as geometrical objects, but very
surprising when thinking of vectors as arrays of numbers. When vectors are components, one
must “derive” the extra terms by enforcing that the vector components satisfy the covariant or
contravariant transformation rules between coordinate systems. These terms can then seem as
rather obscure extra terms added to the natural vector derivative, rather than terms that make
perfect sense from a geometric point of view.

In order to make sure that the full, that is covariant derivatives are used, a new notation is often
used with indices where

V k
;j ≡

(
∂V

∂ξj

)k
=
∂V k

∂ξj
+ V i ∂ei

∂ξj
· ek (1.2.259)

Vk;j ≡
(
∂V

∂ξj

)
k

=
∂Vk
∂ξj

+ Vi
∂ei

∂ξj
· ek (1.2.260)

Let’s now explore how to write these in terms of the metric coefficients. We can write

∂ei
∂ξj

=
∂ei
∂ξj
· ekek =

(
∂ei
∂ξj

)k
ek (1.2.261)

∂ei
∂ξj

=
∂ei
∂ξj
· ekek =

(
∂ei
∂ξj

)
k

ek (1.2.262)

We note that we can swap the j and k indices without changing things in the following term

∂ek
∂ξj

=
∂

∂ξj
∂x

∂ξk
=

∂

∂ξk
∂x

∂ξj
=
∂ej
∂ξk

(1.2.263)

We can then use that ek = gklel so that

∂ei
∂ξj
· ek =

∂ei
∂ξj
· gklel (1.2.264)
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We can then split this in half and use (1.2.263) so that

∂ei
∂ξj
· ek =

∂ei
∂ξj
· gklel =

gkl

2

[
el ·

∂ei
∂ξj

+ el ·
∂ei
∂ξj

]
=
gkl

2

[
el ·

∂ei
∂ξj

+ el ·
∂ej
∂ξi

]
(1.2.265)

Now we can continue some changes. We’d like to get the ei and el into dot products with each
other. We can use

∂ei · el
∂ξj

= el ·
∂ei
∂ξj

+ ei ·
∂el
∂ξj

(1.2.266)

∂ej · el
∂ξi

= el ·
∂ej
∂ξi

+ ej ·
∂el
∂ξi

(1.2.267)

Thus,

∂ei
∂ξj
· ek =

gkl

2

[
el ·

∂ei
∂ξj

+ el ·
∂ej
∂ξi

]
=
gkl

2

[
∂(ei · el)
∂ξj

− ei ·
∂el
∂ξj

+
∂ (ej · el)

∂ξi
− ej ·

∂el
∂ξi

]
(1.2.268)

We then use

ei ·
∂el
∂ξj

+ ej ·
∂el
∂ξi

= ei ·
∂ej
∂ξl

+ ej ·
∂ei
∂ξl

=
∂(ei · ej)
∂ξl

(1.2.269)

So that

∂ei
∂ξj
· ek =

gkl

2

[
∂(ei · el)
∂ξj

+
∂ (ej · el)

∂ξi
− ∂(ei · ej)

∂ξl

]
=
gkl

2

[
∂gil
∂ξj

+
∂gjl
∂ξi
− ∂gij
∂ξl

] (1.2.270)

We can then use

∂

∂ξj
(
ei · ek

)
=
∂δki
∂ξj

= 0 (1.2.271)

So

ei ·
∂ek

∂ξj
= −ek · ∂ei

∂ξj
(1.2.272)

and we can write

∂ei

∂ξj
· ek = −g

il

2

[
∂gkl
∂ξj

+
∂gjl
∂ξk
− ∂gkj

∂ξl

]
(1.2.273)

If we rewrite our covariant derivatives with metric components, we find

V k
;j ≡

(
∂V

∂ξj

)k
=
∂V k

∂ξj
+ V i g

kl

2

[
∂gil
∂ξj

+
∂gjl
∂ξi
− ∂gij
∂ξl

]
(1.2.274)

Vk;j ≡
(
∂V

∂ξj

)
k

=
∂Vk
∂ξj
− Vi

gil

2

[
∂gkl
∂ξj

+
∂gjl
∂ξk
− ∂gkj

∂ξl

]
(1.2.275)
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Because people don’t like writing all of that above, people have defined symbols, called the Christof-
fel symbols, in order to simplify notation. Sometimes the Christoffel symbols are called connection
coefficients or affine connections. These are just symbolic notations for the part in square brackets
above. There are multiple notations for them, but it should be remembered that these symbols
are not tensors themselves.35

The Christoffel symbols of the second kind are defined via

ek · ∂ei
∂ξj
≡
{

k
i j

}
= Γkij =

gkl

2

[
∂gil
∂ξj

+
∂gjl
∂ξi
− ∂gij
∂ξl

]
(1.2.276)

The Christoffel symbols of the first kind are similar to the previous symbols but dotting the tangent
basis vectors on the outside

ek ·
∂ei
∂ξj
≡
[

k
i j

]
= [k, ij] = Γk,ij =

1

2

[
∂gik
∂ξj

+
∂gjk
∂ξi
− ∂gij
∂ξk

]
(1.2.277)

This can be seen by going back to (1.2.264) and then following the derivation without the factor
of gkl included. Because of our identity (1.2.263), it is clear that the indices i and j above can be
switched without changing the values, so

Γkij =

{
k
i j

}
=

{
k
j i

}
= Γkji (1.2.278)

Γk,ij = [k, ij] =

[
k
i j

]
=

[
k
j i

]
= [k, ji] = Γk,ji (1.2.279)

It is also clear from this that

Γkij = gklΓl,ij (1.2.280)

Γk,ij = gklΓ
l
ij (1.2.281)

The Christoffel symbols of the first kind tend to be less useful, though it can be used for mixed
tensor representations. Since ∇ is most easily represented as êi ∂

∂ξi
, using Γk,ij is not as easy of a

form to work with.

It should be noted that given a coordinate system the above can be written as

(∇V)·kj ≡
(
∂V

∂ξj

)k
ejek =

[
∂V k

∂ξj
+ V iΓkij

]
ejek (1.2.282)

(∇V)jk ≡
(
∂V

∂ξj

)
k

ejek =

[
∂Vk
∂ξj
− ViΓikj

]
ejek (1.2.283)

(∇V)jk ≡
(
∂V

∂ξj

)k
gjlelek =

[
∂V k

∂ξj
gjl + V igjlΓkij

]
elek (1.2.284)

(∇V)j·k ≡
(
∂V

∂ξj

)
k

gjlele
k =

[
∂Vk
∂ξj

gjl − VigjlΓikj
]

ele
k (1.2.285)

35In addition, some people use a different definition for the Christoffel symbols. So always check that any literature
you are using is using my definition, which is by far the most common.
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as the contravariant, covariant, and mixed representations of the tensor ∇V.

To summarize the rest of our results
∂ei
∂ξj

=
∂ei
∂ξj
· ekek = Γkijek (1.2.286)

∂ei

∂ξj
=
∂ei

∂ξj
· ekek = −∂ek

∂ξj
· eiek = −Γijke

k = −Γikje
k (1.2.287)

∂ei
∂ξj

=
∂ei
∂ξj
· ekek = Γk,ije

k (1.2.288)

∂ei

∂ξj
=
∂ei

∂ξj
· ekek =

∂ei

∂ξj
· gklelek = −gkl ∂el

∂ξj
· eiek = −gklΓiljek = −gklΓijlek (1.2.289)

Γkij =
gkl

2

[
∂gil
∂ξj

+
∂gjl
∂ξi
− ∂gij
∂ξl

]
= gklΓl,ij (1.2.290)

Γk,ij =
1

2

[
∂gik
∂ξj

+
∂gjk
∂ξi
− ∂gij
∂ξk

]
= gklΓ

l
ij (1.2.291)

For your convenience, I will also list them with swapped indices because different texts decide on
different orders of i, j, k.

∂ej
∂ξk

= Γijkei (1.2.292)

∂ej

∂ξk
= −Γijke

i (1.2.293)

∂ej
∂ξk

= Γi,jke
i (1.2.294)

∂ej

∂ξk
= −gilΓjklel (1.2.295)

Γijk =
gil

2

[
∂gjl
∂ξk

+
∂gkl
∂ξj
− ∂gjk

∂ξl

]
= gilΓl,jk (1.2.296)

Γi,jk =
1

2

[
∂gij
∂ξk

+
∂gik
∂ξj
− ∂gjk

∂ξi

]
= gilΓ

l
jk (1.2.297)

and
∂ei
∂ξk

= Γjikej (1.2.298)

∂ei

∂ξk
= −Γjike

j (1.2.299)

∂ei
∂ξk

= Γj,ike
j (1.2.300)

∂ei

∂ξk
= −gjlΓiklel (1.2.301)

Γjik =
gjl

2

[
∂gil
∂ξk

+
∂gkl
∂ξi
− ∂gik

∂ξl

]
= gjlΓl,ik (1.2.302)

Γj,ik =
1

2

[
∂gij
∂ξk

+
∂gjk
∂ξj
− ∂gik
∂ξj

]
= gjlΓ

l
ik (1.2.303)
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1.2.11 Useful Relations

Some useful relations used for integration along lines, surfaces, and volumes can be derived from
differentials among the coordinates. For arclengths, we care about arclengths along a coordinate
curve. Because we are along a specific coordinate curve (with index i′) we can write

dli′ ≡ | dxi
′ | ≡

√
∂x

∂ξi′
dξi′ · ∂x

∂ξi′
dξi′ =

√
ei′ dξi

′ · ei′ dξ′ (1.2.304)

using differentials. That is, we have along our arc dli′ used that ξi′ is the only varying coordinate
and so dξj

′
= dξk

′
= 0. Thus

dli′ =
√

ei′ · ei′ dξi
′
=
√
gi′i′ dξ

i′ = hi′ dξ
i′ (1.2.305)

We can then use the reciprocal formulas for ei from (1.2.64)-(1.2.65) to find

ei′ · ei′ = J 2|ej′ × ek
′|2 (1.2.306)

to write

dli′ = J |ej′ × ek
′| dξi′ = J |∇ξj′ × ∇ξk′ | dξi′ (1.2.307)

Next we can find the differential area along a surface where ξi′ is constant. Thus only ξj′ and ξk′

are allowed to vary and dξi
′
= 0. We can thus use dSi′ as the definition of a surface along constant

ξi
′ .

dSi′ ≡ | dXj′ × dXk′| =
∣∣∣∣ ∂X

∂ξj′
× ∂X

∂ξk′

∣∣∣∣ dξj
′
dξk

′

= |ej′ × ek′| dξj
′
dξk

′
(1.2.308)

We can then use the reciprocal vector relations (1.2.64)-(1.2.65) to find

ej′ × ek′ = J ei
′
= J ∇ξi′ (1.2.309)

and (remember that this is along a surface where ξi′ is constant)

dSi′ = ±J ∇ξi′ dξj′ dξk′ (1.2.310)

dSi′ = J |∇ξi′ | dξj′ dξk′ (1.2.311)

When using a normal surface, one must choose the outward direction appropriately against ξi′ .
That is, we must choose the outward normal based (and so ±) on what direction ∇ξi′ points in.

One other format is using

|ej′ × ek′|2 = (ej′ × ek′) · (ej′ × ek′) (1.2.312)

Then we can use the vector relation

(A×B) · (C×D) = (A ·C)(B ·D)− (A ·D)(B ·C) (1.2.313)

so that

dSi′ =
√
gj′j′gk′k′ − (gj′k′)2 dξj

′
dξk

′
(1.2.314)

Finally, the differential volume is simply given by

d3x = dx1 · dx2 × dx3 = e1 · (e2 × e3) dξ1 dξ2 dξ3 = J dξ1 dξ2 dξ3 (1.2.315)
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1.2.12 Pseudovectors and Pseudoscalars

There is another way of dividing up vectors, scalars, and even tensors that is a purely geometric
property. “Proper” vectors, are then often called polar vectors, true vectors, or just “vectors”.
These polar vectors have the property that when reflected across the origin, the orientation of
the vector also reflects [given coordinates x = xx̂ + yŷ + zẑ then a polar vector transforms as
V(−x) = −V(x))]. An axial vector or pseudovector is a type of vector that remains invariant
so that v(−x) = v(x). A polar vector and pseudovector both transform the same (as geometric
vectors) under “proper rotations” which just means under normal rotation with no reflection. If
we write out a coordinate transformation as a matrix R for our particular coordinate system, then
detR = 1 is a proper rotation and detR = −1 is an improper rotation (so like a reflection, perhaps
with a rotation, though). Using matrices is the more general definition, but a parity inversion
(x→ −x) is the easiest test for a geometric vector being a polar vector or pseudovector type.36

Similarly we can define a pseudoscalar g as a scalar object such that g(−x) = −g(x) whereas a
true scalar or polar scalar37 f is a scalar type that does not change under this improper rotation
f(−x) = f(x). An example of a pseudoscalar for polar vectors A, B, and C is given by A ·B×C.
This means the Jacobian determinant is in fact a pseudoscalar.

We can then define pseudotensors by building up a tensor from vectors and using the properties
of the vectors (of either polar or pseudo types). In which case we call a tensor T of order N that
transforms such that T(−x) = (−1)NT(x) a true tensor type or polar tensor type. A pseudotensor
or axial tensor S of order N transforms such that S(−x) = (−1)N+1S(x).

Physically, we must have pseudotensors equal pseudotensors and tensors equal tensors or else the
equations are not true under improper rotations (so parity inversion, or mirroring). Thus, this can
serve as a check that equations are correct, like dimensional analysis. This is simply a statement
that we expect the physics of a situation not to change should we watch it in a mirror. In fact,
some physical processes may not respect this coordinate transformation, but in plasma physics
we do not expect parity inversion to alter the physics of the situation. Unfortunately there is no
separate notation for polar and pseudo types of scalars, vectors, and tensors, so that one must
either consult a list or test each scalar, vector, or tensor on its own to determine if it is a polar
type or pseudo type.

I will show how polar and pseudovectors are related under common operations. Similar relations
apply for tensors and pseudotensors in general.

First, when adding pseudovectors, the result is a pseudovector and similarly for vectors. Let vectors
be upper case A, B, C and pseudovectors a, b, c. Let S or s be a test vector (so it could be a
polar vector type or a pseudovector type). Then

S(x) = A(x) + B(x) (1.2.316)
S(−x) = A(−x) + B(−x) = −[A(x) + B(x)] = −S(x) (1.2.317)

36I may sometimes say pseudovector or polar vector rather than pseudovector type or polar vector type. It is
shorter, and in my nomenclature both pseudovectors and polar vectors are types of vectors.

37I have never heard someone use “polar” scalar, but I introduce it so I can use it consistently for scalars, vectors,
and tensors.
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showing S is a vector. Similarly for pseudovectors we find

s(x) = a(x) + b(x) (1.2.318)
s(−x) = a(−x) + b(−x) = a(x) + b(x) = s(x) (1.2.319)

so s is a pseudovector in this case. If we do a mix of both types then the resultant quantity is
neither a polar vector or a pseudovector. We see this via

S(x) = a(x) + B(x) (1.2.320)

S(−x) = a(−x) + B(−x) = a(x)−B(x) 6=

{
S(x)

−S(x)
(1.2.321)

Therefore S in this case is a vector of neither the polar vector type or the pseudovector type.

Then for dot products with polar vectors we find

f(x) = A(x) ·B(x) (1.2.322)
f(−x) = A(−x) ·B(−x) = A(x) ·B(x) = f(x) (1.2.323)

so f is a scalar. For dot products with pseudovectors we find

f(x) = a(x) · b(x) (1.2.324)
f(−x) = a(−x) · b(−x) = −a(x) · (−b(x)) = f(x) (1.2.325)

and f is a scalar again. For a mixed dot product

g(x) = A(x) · b(x) (1.2.326)
g(−x) = A(−x) · b(−x) = A(x) · (−b(x)) = −g(x) (1.2.327)
g(x) = a(x) ·B(x) (1.2.328)

g(−x) = a(−x) ·B(−x) = −a(x) ·B(x) = −g(x) (1.2.329)

so g is a pseudoscalar.

We use that for two polar vectors in a cross product we have

s(x) = A(x)×B(x) (1.2.330)
s(−x) = A(−x)×B(−x) = [−A(x)]× [−B(x)] = A(x)×B(x) = s(x) (1.2.331)

and so indeed two polar vectors in a cross product produces a pseudovector. For two pseudovectors
we find

s(x) = a(x)× b(x) (1.2.332)
s(−x) = a(−x)× b(−x) = a(x)× b(x) = s(x) (1.2.333)

and so a pseudovector once again. For a mix we have

S(x) = a(x)×B(x) = −B(x)× a(x) (1.2.334)
S(−x) = a(−x)×B(−x) = a(x)× [−B(x)] = −a×B(x) = −S(x) (1.2.335)
−S(−x) = B(−x)× a(−x) = [−B(x)]× a(x) = −B(x)× a(x) = S(x) (1.2.336)
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showing that S is a polar vector when you cross a pseudovector with a polar vector.

As I have stated, if you expect inversion to not change the physics then you can use these properties
to check that equations are consistent. If you think physics does not respect inversion, then you
have discovered a breaking of a usual symmetry and should decide if it is physically realistic and
explain the new physics.

We can also consider physics under time reversal (a parity inversion for time). We require most
classical physical equations to be invariant under time reversal. This implies that some quantities
have q(−t) = −q(t). We will call such a quantity odd in time reversal, whereas q(−t) = q(t) is
even.

We summarize our results and show time reversal in Table 1.5.
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Object Definition Type Time Reversal
polar scalar f(−x) = f(x)
pseudoscalar g(−x) = −g(x)
polar vector A(−x) = −A(x)
pseudovector a(−x) = a(x)
order N polar tensor T(−x) = (−1)NT(x)
order N pseudotensor t(−x) = (−1)N+1t(x)
f · f scalar multiplication polar scalar
f · g scalar multiplication pseudoscalar
g · g scalar multiplication polar scalar
A ·B dot product polar scalar
A · b dot product pseudoscalar
a · b dot product polar scalar
A×B cross product pseudovector
A · b cross product polar vector
a · b cross product pseudovector
x position polar vector even
v velocity polar vector odd
p momentum polar vector odd
L angular momentum polar vector odd
F Force polar vector even
τ torque pseudovector even
mv2/2 = p2/(2m) kinetic energy polar scalar even
U(x) potential energy polar scalar even
ρq electric charge density polar scalar even
J current density polar vector odd
E electric field polar vector even
A magnetic vector potential polar vector odd
B magnetic field pseudovector odd
H H field pseudovector odd
E×H Poynting vector polar vector odd
↔
σ Maxwell stress tensor polar tensor even

Table 1.5: The vector types are shown for various operations. Here f is a polar scalar, g is a
pseudoscalar, and lower case tensors are pseudotensors and upper case tensors are polar tensors.
Examples of physical quantities of various types are also shown.
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1.3 Fourier Series

What would life be without arithmetic, but a scene of horrors?

— Sydney Smith

In this chapter we review the definition of Fourier series and delve into their use in toroidal
coordinate systems. In doing so, we will see how to interpret m and n, poloidal and toroidal
Fourier components, respectively, (often called “modes”38) for plasma dynamics. We will then
consider the Fourier transforms and Laplace transforms. Finally, we will consider the ballooning
transform, which is used in specific approximation schemes and is related to the Fourier transform.

1.3.1 Definition

Let’s begin with the motivation and definition of a Fourier series. This will lead into the concept
of a Fourier transform (and later a Laplace transform), which have a stunning array of uses in
mathematical physics. To start, we will start with a function f that is differentiable and square
integrable. To a certain degree, some of these assumptions can be relaxed mathematically, but as
a physicist, I will assume any physical situation will satisfy the constraints necessary to make the
definition sensible. For convenience, we won’t consider pathological cases, and so “nice” functions
that are differentiable as many times as we need will be considered.

In one dimension, let’s consider f(x) for the real variable x. Suppose we wish to approximate f(x).
Let’s also suppose that we only care about x over a finite domain from [−L/2, L/2] (so of length
L). In fact, we will just consider the function to be periodic in length L, so that [−3L/2,−L/2]
and [L/2, 3L/2] are identical to [−L/2, L/2], which enforces f(−L/2) = f(L/2).39 Then how can
we approximate such a function? We can always default to a Taylor series, but they become
inaccurate as we get far from the point we are approximating. We want something that better
approximates the function over the entire domain. Instead, we can look at the function, and pick
out the important wavenumbers and use those to approximate the function.40 What does this
mean? It means we write our function as a sum of wavenumbers. For example, if we choose to
have 2N + 1 wavenumber terms, we write

f(x) ≈
N∑

j=−N

fj exp(2iπjx/L) =
∑
j

fj exp(ijkx) (1.3.1)

where i is the imaginary unit and the wavenumber is often defined as k = 2π/L. The question
then becomes what are these fj that are now independent of x. We can use that

ˆ π

−π
dx exp(ijx) exp(ij′x) = 2πδj,−j′ (1.3.2)

38This naming convention is unfortunate since components are not necessarily modes, or eigenstates of a system.
39This is not, strictly speaking, necessary to form the series, but if it is not true you would almost certainly be

better served reformulating the problem so that it does, like with a Chebyshev series. See especially Boyd[5], who
is an excellent resource and excellent writer. He has a great sense of humor and his writing style is not boring.
Fourier series are most accurate when dealing with periodic functions.

40If you prefer x to be time than space, then we look at the important frequencies rather than wavenumbers.
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where δj,−j′ equals 0 unless j = −j′. Thus if we multiply (1.3.1) by exp(−2iπj′x/L) and integrate
over our domain we find

ˆ L/2

−L/2
dx f(x) exp(−2iπj′x/L) =

ˆ L/2

−L/2
dx

N∑
j=−N

fj exp(2iπjx/L) exp(−2iπj′x/L) (1.3.3)

We can use that fj is independent of x and that the sum and integral can be interchanged41 so
that

ˆ L/2

−L/2
dx f(x) exp(2iπj′x/L) =

N∑
j=−N

fj

ˆ L/2

−L/2
dx exp(i2πjx/L) exp(−2iπj′x/L) (1.3.4)

define y = 2πx/L and this becomes

ˆ L/2

−L/2
dx f(x) exp(−2iπj′x/L) =

N∑
j=−N

L

2π
fj

ˆ π

−π
dy exp(ijy) exp(−ij′y) =

N∑
j=−N

Lδj,j′fj = Lfj′

(1.3.5)

which can be rewritten as

fj =
1

L

ˆ L/2

−L/2
dx f(x) exp(−2iπjx/L) (1.3.6)

This means that [remember f(x) is a real valued function here]

f−j =
1

L

ˆ L/2

−L/2
dx f(x) exp(−2iπ(−j)x/L) =

1

L

ˆ L/2

−L/2
dx f(x) exp(2iπjx/L)

=

[
1

L

ˆ L/2

−L/2
dx f(x) exp(−2iπjx/L)

]∗
= f ∗j

(1.3.7)

for ∗ the complex conjugation operation. In general, for multiple dimensions we can treat x, y, and
z independently and so we’d find for k = 2πp/Lxx̂+2πq/Lyŷ+2πr/Lzẑ where x ∈ [−Lx/2, Lx/2],
y ∈ [−Ly/2, Ly/2], and z ∈ [−Lz/2, Lz/2]

f(x) ≈
Np∑

p=−Np

Nq∑
q=−Nq

Nr∑
r=−Nr

fp,q,r exp (2iπ [px/Lx + qy/Ly + rz/Lz]) =

Np∑
p=−Np

Nq∑
q=−Nq

Nr∑
r=−Nr

fp,q,r exp(ik · x)

(1.3.8)

fp,q,r =
1

LxLyLz

˚
dV f(x) exp(−ik · x) (1.3.9)

Especially in physics, you will see a reduced notation where the summation is over kx = 2πp/Lx,
ky = 2πq/Ly, and kz = 2πr/Lz. The sum is then not over integers but the values allowed for kx,

41If it were not possible to exchange the order of the integral and sum, that would mean that we must have some
sort of divergent series or integral. Thus we are not working with “nice” functions.
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ky, and kz. There is often an even further reduction using k =
√
k2
x + k2

y + k2
z with the assumed

p, q, r dependences. Thus

f(x) ≈
Np∑

p=−Np

Nq∑
q=−Nq

Nr∑
r=−Nr

fp,q,r exp(ik · x) ≡
∑
kx

∑
ky

∑
kz

fkx,ky ,kz exp(ik · x) ≡
∑
k

fkx,ky ,kz exp(ik · x)

(1.3.10)

fkx,ky ,kz =
1

LxLyLz

˚
dV f(x) exp(−ik · x) (1.3.11)

One is then left to determine what the permissible k and components of k are with this notation.
This strong implicit component makes the notation less useful in direct calculation, but makes it
easier to write and so perform manipulations for Fourier series formulas.

The Fourier series approximation allows us to do especially well with periodic functions. In many
contexts people prefer to write the series only with sin and cos rather than an exponential. If we
were to convert it to sines and cosines using the famous Euler formula exp(iφ) = cosφ + sinφ we
find

f(x) ≈
N∑

j=−N

fj exp(ijkx) =
N∑

j=−N

[fj cos(jkx) + ifj sin(jkx)] (1.3.12)

We can then use cos(−x) = cos(x) and sin(−x) = − sin(x) so

f(x) ≈ f0 +
N∑
j=1

[(fj + f−j) cos(jkx) + ifj sin(jkx) + if−j sin(−jkx)]

≈ f0 +
N∑
j=1

[(fj + f−j) cos(jkx) + i(fj − f−j) sin(jkx)]

≈ f0 +
N∑
j=1

[
(fj + f ∗j ) cos(jkx) + i(fj − f ∗j ) sin(jkx)

]
(1.3.13)

Where I have rearranged terms because when using sines and cosines we don’t use negative values
for j. Also remember f−j = f ∗j . Perhaps unfortunately, the conventional definition for cosines and
sines is given by

aj =
2

L

ˆ L/2

−L/2
dx f(x) cos(kx) (1.3.14)

bj =
2

L

ˆ L/2

−L/2
dx f(x) sin(kx) (1.3.15)

and so there is an extra factor of 2 to be accounted for so that for j > 0

aj ≡
fj + f ∗j

2
= <fj (1.3.16)

bj ≡
fj − f ∗j

2i
= =fj (1.3.17)
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with a0 = 2f0 and b0 = 0. So that the series is written as

f(x) ≈ a0

2
+

N∑
j=1

aj cos

(
2πjx

L

)
+

N∑
j=1

bj sin

(
2πjx

L

)
(1.3.18)

with the definitions for aj and bj given above.

As we let the Np,q,r → ∞ we get a more accurate approximation. If we think of our function’s
domain as expanding such that L → ∞, as well, we get to the Fourier transform to be explored
later in Section 1.3.3. It is worth noting here that L → ∞ implies that k → 0, so that we are
considering smaller and smaller wavenumbers as the domain increases.

1.3.2 Series in Toroidal-like Coordinates

In plasma physics, we often use a coordinate system of (r, θ, ζ) where r is a radial-like variable, θ
is a poloidal variable, and ζ is a toroidal variable. For a torus, r is the minor radius, θ is the angle
that goes around the torus the short way, and ζ is the angle that goes around the torus the long
way. Because in many applications r is a flux function, we only care about variation along that
surface, and so we wish to Fourier expand only in the angles and not the radial-like flux coordinate
variable r. We define fr′(θ, ζ) ≡ g(r = r′, θ, ζ) and then drop the subscript r′ as this is done for
any r of interest. We desire

f(θ, ζ) =
∞∑

m=−∞

∞∑
n=−∞

fm,n exp(i(mθ − nζ)) (1.3.19)

where I have used a fairly common definition of the Fourier modes for θ and ζ. Unfortunately
there is no convention universally followed in plasma physics for m and n Fourier series. This is for
a variety of reasons including that it is not necessarily consistent with the Fourier series defined
above, but also having to do with the positive directions of θ and ζ. One could imagine three other
reasonable choices

f(θ, ζ)
?
=

∞∑
m=−∞

∞∑
n=−∞

fm,n exp(i(mθ + nζ)) (1.3.20)

f(θ, ζ)
?
=

∞∑
m=−∞

∞∑
n=−∞

fm,n exp(i(−mθ + nζ)) (1.3.21)

f(θ, ζ)
?
=

∞∑
m=−∞

∞∑
n=−∞

fm,n exp(−i(mθ + nζ)) (1.3.22)

It is a hazard of the profession that there is no standard definition and one must then carefully
follow negative signs if an author diverges from the definition in (1.3.19). The reason for the
choice in (1.3.19) is so that the safety factor for plasmas (we will cover this later in Section
2.2.3.1) is defined as a positive value. The safety factor on rational surfaces then simply becomes
q = m/n with this definition. When using (1.3.20) one must realize that q = −m/n. With (1.3.21)
q = (−m)/(−n) = m/n again,42 but the helicity is in the opposite direction of the q in (1.3.19).

42The cancelling minus signs emphasize the opposite helicity.
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Similarly, (1.3.22) yields q = m/(−n) = −m/n the same value as for (1.3.20), but with opposite
helicity.43

Using our “standard” definition, then we can work out what the function would look like spatially.
If certain fm,n are more prominent, then one speaks of the (poloidal) m = M “mode”44 being
dominant or the (toroidal) n = N “mode” being dominant. If a specific combination of Fourier
components is dominant then we can speak of the (M,N) “mode” being dominant. Once again,
caution must be taken when interpreting anything of the form (M,N). While poloidal “mode”
numbers often precede toroidal “mode” numbers in the parentheses, it is by no means universal.45
In addition, some will write n/m instead of m/n when talking of the “mode” structure. I will now
speak of Fourier components instead of “modes” so that there is no misinterpretations that they
must represent the solution of a linear eigenmode.46

Now that we have explained some of the nomenclature, let’s look at some plots and explain how
plasma physicists often characterize them. The simple explanation is that if you are shown an
(R,Z) plot, that is a plot at constant ζ, then you count the number of peaks in a periodic shape
going around the magnetic axis clockwise or counterclockwise at a certain “radius” (not necessarily
the circular radius, but a constant for a radial-like variable), and this will equal the poloidal
component number M . If someone plots a constant Z surface, then you count the number of
peaks around the torus and this will be the toroidal component number N .

This can easily be seen if you are able to divide up the value you are looking at into a steady
state or equilibrium value47 with a perturbation on top. The full images are shown on the left for
m = 0, 1, 2, 3 in Figure 1.4 and Figure 1.5. One can see that there is a circular structure around
the peak value (if the minor radius r = 0 is located at the peak value, then the structure is around
r = 0.4 to r = 0.5). As we go around this circular structure we will see the values form peaks and
troughs. The number of peaks (or troughs) gives us m. This is much clearer when we can separate
out these circular structure perturbations, as seen in the right of the figures with Perturbation for
the titles. It is easy to count the peaks (or troughs) and see what m = M structures look like.

1.3.2.1 Perturbations and Fourier Series

There is also one other way that Fourier components are used to describe plasma behavior. This is
to explain how the perturbation of the plasma from a perfect torus (or a perfect cylinder) appears.
We will consider a cylinder for easier visualization (one “just” needs to connect the ends of the

43Generally this is not a problem because q > 0 or q < 0 completely and so losing the sign does not lose any
information about the geometry of the problem, but if q has both negative and positive values, such as in a reverse
field pinch, then it is important to know the sign of q.

44Technically speaking, unless the function’s Fourier components are solutions to the linear eigenmodes, these
are not modes. They are simply Fourier components and should be called such; however, it is common to hear of
the Fourier components being called modes, and one should be prepared to encounter this abuse of notation. I will
put mode in quotation marks to emphasize the fact that these are Fourier components and not necessarily actual
modes.

45That is, if you are given (3, 1) you have to see what the author is using. It could be (M,N) or (N,M).
46There is some nuance between the terms eigenmode and eigenfunction, but it almost never presents a problem

to understanding. The important idea is that one gets an eigenvalue that characterizes the solution. In fact, it
would be more appropriate in English to call these characteristic values, characteristic modes, and characteristic
functions, but we have universally adopted the German eigen instead.

47These are usually interpreted as the linear eigenfunction. In nonlinear settings, it is less clear what is meant in
general. It may mean perturbations upon an MHD equilibrium state.

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



84 Fourier Series

Figure 1.4: These images show how to find Fourier components of structures from contour plots
for m = 0 and m = 1. These will show poloidal structure because they are poloidal cuts of the
torus. A simulated value is shown (similar to pressure) with the structure on top on the “Full”
image on the left. Just the extra circular structure, considered a “Perturbation”, is shown on the
right. Note that while I called this a perturbation, there is no actual need for the structure to be
smaller than the actual values. The Fourier structure is there regardless of numerical values.
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Figure 1.5: These images show how to find Fourier components of structures from contour plots
for m = 2 and m = 3. These will show poloidal structure because they are poloidal cuts of the
torus. A simulated value is shown (similar to pressure) with the structure on top on the “Full”
image on the left. Just the extra circular structure, considered a “Perturbation”, is shown on the
right. Note that while I called this a perturbation, there is no actual need for the structure to be
smaller than the actual values. The Fourier structure is there regardless of numerical values.
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Figure 1.6: The left figure shows an m = 1, n = 0 kink against a reference m = 0, n = 0 surface.
The rightmost figure shows an m = 0, n = 1 external kink against a m = n = 0 surface.

cylinder together in a circle to get the toroidal version). We then can use the cylindrical coordinate
system (R,Z, θ) [note this is right-handed so θ increases in the opposite direction of ϕ in the usual
cylindrical system (r, ϕ, z) system]. For convenience let ζ = Z/L with Z ∈ [0, L]. If we write
perturbations to the cylindrical surface at radius R′ where R = R′ is constant, then we may write
that in general for a perturbation, the radius is given by

R = R′ + δR ′ = R′ + r′ exp(i(mθ − nζ)) (1.3.23)

where r′ � R′ for a perturbation and so then giving m and n tells us what the new shape of the
plasma looks like. Because many linear instabilities cause a specific m and n to grow, the shape of
the plasma can actually give us a good amount of information about the behavior of the instability
(or one could consider it the opposite, the behavior of the instability determines the shape of the
plasma). Thus if one speaks of a perturbation to the plasma of some (m,n) form, one is telling
you the shape of the toroidal plasma. This is rather difficult to visualize at first, but with a little
practice this becomes a quick and useful way of seeing what is going on. We will consider the
perturbation to be of the form sin(mθ− nζ) for convenience (this is simply so that at θ = 0, ζ = 0
the surface is unperturbed). If one holds n = 0 then increasing m makes the cylinder more and
more wavy. If one holds m = 0 and increases n, the cylinder decreases in diameter and increases
as one goes across the cylinder along Z. Combining them then gives grooves in the cylinder that
twist around it. Some pictures of these shapes are shown in Figure 1.6 and 1.7.

If you would like to play with this yourself to gain intuition, use your favorite plotting software
with the following equations

x = sin(θ)
[
R′ + r′ sin

(
mθ − nz

R′

)]
(1.3.24)

y = cos(θ)
[
R′ + r′ sin

(
mθ − nz

R′

)]
(1.3.25)

with z varying from [0, L] with L = 2πR′. Here the major radius R′, perturbation r′, m, and n are
constants that you should choose to make it convenient to see the behavior. Some useful values
are R′ = 1, and r′ = 0.35 to see m and n make some easily distinguishable shapes.
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Figure 1.7: The figure shows an m = 2, n = 2 external kink against a reference m = 0, n = 0
surface.

1.3.3 Fourier Transforms

It is time to consider Fourier transforms after having looked at Fourier series. As I said before,
they can be viewed as a generalization of the Fourier series when L→∞ and N →∞. To explain
exactly what I mean by that, we let the domain of the function become infinite, and the object we
called fj becomes a function of the wavenumber k often denoted f̃(k). We can consider x and k
Fourier pairs or Fourier conjugate variables.48 That is instead of a sum, we go to the continuous
series. Thus we define the Fourier transform for variables x and k as

F {f(x)} ≡ f̃(k) ≡
ˆ ∞
−∞

dx exp(−ikx)f(x) , (1.3.26)

F−1
{
f̃(k)

}
≡ f(x) ≡

ˆ ∞
−∞

dk

2π
exp(ikx)f̃(k) . (1.3.27)

It should be noted that the factor of 1/(2π) is often split differently, often with 1/
√

2π on the
Fourier (F) and inverse Fourier (F−1) terms. I prefer the 1/(2π) fully on the inverse Fourier
transform as it is both common and helps distinguish the inverse transform from the forward
transform in my mind.

A physics proof can be constructed in the following manner for one dimension (the generalization
to multiple dimensions easily follows). We write our Fourier series with a ∆j = (j + 1)− j = 1,

f(x) ≈
N∑

j=−N

fj exp(2πijx/L) =
∑
j

fj exp(2πijx/L)∆j (1.3.28)

We then define ∆k j = ∆
(

2πj
L

)
= 2π∆j

L
and write

f(x) ≈
∑
j

L

2π
fkj exp(ikjx)∆k j (1.3.29)

Now if we let N → ∞ while simultaneously letting L → ∞, we see that the we have essentially
written the definition of a Riemann integral, where we get smaller and smaller partitions ∆k as

48In quantum physics position x and momentum p have a similar conjugate relationship.
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L→∞, while summing a larger and larger number of terms from N →∞. Thus we can go from
a discrete sum to a continuous integral as we take both limits.49 To simplify notation we can write
Lfkj/2π = f̃(k) and let kj → k for simplicity of notation. We then have

f(x) =

ˆ ∞
−∞

dk f̃(k) exp(ikx) (1.3.30)

where we have used the “identity” (it isn’t an identity, but a loose identification)

f̃(k) =
L

2π
fkj (1.3.31)

where kj → k as N →∞. We can rewrite

fkj =
1

L

ˆ L/2

−L/2
dx f(x) exp(−ikjx) (1.3.32)

and so we find

f̃(k) = lim
N,L→∞

L

2π

1

L

ˆ L/2

−L/2
dx f(x) exp(−ikjx) =

1

2π

ˆ ∞
−∞

dx f(x) exp(−ikx) (1.3.33)

This gives us the definitions we previously stated.

Often, we want to do all three spatial variables as Fourier pairs, x and k:

F {f(x)} ≡ f̃(k) ≡
˚ ∞

−∞
d3x exp(−ik · x)f(x) , (1.3.34)

F−1
{
f̃(k)

}
≡ f(x) ≡

˚ ∞

−∞

d3k

(2π)3
exp(ik · x)f̃(k) , (1.3.35)

where ˚ ∞

−∞
d3ξ =

ˆ ∞
−∞

ˆ ∞
−∞

ˆ ∞
−∞

dξx dξydξz , (1.3.36)

and the limits of −∞ to ∞ are often omitted.

Now, to show that the inverse is actually the inverse, let’s say f(x) is one of our “nice” functions
whose Fourier transform is

F {f(x)} =

ˆ ∞
−∞

dx exp(−ikx)f(x) . (1.3.37)

Now we apply the inverse Fourier transform (using a dummy variable x′ to keep us from making
mistakes in labels)

F−1 {F {f(x)}} = F−1

{ˆ ∞
−∞

dx exp(−ikx)f(x)

}
(1.3.38)

=

ˆ ∞
−∞

dk

2π
exp(ikx)

ˆ ∞
−∞

dx′ exp(−ikx′)f(x′) =

ˆ ∞
−∞

dk

2π

ˆ ∞
−∞

dx′ exp(ik(x− x′))f(x′) .

(1.3.39)

49Note that for this to work, it must not matter whether we let N →∞ occur before L→∞ or vice versa. The
limit only makes sense if we can do it in either order.
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because we have well-defined “nice” function, we can switch the order of integration

F−1 {F {f(x)}} =

ˆ ∞
−∞

dx′
ˆ ∞
−∞

dk

2π
exp(ik(x− x′))f(x′) =

ˆ ∞
−∞

dx′ f(x′)

ˆ ∞
−∞

dk

2π
exp(ik[x− x′])︸ ︷︷ ︸
δ(x−x′)

(1.3.40)

=

ˆ ∞
−∞

dx′ δ(x− x′) f(x′) = f(x) , (1.3.41)

as stated. This did require us to use the identity
ˆ ∞
−∞

dk exp(ik[x− x′]) = 2πδ(x− x′) (1.3.42)

where the Dirac delta function is defined by (A < B)
ˆ B

A

dx′f(x′)δ(x− x′) =

{
f(x) if A < x′ < B

0 otherwise
(1.3.43)

but a mathematics textbook can justify this. It is required, as we see, so that the Fourier and
inverse Fourier series are actually inverses. This of course means that exp(ik[x− x′]) is used as a
generalized function, sometimes called a distribution.

See Appendix A for a table of common Fourier transforms.

1.3.4 Laplace Transforms

The Laplace transform is a mathematical transform that usually (assuming that it exists) is defined
as (s may be a complex number)

L {f(t)} ≡ F (s) ≡
ˆ ∞

0

dt exp(−st)f(t) . (1.3.44)

Then, the inverse Laplace transform (also assuming it exists) is found to be [={σ} = 0]

L−1 {F (s)} ≡ f(t) =

ˆ σ+i∞

σ−i∞

ds

2πi
exp(st)F (s) . (1.3.45)

Often people write this as

L−1 {F (s)} ≡ f(t) = lim
T→∞

ˆ σ+iT

σ−iT

ds

2πi
exp(st)F (s) ,

if they want to make it more rigorous. The use of the Laplace transform is that it brings in a sense
of causality, and makes solving initial value problem differential equations easier.

In plasma physics literature, we often find that the Laplace transform is redefined such that ω → is
(−iω → s) so that −i dω = ds and we then have

L {f(t)} = F (−iω) =

ˆ ∞
0

dt exp(iωt)f(t) , (1.3.46)
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Figure 1.8: Transformation from s complex space to ω complex space. The red diamonds indicate
poles.

and the inverse

L−1 {F (−iω)} ≡ f(t) =

ˆ i(σ+i∞)

i(σ−i∞)

−i dω

2πi
exp(−iωt)F (−iω) (1.3.47)

= −
ˆ iσ−∞

iσ+∞

dω

2π
exp(−iωt)F (−iω) (1.3.48)

=

ˆ ∞+iσ

−∞+iσ

dω

2π
exp(−iωt)F (−iω) . (1.3.49)

Now instead of keeping the notation F (−iω), we denote a new function f̂(ω) so that our plasma
physics definition of L and its inverse are (the n on the Ln is to indicate a new definition)

Ln {f(t)} ≡ f̂(ω) ≡
ˆ ∞

0

dt exp(iωt)f(t) , (1.3.50)

L−1
n

{
f̂(ω)

}
≡ f(t) =

ˆ ∞+iσ

−∞+iσ

dω

2π
exp(−iωt)f̂(ω) . (1.3.51)

This just shows that we have changed the definition so that the tables for F (s) and f(t) are tables
for f̂(ω) = F (−iω) and f(t).

Geometrically, this redefinition of the Laplace transform just rotates the regular Laplace transform
(s) function by 90◦ counterclockwise (or anticlockwise, if you prefer) and reverses the direction of
the contour (because the − in the − iω = s definition switches the order of integration) as shown
in Figure 1.8. That is, instead of integrating along a vertical line (“imaginary” line) in the complex
s plane, we integrate along a horizontal line (“real” line) in the complex ω plane. The σ just offsets
from the imaginary in s (real in ω) axis so that all the poles are to the left of the line in s (below
the line in ω).

We will prove the inverse Laplace transform is the inverse Laplace transform for Ln{f(t)} with
f(t) being a “nice” function. We begin from

Ln {f(t)} =

ˆ ∞
0

dt exp(iωt)f(t) . (1.3.52)
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Now we apply the inverse Fourier transform (using a dummy variable t′ to keep us from making
mistakes)

L−1
n {Ln {f(t)}} = L−1

n

{ˆ ∞
0

dt′ exp(iωt′)f(t′)

}
(1.3.53)

=

ˆ iσ+∞

iσ−∞

dω

2π
exp(−iωt)

ˆ ∞
0

dt′ exp(iωt′)f(t′) =

ˆ iσ+∞

iσ−∞

dω

2π

ˆ ∞
0

dt′ exp(iω[t− t′])f(t′) .

(1.3.54)

Now with mild assumptions on f(t) we can switch the order of integration (let’s also use ω′ = ω−iσ
so dω′ = dω)

L−1
n {Ln {f(t)}} =

ˆ ∞
0

dt′
ˆ iσ+∞

iσ−∞

dω

2π
exp(iω[t− t′])f(t′) (1.3.55)

=

ˆ ∞
0

dt′ f(t′)

ˆ ∞
−∞

dω′

2π
exp(iiσ[t′ − t]) exp(iω′[t′ − t])︸ ︷︷ ︸

exp(σ[t−t′])δ(t′−t)

(1.3.56)

=

ˆ ∞
0

dt′ δ(t′ − t) exp(σ[t− t′])f(t′) = exp(σt)

ˆ ∞
0

δ(t′ − t) exp(−σt′)f(t′)

(1.3.57)

= exp(σt)

{
exp(−σt)f(t) t > 0

0 t < 0
=

{
f(t) t > 0 ,

0 t < 0 ,
(1.3.58)

which is what we desired (because the Laplace transform only involves f(t) from t > 0). Of course,
one should note that σ ≥ 0 for this to work and, in fact, large enough that the contour encloses
all poles in a way such that the poles are below the line =[ω] = σ in the ω complex plane.

See Appendix A for a table of common Laplace transforms.

1.3.5 Ballooning Transforms

But someone whose knowledge is limited has to use great foresight in his choice of
method if he is not to be blocked by meeting calculations beyond his powers.

— W. W. Sawyer[29, p. 136]

In many situations it is advantageous to go from periodic variables to non-periodic variables. This
can be useful when we wish to apply theorems to analytic variables and the periodic variables cause
problems because there is no longer a clear ordering that can be imposed. In plasma physics, such
things occur with the poloidal θ and toroidal angles ζ. Often it would be wonderful to apply
the JWKB approximation so that we can rewrite our equations in a form where there is a phase
relationship. However, this causes difficulties with periodic functions and a requirement of varying
slowly spatially. For we have three properties that we wish to impose on our solution. First we
have a long parallel wavelength because things equalize along magnetic field lines (and so along
magnetic flux surfaces) very quickly. Second, the perpendicular wavelengths are short (indeed,
it is in this sense that the parallel wavelengths are long). When traversing magnetic surfaces,
things can change much more quickly than along them. This can be represented as k⊥ � k‖.
These first two properties are known to be true in some of the most unstable configurations of
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toroidal plasmas (ballooning modes). Finally, we desire periodicity in both angles ζ and θ. These
three properties prove to be difficult to retain all together within a consistent approximation.
The original solution to this problem was given by Connor, Hastie, Taylor[8], and is an excellent
resource for understanding the problem.

Suppose we have reduced our problem to radial and poloidal variation only because we have an
axisymmetric problem. This can be reduced to solving an eigenvalue problem. Then for operator
L we have

L(r, θ)[f(r, θ)] = λf(r, θ) (1.3.59)

That is, if we desire a solution f to some equation representing a wave-like oscillation, it would be
best if we could write

f ∝ exp(iS) (1.3.60)

for some S that is slowly varying. I have assumed S complex so S = Sr + iSi. Often the
above is written f ∝ F exp(iSr) with F = exp(−Si) real and slowly varying. When dealing with
axisymmetric systems, ζ’s phase poses no problems, but the poloidal angle will not necessarily be
simple. If we assume that we can write these as Fourier components in ζ then we can let n be
the Fourier component number and our solutions to a f will have f ∝ F exp(in(ζ + Sr)). We
simply eliminate any ζ dependence because with axisymmetry it is easy to figure out the solutions
and so f(r, θ, ζ) → f(r, θ) ∝ F exp(inSr). However, if there is shear in the magnetic field,50 a
problem is imposed. For we want f(r, θ) to vary slowly for us to justify our approximation with S.
But if the magnetic field shears, then this means the magnetic field is twisting differently at every
different r so that the magnetic field structure is different as we go out in radius. When we have
f ∝ exp(inS), we want an ordering where k‖ � 1 so we can say k‖ = ε for an ordering parameter
ε. Then for the part of f that has

B · ∇f ∝ B · ∇S ∝ k‖b̂ · ∇S = 0 +O(ε) (1.3.61)

The above magnetic differential equation implies that the lowest order would yield

S(r, θ) = ζ − q(r)θ (1.3.62)

The problem now is that S(r, θ) is no longer periodic in ζ and θ. You might think that we can get
around this by restricting ζ and θ to values between 0 and 2π. However, if q(r) varies in r, then
ζ and θ will have severe difficulties changing to appropriate values and will no longer be slowly
varying as we move in r. Notice that if the shear were zero or very small, then we wouldn’t have
to worry about this because then the periodic values for each r would not have to change much as
we change r.

If we didn’t have to have periodicity in ζ and θ, we could make our job easier because we would
not have to worry about S changing in just the right way. That is, we’d like not having to try and
enforce S being periodic.

The way to do this is to use a different expansion for f . We introduce

f(r, θ) =
∑
m

exp(−imθ)
ˆ ∞
−∞

dη exp(imη)f̂(r, η) (1.3.63)

50That is, we have magnetic shear.
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We see that we now have f̂(r, η) with η being a variable that covers −∞ to∞ without a periodicity
constraint. Instead, the periodicity is imposed by the summation over the exp(−imθ). To get to
this form we use a Fourier-like expansion in θ

f(r, θ) =
∑
m

exp(−imθ)fm(r) (1.3.64)

We can view fm(r) as f(r,m) form an integer. We then analytically continue f(r,m) to non-integer
values.51 Remember that since fm(r) is a Fourier series coefficient, we have

fm =
1

2π

ˆ π

−π
dθ exp(imθ)f(r, θ) (1.3.65)

for integer m. Assuming that we can analytically continue this function, we can extend to non
integer m. Consider its conjugate variable to be η and so

f̃(r, η) =

ˆ ∞
−∞

dm exp(−imη)f(r,m) (1.3.66)

f(r,m) =

ˆ ∞
−∞

dη

2π
exp(imη)f̃(r, η) (1.3.67)

By convention for ballooning transformations, one works with a different variable f̂(r, η) = 2πf̃(r, η)
instead so that we then write

f(r, θ) =
∑
m

exp(−imθ)
ˆ ∞
−∞

dη exp(imη)f̂(r, η) (1.3.68)

We can then substitute this into our original eigenvalue problem

L(r, θ)[f(r, θ)] = λf(r, θ) (1.3.69)

L(r, θ)[
∑
m

exp(−imθ)
ˆ ∞
−∞

dη exp(imη)f̂(r, η)] = λ
∑
m

exp(−imθ)
ˆ ∞
−∞

dη exp(imη)f̂(r, η)

(1.3.70)

Now because the exp(−imθ) form an orthogonal complete set, it is clear that this must be true
for each m. Indeed, we can then change our operator into one that operates with η instead of θ
since all θ dependence is through exp(−imθ). That is we have

∂j

∂θj

[∑
m

exp(−imθ)
ˆ ∞
−∞

dη exp(imη)f̂(r, η)

]
(1.3.71)

=

[∑
m

exp(−imθ)
ˆ ∞
−∞

dη (−im)j exp(imη)f̂(r, η)

]
(1.3.72)

=

[∑
m

exp(−imθ)
ˆ ∞
−∞

dη (−1)j
∂j

∂ηj
{exp(imη)} f̂(r, η)

]
(1.3.73)

51If you are worried about this, Carlson’s theorem from copmplex analysis allows us to find the unique analytic
function that does this continuation if we impose bounds on the growth of the function as it approaches infinity.
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=

[∑
m

exp(−imθ)(−1)j
ˆ ∞
−∞

dη

(
∂j

∂ηj

{
exp(imη)f̂(r, η)

}
+
∑
`<j

C(im, `)
∂`

∂η`

[
exp(imη)f̂(r, η)

]
+ (−1)j exp(imη)

∂j

∂ηj
f̂(r, η)

)] (1.3.74)

=

[∑
m

exp(−imθ)
(∑

`<j

[
C(im, `) exp(imη)

∂`f̂(r, η)

∂η`

]∞
η=−∞

+ (−1)j

[
exp(imη)

∂j f̂(r, η)

∂ηj

]∞
η=−∞

+

=1︷ ︸︸ ︷
(−1)2j

ˆ ∞
−∞

dη
∂j

∂ηj
f̂(r, η)

)]
(1.3.75)

For some function C(im, `) that outputs some integer times a power of (im) for each `.52 So long
as all ∂

`f̂(r,η)
∂η`

goes to zero at η = ±∞ for ` < j then we have

∂j

∂θj

[∑
m

exp(−imθ)
ˆ ∞
−∞

dη exp(imη)f̂(r, η)

]

=

[∑
m

exp(−imθ)
ˆ ∞
−∞

dη
∂j

∂ηj
f̂(r, η)

] (1.3.76)

And so we can form a new operator L(r, η) from L(r, θ) that satisfies

L(r, η)[f̂(r, η)] = λf̂(r, η) (1.3.77)

when

L(r, θ)[f(r, θ)] = λf(r, θ) (1.3.78)

You might now complain about two things. First, I only showed that the integral over η satisfies
the relationship. This can be easily remedied. We first assume that we are dealing with convergent
series and well-defined functions so that we can swap the sum over m with the integration and find

ˆ ∞
−∞

dη

{∑
m

exp(−im(θ − η))

[
∂j

∂ηj
f̂(r, η)− exp(−im(θ − η))λf̂(r, η)

]}
= 0 (1.3.79)

We can then use that the exp(−imθ) form an orthogonal complete set or expansion. This means
that we must have for each m that

exp(imη)
∂j

∂ηj
f̂(r, η)− exp(imη)λf̂(r, η) = 0 (1.3.80)

∂j

∂ηj
f̂(r, η)− λf̂(r, η) = 0 (1.3.81)

52Faà di Bruno’s formula is essentially what we need once again.
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This must be true for all m because each exponential is independent of all others. Thus the object
multiplying exp(−imθ) must be zero to guarantee that we get the full integral to be zero.

The other, and more difficult, problem is whether the steps we have taken are valid. As physicists,
this task is much easier. We do the steps without worrying about whether the function we are
looking for actually exists. Mathematicians have to show that each step works and prove the
existence of a solution. We simply do the steps, plug the solution back in at the end and see if it
works. The proof is a constructive one for each situation we encounter.53 It is like we approach a
physical problem and learn it requires that a bicycle fly into the air. A mathematician will prove
that such solutions may exist if we define what a “bicycle” is. A physicist can build the bicycle and
check if it flies by experiment. If it does, then we’re good. If we get a solution through this method
and then check it satisfies the original problem, then it does not really matter to us whether the
steps were technically valid. They guided us towards a correct answer.

In any case, this new f̂(r, η) can now use an eikonal-like solution without the problems of periodicity
since η ranges over all the real numbers, and so the S can now vary slowly in the eikonal as a
function of η instead of θ. So once the ballooning transformation has been applied, we can then
perform all the usual approximations of an eikonal and get an approximation for when n � 1.
The condition is n� 1 because we use n = 1

δ
in our JWKB approximation.

1.4 Asymptology
If there is a problem you can’t solve, then there is an easier problem you can solve; find
it.

— George Pólya

This section is all about determining the properties of expressions in limits, typically towards infin-
ity. This is typically called asymptotic approximation, asymptotic analysis, or something similar,
but I thought I would go with the somewhat more whimsical term asymptology introduced by
Martin Kruskal.54 He coined the term asymptology as “the art of dealing with applied mathemat-
ical systems in limiting cases.”[11]55 The essay is well worth reading, and outlines seven principles
for asymptology.

1. The Principle of Simplification. Asymptological (limiting) analysis tends to simplify the
system considered.

2. The Principle of Recursion. Treat non-dominant terms as if they were known.

3. The Principle of Interpretation. Find variables in which the given problem becomes a
perturbation problem.

53This reminds me of a joke mathematicians purportedly tell about physicists. A mathematician thinks a physicist
is a person who sums the first three terms of a divergent series to get an answer. In fact physicists can get a last
laugh in. Asymptotic expansions are often divergent, but offer great approximations in the first few terms as we
will see in Section 1.4 on asymptology! Thus summing the first three terms of a divergent series may actually be
the right thing to do!

54He was one of the great mathematical physicists of the twentieth century. He is the Kruskal of the Kruskal-
Schwarzchild problems, Kruskal-Shafranov instabilities, BGK (Bernstein-Greene-Kruskal) modes, and one of the
people to help develop the MHD energy principle. He and Norman Zabusky figured out how solitons were solutions
to the Korteweg-de-Vries (KdV) equation. This is only a partial list of his accomplishments.

55Kruskal’s contribution to this reference is available here.
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96 Asymptology

4. The Principle of Wild Behavior. Cases of apparent overdeterminism56arise because some
of the solutions behave wildly in the limit. This means that when the solution we want is
not a wildly varying one, we have gained in simplicity by going to a simpler system, by
sacrificing57 one of the solutions we do not care about. When the wildly varying solution is
the solution we actually want, we need to reformulate our problem.

5. The Principle of Annihilation. Find a complete set of annihilators58 of the terms which
persist in the limit, apply them to the original system, and then go to the limit.

6. The Principle of Maximum Balance. Keep terms that are of undetermined magnitude
for maximum flexibility and generality.

7. The Principle of Mathematical Nonsense. When mathematically nonsensical terms
appear, the asymptology has been performed incorrectly or has not been carried out fully.

These principles are best explained with examples, and it is often easiest to explain with very
simple examples.

Consider trying to solve a problem of the form

ε2x3 + x2 − εx− 9 = 0 (1.4.1)

when x is large (much greater than 1). Suppose ε > 0 is a small parameter. Then there are all
sorts of orderings possible, but not all of them are going to be consistent. We can start with x� 1
so only the highest powers of x will matter. In this case

ε2x3 + x2 = x2(ε2x+ 1) ≈ 0 (1.4.2)

which means x = 0 (not a useful solution) or x = −ε−2. But then x < 0. We can then try ε � 1
so the only parts of x that will matter are

x2 − 9 = 0⇒ x0 = 3 (1.4.3)

Note how this is a simpler system to solve and so involves The Principle of Simplification as
we are solving a quadratic instead of a cubic equation. In addition, we tried one set of variables
and found they did not give us a simplification. When we chose to expand based on ε we did get
an answer illustrating The Principle of Interpretation. This is the zeroth order solution when
ε = 0. We could then write

x =
√

9 + εx2(1− εx) = 3

√
1 + ε

x2

3
(1− εx) (1.4.4)

We could view the x on the left hand side as x1 and plug in x0 on the right hand side to find a new
term for x = x0 + x1 + · · · . This is The Principle of Recursion where we treat non-dominant
unknowns as if they were known. In which case we find

x1 = 3

√
1 + ε

9

3
(1− ε3) = 3

√
1 + ε(3− 9ε) (1.4.5)

56By overdeterminism, I mean something like solving three linear equations with only two variables. The sys-
tem is overdetermined because one only needs two linear equations to determine the two variables, and so the
overdetermined case may not have a solution (is inconsistent with three equations) or one of the equations is just
a restatement of one of the others.

57It is sacrificed in the sense that it wildly varies and so cannot be solved for in any meaningful way.
58Annihilators are mathematical objects that return zero when applied to a term.
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And so on, for recursion. Such series are often non-convergent, but so long as you only write
a finite amount, they can be accurate. Such a series is called an asymptotic series since it may
decrease in accuracy as you increase the number of terms.59

This example, also lets us examine The Principle of Wild Behavior to some degree. When
we changed our problem into a quadratic, we are implicitly saying x does not get so large that
it overwhelms ε. In so doing, we ignored the solution that grew enormous as ε → 0, the solution
that goes like −ε−2. That root is behaving “wildly” by running to infinity. Luckily, in this case we
didn’t care about the unbounded root. In other cases, we would have to form a new asymptotic
representation and see if it works.

I think the other principles are fairly simple to understand, so let’s now consider some examples.
The JWKB approximation will be covered in Section 1.12, where we assume that we can write the
solution as the exponential of a series with a specific ordering.

The notation for asymptotics60 was noted in the Section 1.1.3, but we shall extend it a bit as well.
Given a function f(x), if we have an asymptotic series g(x) that is true as x → ∞ then this is
typically written

f(x) ∼ g(x) (1.4.6)

with ∼ implicitly indicating that x→∞. Such an expression could be read as f is asymptotic to
g (as x→∞). I prefer the notation

f(x)
x→∞−→ g(x) (1.4.7)

and so will use that instead of the∼ notation which in physics often has the meaning of proportional
to. In any case, all of the above have the meaning that

lim
x→∞

f(x)

g(x)
= 1 (1.4.8)

This definition could have problems should g(x) = 0 as it limits to its value and so the more
rigorous description

f(x)− g(x) = o(g(x))⇒ lim
x→a

f(x)− g(x)

g(x)
= 0 (1.4.9)

is sometimes used as the defining feature of f(x) being asymptotic to g(x) (in whatever limit). See
1.1.3 if you need a reminder on what little O notation means. Here the limit is usually obvious
from context if it is not explicitly given.

1.4.1 Integral Asymptology

There are numerous asymptology methods, but I will go over a few of the common ones. The
method of steepest descent, the method of stationary phase, or Laplace’s method are all various

59The loss of accuracy may be surprising at first, but remember that if you have f(x) and f(x) acts like
∑
i gi(x)

as x→∞, then unless f(x) is finite as x→∞, for a fixed x <∞, gi(x) will eventually start adding gigantic terms
that overshoot the result for a fixed x. In short, we are interested in how f(x) acts as x is finite but extremely
large.

60A synonym for asymptology most of the time, though asymptology is meant to be broader in scope.
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incarnations of a single idea. They are extremely useful ways to get an asymptotic expansion for
integrals. Suppose we have an integral of the form

ˆ b

a

dt g(t) exp(−Mf(t)) (1.4.10)

for M some large, positive constant. We’d like to find a good approximation of the integral in a
simpler form. The way to doing this is using that if exp(−Mf(t)) is only large near the minimum
of f(t) then only values near that point really count. Suppose f ′(t0) = 0.61 Then if a ≤ t ≤ b we
can integrate only around the region near t0 and get an answer (we can Taylor expand f(t) around
t0 if it is not a simple expression). The method of steepest descent allows us to consider integrals
in complex space [you may have to take into account residues then], and the method of stationary
phase is used for exp[−iMf(t)], but saying you still only care about the critical points62 of f(t).
The method of steepest descent is technically only for saddle points, rather than generic critical
points, but the ideas are all similar. The idea is still that critical points of f(t) are in essence, the
points that contribute the most to the integral. Examples will be especially useful to understand
this.

Consider
ˆ π

0

dt t−1/2 cos(t) exp(−xt) (1.4.11)

where x → ∞. In the formulation above we could consider M = x. We can recognize that
exp(−xt) is a “controlling factor”. That is, it is the term that will make the integral zero nearly
everywhere except near t = 0. With this, we consider an integral only around this region and so

ˆ π

0

dt t−1/2 cos(t) exp(−xt) x→∞−→
ˆ ε

0

dt t−1/2 cos(t) exp(−xt) (1.4.12)

We can then simplify via xt = u so du = x dt and
ˆ π

0

dt t−1/2 cos(t) exp(−xt) x→∞−→
ˆ ε

0

du
1

x

(u
x

)−1/2

cos
(u
x

)
exp(−u) (1.4.13)

Now we can use that in this small region we have the approximation

cos(u/x)
x→∞−→ 1− 1

2

u2

x2
+

1

24

u4

x4
(1.4.14)

Next, we recognize that exp(−u) will overwhelm any power of u and so we can extend our limits
from (0, ε) to (0,∞) because this will not add too much thanks to our controlling factor. Thus

ˆ π

0

dt t−1/2 cos(t) exp(−xt) x→∞−→ 1

x

ˆ ε

0

du
(u
x

)−1/2
[
1− 1

2

u2

x2
+

1

24

u4

x4

]
exp(−u)

x→∞−→ 1

x

ˆ ∞
0

du

[
u−1/2

x−1/2
− 1

2

u3/2

x3/2
+

1

24

u7/2

x7/2

]
exp(−u)

(1.4.15)

61Make sure it is a minimum and not a maximum. Otherwise the term will not be a dominant one in the integral.
62You probably only care about the stationary points where the derivative is defined.
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Mathematical Beginnings 99

We can then use ˆ ∞
0

du un exp(−u) = Γ(n+ 1) = n! (1.4.16)

where I use Γ(1/2) = (−1/2)! =
√
π. Then

ˆ π

0

dt t−1/2 cos(t) exp(−xt) x→∞−→ 1

x

[√
π
√
x−
√
π

2

1
2

3
2

x3/2
+

√
π

24

7
2

5
2

3
2

1
2

x7/2

]
(1.4.17)

Which we simplify to
ˆ π

0

dt t−1/2 cos(t) exp(−xt) x→∞−→
√
π√
x

[
1− 3

8x4/2
+

35

128x8/2

]
x→∞−→

√
π√
x

[
1− 3

8x2
+

35

128x4

] (1.4.18)

In general, we have for f ′(t0) = 0 and a < t0 < b and u = t− t0 that
ˆ b

a

dt g(t) exp(−Mf(t))

M→∞−→
ˆ t0+ε

t0−ε
dt [g(t0) + (t− t0)g′(t0) + · · · ] exp[−Mf(t0)−M(t− t0)��

��H
HHHf ′(t0)−M(t− t0)2f ′′(t0)]

M→∞−→ exp[−Mf(t0)]

ˆ t0+ε

t0−ε
dt [g(t0) + (t− t0)g′(t0) + · · · ] exp[−M(t− t0)2f ′′(t0)]

M→∞−→ exp[−Mf(t0)]

ˆ ∞
−∞

dt [g(t0) + (t− t0)g′(t0) + · · · ] exp[−M(t− t0)2f ′′(t0)]

M→∞−→ exp[−Mf(t0)]

ˆ ∞
−∞

du
[
g(t0) + ug′(t0) + u2g′′(t0) · · ·

]
exp[−Mu2f ′′(t0)]

(1.4.19)

where we can use that these are now Gaussian integrals on the right hand side with the identity
ˆ ∞
−∞

du u2n exp(−αu2) =
Γ(2n+1

2
)

α(2n+1)/2
(1.4.20)

and so ˆ b

a

dt g(t) exp(−Mf(t))

M→∞−→ exp[−Mf(t0)]

[
g(t0)

√
π

Mf ′′(t0)
+ 0 + g′′(t0)

√
π

3

2 (Mf ′′(t0))3/2
+ · · ·

] (1.4.21)

The method of steepest descent simply generalizes this method for complex values where you
deform your contour integral so that you go through zeros of f ′(t) but where the imaginary part
of f(t) is constant. In this case, then we are dealing with a saddle point in the complex plane.63

63That is a critical point where the gradient along orthogonal directions are zero, but that is not a local extremum
(since it can be a relative minimum along one direction and a relative maximum along a different, orthogonal
direction).
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100 Asymptology

To find out if a point is a saddle point, you form the Hessian for f(x) for variables x given by ∂2f
∂x∂x

.
We then determine if something is a saddle point by evaluating the Hessian at the critical points
xi where ∂f

∂x
= 0. This means that we use the Hessian definition

H ≡ ∂2f

∂x∂x
=


∂2f
∂2x1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂2x2

· · · ∂2f
∂x2∂xn...

... . . . ...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂2xn

 (1.4.22)

evaluated at the xi and find the eigenvalues of this matrix. If the eigenvalues are all positive or all
negative then you have a relative extremum, and if the eigenvalues are both positive and negative,
then you have a saddle point. Note that for complex z, the Hessian generalization uses

H ≡ ∂2f

∂z∂z̄
(1.4.23)

and this is 0 if we have an analytic function f . Thus analytic functions’ Hessians are not useful
tests.64 Note also that if the determinant of the Hessian is exactly zero at a critical point, then
it is considered a degenerate critical point and we cannot use the above test to determine if the
critical point is a saddle point.

Let’s now do a famous example, Stirling’s approximation. We start with

N ! = Γ(N + 1) =

ˆ ∞
0

dt tN exp(−t) (1.4.24)

We’d like to find N ! when N → ∞. The tN factor is inconvenient since it will grow large as
N →∞, but exp(−t) pulls it smaller as t→∞. We’d prefer to have our point where the integral
most contributes be near a finite value, not at t→∞. So we rewrite tN = exp(N ln t) and have

N ! =

ˆ ∞
0

dt exp(−t+N ln t) (1.4.25)

Now we have a minimum of −t + N ln t at −1 + N
t

= 0 ⇒ t = N . Since N is the thing that is
growing, it would be convenient to rescale so that we put the maximum at s = 0. This can be
most simply achieved by using t = N(1 + s) Then at s = 0 we have t = N . This means dt = N ds
and we have

N ! =
1

N

ˆ ∞
−1

ds exp[−N(1 + s) +N lnN +N ln(1 + s)]

= N exp(−N +N lnN)

ˆ ∞
−1

ds exp[−Ns+N ln(1 + s)]

(1.4.26)

We finally have a suitable form for Laplace’s method.

(1 + s)−1 s→0−→ 1− s+ s2 − s3 + s4 + · · · (1.4.27)

ln(1 + s) =

ˆ
dx (1 + s)−1 s→0−→ s− s2

2
+
s3

3
− s4

4
+
s5

5
+ · · · (1.4.28)

64If this confuses you, ask yourself what it means for a complex function to have an extremum. The complex
numbers are not ordered, so what does a critical point even signify?
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Mathematical Beginnings 101

Then we can write (make these normalized by Ns2/2 = u2 or u =
√
N/2s so du =

√
N/2 ds)

N !
N→∞−→ N exp(−N +N lnN)

ˆ ∞
−1

ds exp

[
−N

(
∞∑
j=2

(−1)jsj

j

)]
N→∞−→ N exp(−N +N lnN)

ˆ ε

−ε
ds exp

[
−N

(
∞∑
j=2

(−1)jsj

j

)]

N→∞−→ N

√
2

N
exp(−N +N lnN)

ˆ ε
√
N/2

−ε
√
N/2

du exp

[
−

(
u2 +

∞∑
j=3

N

√
2

N

j
(−1)juj

j

)] (1.4.29)

Now we’d like to have up to O(N−1) terms. This means we need to think about expanding the
j = 3 and j = 4 terms which can contribute because our controlling factor is a Gaussian and so
when we expand the other terms, any odd functions (that is odd polynomial expansion terms) will
vanish via symmetry. Thus, we have to consider the j = 4 term. We use

∞∑
j=3

(
2

N

)j/2
(−1)juj

j

u,s→0−→ 23/2

N3/2

u3

3
+

22

N2

u4

4
(1.4.30)

−N
∞∑
j=3

(
2

N

)j/2
(−1)juj

j

u,s→0−→ 23/2

N1/2

u3

3
− 22

N

u4

4
(1.4.31)

where, as we will see, there can be no other terms that contribute to O(N−1). We then expand
these exponentials in a Taylor series expansion around u, s = 0 and find

exp

(
23/2

N1/2

u3

3

)
u,s→0−→ 1 +

23/2

N1/2

u3

3
+

(
23/2

N1/2

u3

3

)2

/2

u,s→0−→ 1 +

√
8

N1/2

u3

3
+

8

N

u6

18

(1.4.32)

exp

(
−22

N

u4

4

)
u,s→0−→ 1− 22

N

u4

4
+

(
22

N

u4

4

)2

/2

u,s→0−→ 1− u4

N
+

1

N2

u8

2

(1.4.33)

and we see that we can throw away the O(N−2) term from the j = 4 term. And

−N
4∑
j=3

(
2

N

)j/2
uj

j

u,s→0−→

(
1 +

√
8

N1/2

u3

3
+

8

N

u6

18

)(
1− u4

N

)
+O(N−2)

u,s→0−→

(
1 +

√
8

N1/2

u3

3
+

8

N

u6

18
− u4

N

)
+O(N−2)

(1.4.34)
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102 Asymptology

Finally, we put this into our integral and expand the limits out to infinity and see

N !
N→∞−→

√
2N exp(−N +N lnN)

ˆ ε
√
N/2

−ε
√
N/2

du

(
1 +

√
8

N1/2

u3

3
+

8

N

u6

18
− u4

N

)
exp(−u2)

N→∞−→
√

2N exp(−N +N lnN)

ˆ ∞
−∞

du

(
1 +

√
8

N1/2

u3

3
+

8

N

u6

18
− u4

N

)
exp(−u2)

N→∞−→
√

2N exp(−N +N lnN)

ˆ ∞
−∞

du

(
1 +
�
�
�
��

√
8

N1/2

u3

3
+

8

N

u6

18
− u4

N

)
exp(−u2)

N→∞−→
√

2N exp(−N +N lnN)

ˆ ∞
−∞

du

(
1 +

8

N

u6

18
− u4

N

)
exp(−u2)

N→∞−→
√

2N exp(−N +N lnN)

(√
π +

8

N

√
π5 · 3 · 1
23(18)

−
√
π3 · 1

22(N)

)
N→∞−→

√
2πN exp(−N +N lnN)

(
1 +

1

N

[
5

6
− 3

4

])
N→∞−→

√
2πN exp(−N +N lnN)

(
1 +

1

12N

)

(1.4.35)

This can be rewritten as

N !
N→∞−→

√
2πN

NN

exp(N)

(
1 +

1

12N

)
(1.4.36)

which is Stirling’s approximation. Because people typically don’t care about the prefactor (the√
2πN) which is small compared to NN , this is often written as

lnN !
N→∞−→ N lnN −N +O(lnN) (1.4.37)

One can also derive Watson’s lemma which says for λ > −1 and any 0 < T ≤ ∞ with appropriately
nice (infinitely differentiable at t = 0) functions tλg(t) that we have

ˆ T

0

dt tλg(t) exp(−xt) N→∞−→
∞∑
n=0

g(n)(0)Γ(λ+ n+ 1)

n!xλ+n+1
(1.4.38)

You should think about why λ > −1 is necessary in general, and about situations where our
Laplace’s method works when λ ≤ −1.

Finally, we can use integration by parts to find some asymptotic expressions. For example, consider
erfc(x) defined by

erfc(x) =
2√
π

ˆ ∞
x

dt exp(−t2) (1.4.39)

Then we could integrate by parts with v = exp(−t2) so dv = −2t exp(−t2) meaning u = 1
−2t

and
du = 1

2t2
dt so that

erfc(x) =
2√
π

[{
exp(−t2)

−2t

}∞
x

−
ˆ ∞
x

dt
exp(−t2)

2t2

]
=

1√
π

[
exp(−x2)

x
−
ˆ ∞
x

dt
exp(−t2)

t2

] (1.4.40)
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One then notes that for x→∞ thatˆ ∞
x

dt exp(−t2) = o

(ˆ ∞
x

dt
exp(−t2)

t2

)
(1.4.41)

because t−2 = o(1) as t→∞. Thus the last integral can be ignored. If we desire extra terms, we
can show that for

In(x) =

ˆ ∞
x

dt
exp(−t2)

t2n
(1.4.42)

with I0 = 2√
π

erfc(x) we find by integration by parts with v = exp(−t2), dv = −2t exp(−t2) dt,
u = −1

2t2n+1 and du = 2n+1
2t2n+2 so

In =

[
− exp(−t2)

2t2n+1

]∞
x

−
ˆ ∞
x

dt
(2n+ 1) exp(−t2)

2t2n+2

=
exp(−x2)

2x2n+1
− 2n+ 1

2
In+1

(1.4.43)

Then we have

I0 =
exp(−x2)

2x
− 1

2
I1 (1.4.44)

I0 =
exp(−x2)

2x
− 1

2

exp(−x2)

2x3
+

1

2

3

2
I2 (1.4.45)

where we can then use that In = o(I0) and so we have an asymptotic series. Thus

erfc(x)
x→∞−→ 2√

π
I0 =

2√
π

[
exp(−x2)

2x
− 1

2

exp(−x2)

2x3
+ · · ·

]
(1.4.46)

erfc(x)
x→∞−→ exp(−x2)

x
√
π

[
1− 1

2x2
+ · · ·

]
(1.4.47)

erfc(x)
x→∞−→ exp(−x2)

x
√
π

[
1
∞∑
n=1

(−1)n
(2n− 1)!!

(2x2)n

]
(1.4.48)

One should note that these are all asymptotic series, and so one should realize that the sums will
diverge for a fixed x (or N with Stirling’s approximation). This is because the functions themselves
often diverge when approaching the limit. The important thing to realize is that though both sides
may diverge, they diverge in a similar way so that their ratio approaches one, which makes our
values accurate. That is the relative error is very small, while the absolute error can grow arbitrarily
large. For example, for large x, one finds that

erfc(x) ≈ exp(−x2)

x
√
π

(1.4.49)

is generally good enough. If we analyzed this in more detail we could derive that the error in taking
only N terms of the approximation is O(x1−2N exp(−x2)). So for x ≈ 10 with N = 1 we see we
have error O(exp(−102)/10) or O(3.72× 10−45) which is sufficient for most applications. . . That is

erfc(10) ≈ 2.088× 10−45 (1.4.50)
exp(−102)

10
√
π
≈ 2.099× 10−45 (1.4.51)

which is a fairly impressive accuracy for just one term.
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104 Asymptology

1.4.2 Other Asymptotic Series

When iterating, three things may happen and two of them are bad. An iteration may
converge, may converge too slowly to be useful, or diverge.

— J. P. Boyd[5, p. 514]

It is often useful to find an asymptotic series form for a function. As we saw for integrals, recursion
is often useful, but so is using Taylor series by using that if something is going to∞ then its inverse
is going to zero. Thus, if we want to approximate ln(exp(x) + 1) as x→∞ we can use that

ln(exp(x) + 1) = ln(exp(x)[1 + exp(−x)]) = ln(exp(x)) + ln(1 + exp(−x))

= x+ ln[1 + exp(−x)]
(1.4.52)

Then exp(−x) = 1/ exp(x) ≡ ε
x→∞−→ 0 so we have

ln(1 + ε)
x→∞−→ ε− ε2

2
+
ε3

3
+ · · · (1.4.53)

and so

ln(exp(x) + 1)
x→∞−→ x+ exp(−x)− exp(−2x)

2
+

exp(−3x)

3
+ · · · (1.4.54)

Such cases usually involve factoring out terms that we cannot deal with in such a way that they
leave terms that we can approximate.

Of special interest are cases where we want to know how the inverse function acts. It is often
quite difficult to get a closed form solution of an inverse function for a given function. However,
asymptology allows us to find inverses in a limit that can help us understand how such functions
can be inverted (this can help in finding annihilators, as well). Suppose you are given the function
f(x) = x3 + x2. Try and find the inverse of such a function. Remember that the inverse f−1(x)
is such that f−1(f(x)) = f(f−1(x)) = x. If you can find a simple way of expressing the inverse of
f(x) = x3 + x2, hats off to you. I do not know of any. One could try to find the inverse by saying
f(y) = x and solving for y in terms of x. Then y = f−1(x) is the inverse. Looking at our case you
have

x = y3 + y2 = y2(y + 1) (1.4.55)

which means that we need to use a cubic formula to solve for y in terms of x. It is not pretty.
However, if we are only interested in the case where x→∞, then we can use that

f(x)
x→∞−→ x3 (1.4.56)

f−1(x)
x→∞−→ x1/3 (1.4.57)

We can surmise that extra corrections are likely to be powers of x of the form axα with α < 1/3
so that they are subdominant to x1/3. If we simply try

f−1(x)
x→∞−→ x1/3 + axα (1.4.58)

and plug this into f(f−1(x))
x→∞−→ x we see we get

(x1/3 + axα)3 + (x1/3 + axα)2 x→∞−→ x (1.4.59)
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We see the left-hand side can be written as

x+ 3x2/3axα + 3x1/3a2x2α + a3x3α + x2/3 + 2ax1/3+α + a2x2α (1.4.60)

Now we need α < 1/3 which means that 2α < 2/3 and 3α < 1. Thus, among the terms that are
left, the dominant ones should be x2/3+α or possibly x3α because 2/3 + α ≤ 1 [so that x is the
dominant term in (1.4.60)]. It must be these because clearly 1/3 + α < 2/3 + α always and for
α > 0, 3α > 2α > α. In addition the unadorned by a or α term x2/3 is clearly the term among all
of these that must be matched. First let’s try x3α is dominant.65 Then we must have

x2/3 + a3x3α x→∞−→ 0 (1.4.61)

which would mean α = 2/9 and a3 = −1 or a = −1. Then 2/3 + α = 8/9 and so we have a
contradiction that x3α = x6/9 is dominant over x2/3+α = x8/9, which is clearly false as x→∞.

So let’s try x2/3+α as the dominant term. Then we have

x2/3 + 3ax2/3+α x→∞−→ 0 (1.4.62)

which would mean α = 0 and a = −1/3. Then x3α = x0 is subdominant to x2/3+α = x2/3 for
x→∞ and this is a possible solution.

Then we have as our approximation that

f−1(x) = x1/3 − 1

3
(1.4.63)

We can repeat the process by guessing a form

f−1(x) = x1/3 − 1

3
+ bxβ (1.4.64)

with β < 0. Then we try f(f−1(x)) = x again and find(
x1/3 − 1

3
+ bxβ

)3

+

(
x1/3 − 1

3
+ bxβ

)2
x→∞−→ x (1.4.65)

with the left hand side yielding (we will just immediately use for any a > 0 that a + β > 2β or
a > β which must be true since β < 0 is a solution. In addition, we can now use that x2β is small
in comparison to xβ since we know β < 0)(

x1/3 − 1

3

)3

+ 3

(
x1/3 − 1

3

)2

bxβ +O(x2β) +

(
x1/3 − 1

3

)2

+ 2

(
x1/3 − 1

3

)
bxβ +O(x2β)

(1.4.66)

x−���x2/3 +
x1/3

3
− 1

27
+ 3

(
x2/3 − 2

3
x1/3 +

1

9

)
bxβ +O(x2β)

+

(
�
��x2/3 − 2

3
x1/3 +

1

9

)
+ 2

(
x1/3 − 1

3

)
bxβ +O(x2β)

(1.4.67)

65Experience, skill, and luck will let you in the future choose more wisely.
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Let’s assume that x2/3+β is the next dominant term. Then the dominant terms unadorned by β
or b are the x1/3 terms so

Zx+ 3bx2/3+β + x1/3

(
1

3
− 2

3

)
x→∞−→Zx (1.4.68)

or

3bx2/3+β x→∞−→ 1

3
x1/3 (1.4.69)

yielding b = 1
9
and β = −1/3 consistent with β < 0. We have

f−1(x)
x→∞−→ x1/3 − 1

3
+

1

9
x−1/3 (1.4.70)

We could clearly keep going further if we so desired, but this is the kernel of the idea.

One other quick example is finding the inverse of f(x) = x exp(x) as x→∞. Our initial guess is
that exp(x) dominates and so f−1(x) = ln(x). We could guess that a further term will be of the
form g(x) so

f−1(x)
x→∞−→ lnx+ g(x) (1.4.71)

and then use that f−1(f(x))
x→∞−→ x (note how the order of this is different than before)

ln(x exp(x)) + g(x exp(x))
x→∞−→ x (1.4.72)

lnx+�x+ g(x exp(x))
x→∞−→�x (1.4.73)

lnx
x→∞−→ −g(x exp(x)) (1.4.74)

Now as x→∞ we expect g(x exp(x))
x→∞−→ g(exp(x)) and so we have

g(exp(x))
x→∞−→ − lnx (1.4.75)

Thus if we put in y = ln(x) we see

g(exp(y)) = g(exp(ln(x))) = g(x) (1.4.76)
ln(y) = ln(ln(x)) (1.4.77)

and so using x instead of exp(x) means we have66

g(x)
x→∞−→ − ln[ln(x)] (1.4.78)

And we could try the same thing again with another new additional function h(x).

f−1(x)
x→∞−→ ln(x)− ln[ln(x)] + h(x) (1.4.79)

f−1(f(x))
x→∞−→ x (1.4.80)

66Since exp(x) > 0 we restrict x > 0 but we have x→∞ so this imposes no new penalty.
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which implies

ln(x exp(x))− ln[ln(x exp(x))] + h(x exp(x)) = ln(x) + x− ln[lnx+ x] + h(x exp(x))

= ln(x) + x− ln

[
x

(
lnx

x
+ 1

)]
+ h(x exp(x))

=��
�ln(x) + x−��

�ln(x)− ln

(
1 +

lnx

x

)
+ h(x exp(x))

(1.4.81)

We can use that ln(x)/x ≡ ε
x→∞−→ 0 and h(x exp(x))

x→∞−→ h(exp(x)) and so Taylor expand ln(1 + ε)
to find

Zx+ h(exp(x))− lnx

x
+

[lnx]2

x2
+ · · · x→∞−→Zx (1.4.82)

h(exp(x))
x→∞−→ lnx

x
(1.4.83)

h(x)
x→∞−→ ln[lnx]

lnx
(1.4.84)

and so

f−1(x)
x→∞−→ ln(x)− ln[ln(x)] +

ln[lnx]

lnx
(1.4.85)

We could of course continue the process.

One is led to consider the LambertW function given asW (x) which solvesW exp(W ) = x. In other
words, the LambertW function is implicitly defined as the inverse of the function f(w) = w exp(w).
In fact we could consider z a complex number instead of x a real number for the full Lambert W
functions with various branch cuts Wk. We focus on the principal branch W0 which I will denote
just as W . We might ask what does W look like as x → ∞? Well, with our previous methods
we have a simple way of figuring this out. We have f(x) = f(w) and we desire an expression for
W (x) = f−1(x) when x → ∞. Lo and behold, my previous example seems a bit more relevant!
For we then have

W (x)
x→∞−→ ln(x)− ln[ln(x)] +

ln[lnx]

lnx
(1.4.86)

Finally, we can deal with multiple variable equations with similar techniques. Suppose we had an
equation like

y3 − 2xy2 + x2y − x = 0 (1.4.87)

and wanted to know how the expression behaved as x→∞. Now we have all sorts of choices for
y. If y → ∞ as well, then we need to think about how quickly it goes in comparison to x. One
simple way to deal with this is to introduce ξ = εx and ψ = δy with ε� 1 and δ � 1. This makes
ξ and ψ the same “order” terms, and is essentially just stretching out x and y. Then we can think
of x, y � 1 as ε, δ � 1. The equation becomes

δ−3ψ3 − 2δ−2ε−1ξψ2 + ε−2δ−1ξ2ψ − ε−1ξ = 0 (1.4.88)
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Or

ψ3 − 2δε−1ξψ2 + ε−2δ2ξ2ψ − δ3ε−1ξ = 0 (1.4.89)

We see the above can then be rewritten as

ψ
(
ψ2 − 2δε−1ξψ + ε−2δ2ξ2

)
= δ3ε−1ξ (1.4.90)

ψ
(
ψ − δε−1ξ

)2
= δ3ε−1ξ (1.4.91)

Now, I think it is not a stretch to try δ/ε = 1 so that ψ and ξ balance on the left hand side and
the δ3/ε term on the right is non-dominant. That is ψ = ξ +O(δ). In fact we can even do better.
Let’s assume ψ = ξ + aδξα for α < 1. Then

(ξ + aδξα) (aδξα)2 = δ2ξ (1.4.92)
a2δ2ξ1+2α + a3δ3ξ3α = δ2ξ (1.4.93)

and clearly the δ2 terms must match with the δ3 term being subdominant. Thus 1 + 2α = 1 and
a2 = 1 so α = 0 and a = 1. Thus

ψ = ξ + δ (1.4.94)

We can try one more term via ψ = ξ + δ + aδ2ξα again. Then(
ξ + δ + aδ2ξα

)
(δ + aδ2ξα)2 = δ2ξ (1.4.95)

δ2
(
ξ + δ + δ2ξα

)
(1 + 2aδξα + a2δ2ξ2α) = δ2ξ (1.4.96)

�
�δ2ξ + δ3

(
1 + 2aξ1+α

)
+O(δ4) =�

�δ2ξ (1.4.97)
δ3
(
1 + 2aξ1+α

)
= O(δ4) (1.4.98)

so a = −1
2
and 1 + α = 0 so α = −1, and our final solution is

ψ = ξ + δ − δ2 ξ
−1

2
+O(δ3) (1.4.99)

Then we can use ψ = δy and ξ = δx in our ordering so that

δy
x,y→∞−→ δx+ δ − δx

−1

2
(1.4.100)

y
x,y→∞−→ x+ 1− x−1

2
(1.4.101)

This approach is flexible, and could have been used in our previous cases. Sometimes it is simpler
to deal with small parameters rather than things going to infinity.

1.4.3 Asymptotic Matching

A common problem is that we have an equation with an ordering parameter that we can solve
when the ordering parameter is either very large or very small and this corresponds to a specific
region in the equation. When the parameter is intermediate, we have no such solution, and so we
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Mathematical Beginnings 109

desire a way to form some sort of intermediate solution. It seems like we should be able to do this
by matching the two solution regions together.

To make this concrete, we will consider the time-independent Schrödinger equation. We will use
an eikonal form to find a solution when terms are not singular which is near the region where the
energy is the potential energy E = V (x), the classical turning points. We will just consider one
dimension. We have the equation

~2

2m

d2ψ

dx2
= (U − E)ψ (1.4.102)

We use ε = ~2/(2m) as a small parameter. Then with Û = U − E we write

ε
d2ψ

dx2
= Ûψ (1.4.103)

We have the solutions in the region outside classical turning points in Section 1.12.2. Thus we
only need to be near a region where the classical turning points are. Let’s assume initially that
there is only one classical turning point located at x = x0. Then we can Taylor expand near this
point and find

Û =

Û(x0)=0︷︸︸︷
Û0 +(x− x0)

Û1(x0)︷ ︸︸ ︷(
dÛ

dx

)
x=x0

+(x− x0)2

Û2(x0)︷ ︸︸ ︷(
d2Û

dx2

)
x=x0

+ · · · (1.4.104)

At the turning point we must have Û0 = 0 by definition. If we consider a region x− x0 ∝ ε we can
write

~2

2m

d2ψ

dx2
= (x− x0)Û1ψ (1.4.105)

d2ψ

dx2
= (x− x0)

2mÛ1/~2︷︸︸︷
û1 ψ (1.4.106)

One must then recognize that this is of the form

d2ψ

dx2
− xψ = 0 (1.4.107)

which is the Airy equation with solutions of Airy functions. That is for (1.4.107) the solutions are

ψ(x) = C1 Ai(x) + C2 Bi(x) (1.4.108)

with Ai(x) satisfying ψ → 0 as x → ∞ and Bi(x) has the same amplitude of oscillation as Ai(x)
as x→ −∞ but differing in phase by π/2. It turns out we can write these as integrals of the form

Ai(x) =
1

π

ˆ ∞
0

dt cos

(
t3

3
+ xt

)
(1.4.109)

Bi(x) =
1

π

ˆ ∞
0

dt

[
exp

(
−t3

3
+ xt

)
+ sin

(
t3

3
+ xt

)]
(1.4.110)
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110 Asymptology

In our case we see that we have

d2ψ

dx2
=

like x︷ ︸︸ ︷
(x− x0)û1 ψ (1.4.111)

and so our x is not in the right form for the Airy function solutions. First, we take y = (x−x0)(û1)α

and define Ψ(y) = ψ(x) so

(û2α
1 )

d2Ψ(y)

dy2
= y(û1)1−αΨ(y) (1.4.112)

d2Ψ(y)

dy2
= y(û1)1−α−2αΨ(y) (1.4.113)

if we choose α = 1
3
then û1 disappears on both sides and we get the Airy equation for Ψ(y). Thus

Ψ(y) = C1 Ai(y) + C2 Bi(y) (1.4.114)

And we have Ψ(y) = ψ(x) with y = (x− x0)(û1)1/3 and so

ψ(x) = C1 Ai([x− x0][û1]1/3) + C2 Bi([x− x0][û1]1/3) (1.4.115)

Now for the asymptotic analysis. This is the solution near x = x0 which we will call the inner
region. As we go to the right we think of this as going to x → ∞ and when we go to the left, as
x→ −∞. Asymptotically we have

Ai(x)
x→∞−→

exp
(
−2

3
x3/2

)
2
√
πx1/4

(1.4.116)

Bi(x)
x→∞−→

exp
(

2
3
x3/2

)
2
√
πx1/4

(1.4.117)

Ai(x)
x→−∞−→

sin
(

2
3
x3/2 + π

4

)
√
πx1/4

(1.4.118)

Bi(x)
x→−∞−→

cos
(

2
3
x3/2 + π

4

)
√
πx1/4

(1.4.119)

Our solution in the outer region is given by [see (1.12.67)]

ψo(x) ≈
C+ exp

[´ x
x0

dx′
√

2m
~2 (U − E)

]
+ C− exp

[
−
´ x
x0

dx′
√

2m
~2 (U − E)

]
(2m
~2 |U − E|)1/4

(1.4.120)

Without loss of generality Consider U − E < 0 for x > x0 (that is, E > U , so a classically
allowed region and I will denote as → since x is to the right of x0). Then in this region we get√

(U − E) = i
√
|U − E| and so we get waves. We can then consider U − E > 0 for x < x0

(the ← region). In this case we have exponentials with C←+ a negatively decaying exponential and
C←− a growing exponential. Clearly, only C→+ is a physical solution, as we can’t have something
exponentially growing and have a normalized ψ.

In the case we chose with U −E < 0 for x > x0 we have both coefficients which I will just keep as
C+ and C− without → to keep them separate from the inner region values.
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For matching onto the inner region values, we note that our choices enforce that û1 < 0 because
U − E is decreasing as x crosses x0. If we use the same Taylor series approximation for Û on the
left outer region we see that for x < x0 so (x−x0)û1 > 0 and we replace (x−x0)û1 with (x0−x)|û1|
for convenience and U − E > 0 we get

ψo←(x) ≈
C←+ exp

[
−
´ x0

x
dx′

√
(x0 − x)|û1|

]
[(x0 − x)|û1|]1/4

(1.4.121)

using t′ = x0 − x′ and t = x0 − x > 0 we write this as

ψo←(x) ≈
C←+ exp

[
−
´ t

0
dt′
√
t′|û1|

]
[t|û1|]1/4

=
C←+

(|û1|t)1/4
exp

(
−(û1t)

3/2

3
2

)
(1.4.122)

≈
C←+

(|û1|t)1/4
exp

(
−2(|û1|t)3/2

3

)
(1.4.123)

Matching with (1.4.116) [remember that although x− x0 < 0 that (û1)1/3 < 0 as well so we are in
the x→ +∞ limit] we see that

C←+
(|û1|t)1/4

exp

(
−2(|û1|t)3/2

3

)
=

exp
(
−2

3
(|û1|t)3/2

)
2
√
π(|û1|t)1/4

(1.4.124)

which means C←+ = 1
2
√
π
is a requirement. This means we don’t care about the Bi(t) solution.

Next we look at x > x0 and use t′ = x′ − x0 with t = x− x0 > 0 to find

ψo→(x) ≈
C+ exp

[
i
´ t

0
dt′
√
t|û1|

]
+ C− exp

[
−i
´ t

0
dt′
√
t|û1|

]
[t|û1|]1/4

(1.4.125)

which simplifies to

ψo→(x) ≈
C+ exp

[
i
√
|û1|2t

3/2

3

]
+ C− exp

[
−i
√
|û1|2t

3/2

3

]
[t|û1|]1/4

(1.4.126)

We rewrite (1.4.118) (define ζ = 2
3
(|û1|1/3t)3/2 for convenience, remembering that (û1)1/3 is negative

so we are in the correct limit)

Ai(t)
x→−∞−→

exp
(
iζ + iπ

4

)
− exp

(
−iζ − iπ

4

)
2i
√
π(|û1|t)1/4

(1.4.127)

Then

C+ =
−i exp(iπ/4)

2
√
π

(1.4.128)

C− =
i exp(−iπ/4)

2
√
π

(1.4.129)

Then we must have using C→+ = 1
2
√
π
that

C+ = −i exp(iπ/4)C←+ = exp (−iπ/4)C←+ (1.4.130)
C− = i exp(−iπ/4)C←+ = exp(iπ/4)C←+ (1.4.131)
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112 Asymptology

Now assume there is one other turning point at x1 to the right of x0 and x > x1 is a classically
forbidden region. Then the form of the solution near x1 will be the same but there can now
be a phase difference from the new coefficients there. So in order to get a single valued, square
integrable solution we need to think about the argument in the complex exponentials. We will
soon see that we must have

ˆ x1

x0

dx′
√

2m

~2
|U − E| =

(
n+

1

2

)
π (1.4.132)

for n a non-negative integer so that the forms of C+ and C− either exchange places or go back
to the same values when connecting across turning point regions. That is, we recover the Bohr-
Sommerfeld quantization rule (with the “Maslov correction” of 1/2 allowing “swapping”). Had we
chosen different boundary conditions at x0 and x1 [for example, we could force ψ = 0 there] we
could get different Maslov correction factors, which just come from asymptotic matching.

All other types of asymptotic matching problems are similar. We deal with an inner region and
“extend” its solution to infinity with an asymptotic expression, and then use the freedom in the
outer solution to match the inner solution to the outer solution, consistent with any physical
requirements we may have.

Thus, our full solution is for the inner region ψi and outer region ψo given by

ψi ≈ C→+ Ai(|û1|1/3(x− x0)) x < x0 (1.4.133)

ψo ≈ C→+

exp
(
− iπ

4
+ i

~

´ x
x0

dx′
√

2m
~2 |U − E|

)
+ exp

(
iπ
4
− i

~

´ x
x0

dx′
√

2m
~2 |U − E|

)
(

2m
~2 |U − E|

)1/4
x0 < x < x1

(1.4.134)

where x1 is ∞ if there are no other turning points.

If we extend to another region with turning point x1 [with U − E < 0 to the left of x1 to be
consistent with x0 and U −E > 0 to the right of x1]67 to the right of x0 so x1 > x0, then we must
have

ψi1 ≈ C→1−Ai(|û1,2|1/3(x− x1)) x > x1 (1.4.135)

ψo1← ≈ C→1+

exp
(
iπ
4

+ i
~

´ x
x1

dx′
√

2m
~2 |U − E|

)
+ exp

(
− iπ

4
− i

~

´ x
x1

dx′
√

2m
~2 |U − E|

)
(

2m
~2 |U − E|

)1/4
x0 < x < x1

(1.4.136)

ψo1→ ≈ C→1+

exp
(
−1
~

´ x
x1

dx′
√

2m
~2 |U − E|

)
(

2m
~2 |U − E|

)1/4
x > x1 (1.4.137)

with û1,2 the analog of û1 but now positive and at x = x1 instead of x0. C→1+ is the coefficient of the
function around x1 that must be consistent with exponential decay to the right of x1. Note how the
±iπ/4 switch because when we match this time we have to remember that x < x1 [whereas before
x > x0 in this same region] and so the integrals as written are negative. Because ψi1 must also

67This means that the classically allowed region is surrounded by classically forbidden regions.
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match onto the “outer” solution ψo→ we see that we must get the matching quantization condition
mentioned before.

We see that we need matching completely within x0 < x < x1. Thus we require for this region

C←+

[
exp

(
−iπ

4
+ i

ˆ x

x0

dx′ α

)
+ exp

(
iπ

4
−
ˆ x1

x0

dx′ α

)]
= C→1−

[
exp

(
iπ

4
+ i

ˆ x

x1

dx′ α

)
+ exp

(
−iπ

4
− i
ˆ x

x1

dx′ α

)] (1.4.138)

2C←+ cos

(ˆ x

x0

dx′ α− π

4

)
= 2C→1− cos

(ˆ x

x1

dx′ α +
π

4

)
(1.4.139)

C←+ cos

(ˆ x

x0

dx′ α− π

4

)
= C→1− cos

(
−
ˆ x1

x

dx′ α +
π

4

)
(1.4.140)

The only posible way this is true is when C←+ = C→1− the phases are only off by a certain amount
(since they are periodic in 2π) or if C←+ = −C→1− and the phases are off by a certain amount. We
can’t really know a priori which way it is, but we can choose them consistently after we decide on
a condition for the integral. Thus we can alter the phase by nπ, since we can choose the constants
to be negatives of each other rather than simply equal to each other. This means

ˆ x

x0

dx′ α− π

4
= −
ˆ x1

x

dx′ α +
π

4
+ nπ (1.4.141)

so
ˆ x1

x0

dx′ α =
π

2
+ nπ =

(
n+

1

2

)
π (1.4.142)

which is the quantization condition we had before.

If we had enforced the coefficients to be the same, however, we’d find
ˆ x

x0

dx′ α− π

4
= −
ˆ x1

x

dx′ α +
π

4
+ 2nπ (1.4.143)

which would then enforce
ˆ x1

x0

dx′ α =

(
2n+

1

2

)
π (1.4.144)

an uglier looking relation.

1.4.4 Other Ideas

Of course, asymptology as envisioned by Kruskal involves many other ideas, including perturbation
series methods that we will consider in other sections. I could include everything under asymptol-
ogy, but I think that they are important enough to merit their own sections. So JWKB in Section
1.12, eikonals in Section 1.12.1 , linearization in Section 1.6, Taylor series in Section 1.5, and so
on are all elements of asymptology, but will be covered in their respective sections.
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1.5 Taylor Series

Truth . . . is much too complicated to allow anything but approximations.

— John von Neumann

A physicist’s best friend is a Taylor series. You may think I am joking, but the ubiquity of this
approximation in all of physics cannot be overstated. A Taylor series is a way of approximating
a function around a value. The advantage is that it is quite accurate near that value. The
disadvantage is that the convergence rate of that function is determined by the function’s properties
in complex space, meaning that functions that look perfect on the real line may have surprising
convergence properties.68 So let’s get to them. A Taylor approximation uses information at a
single point about a function to approximate it elsewhere. The simple idea is that if we know
the value at a point and then the value of the derivative at that point, we can simply use that to
extrapolate. And, if we know the second derivative at that point, we can use that to extrapolate
even better, etc. As one would expect, the accuracy decreases as one goes away from the chosen
point, and so only certain functions will work for this. Luckily, they are the functions most used
in physics and we often are interested at places where only a couple terms are sufficient for the
accuracy we desire. For a point z0 (complex or real) the Taylor approximation of a function f(z)
with (z complex or real) is given by (define ∆z ≡ z − z0)

f(z) ≈ f(z0)(z − z0) + f ′(z0)(z − z0)2 +
f ′′(z0)

2
(z − z0)3 + · · ·+ f (n)(z0)(z − z0)n

n!
+ · · · (1.5.1)

f(z) ≈ f(z0)∆z + f ′(z0)(∆z )2 +
f ′′(z0)

2
(∆z )3 + · · ·+ f (n)(z0)(∆z )n

n!
+ · · · (1.5.2)

with fn(z) being the nth derivative of f(z) and f (0)(z) ≡ f(z). Or more compactly

f(z) ≈
∞∑
n=0

f (n)(z0)(∆z )n

n!
(1.5.3)

Now if we are talking about z complex, then there is a generalization that is often useful to take
which is to use the Laurent series, where

f(z) ≈
∞∑

n=−∞

an(∆z )n (1.5.4)

an =
1

2πi

˛
γ

dz
f(z)

(z − z0)n+1
(1.5.5)

where the integral is a contour integral and γ is a closed curve that goes counterclockwise round
the point z0. The function f(z) must be holomorphic, which is just to say it is a special “nice”
complex function, in order for the above to make sense.

Assuming that the functions are “nice”, then the above expressions can even use an equals sign
instead of an approximate sign, and we can treat the Taylor series as definitions of the functions.

68A surprising convergence property could, in principle, be good, but usually it means a pole in the complex
plane makes the approximation worse than one would expect.
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This is all basic stuff, but what about multiple variables? The answer is easier in index notation
first. We then write f(zj) where j is some positive integer. Thus f is a function of J variables
z1, . . . , zJ . Then let the approximation point be z0 = (z0,0, z0,1, . . . , z0,j, . . . , z0,J),Then we have

f(zj) ≈
∞∑

n1=0

· · ·
∞∑

nj=0

· · ·
∞∑

nJ=0

(z1 − z0,1)n0 · · · (zj − z0,j)
nj · · · (zJ − z0,J)nJ

n0! · · ·nj! · · ·nJ !

∂n1+···+nj+···+nJf

∂zn1
1 · · · ∂z

nj
j · · · ∂z

nJ
J

∣∣∣∣∣
z=z0

(1.5.6)

For z complex, the above is only well defined if each complex variable satisfies the Cauchy-Riemann
relations. This is most easily expressed using Wirtinger derivatives. First for a single variable
f(z) = f(x+ iy) = u(x, y) + iv(x, y) the Cauchy-Riemann relations are

∂u

∂x
=
∂v

∂y
(1.5.7)

∂u

∂y
= −∂v

∂x
(1.5.8)

The Wirtinger derivatives are defined via (z = x+ iy)

∂f(z)

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
f(x+ iy) (1.5.9)

∂f(z)

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
f(x+ iy) (1.5.10)

This is fairly reasonable for if we viewed z = x+ iy with x = (z+ z∗)/2 and y = (z− z∗)/(2i) with
the complex conjugate of z given by z̄ = z∗ considered independent of z, then

∂f

∂z
=

(
∂f

∂x

)
y

∂x

∂z
+

(
∂f

∂y

)
x

∂y

∂z
=
∂f

∂x

1

2
+
∂f

∂y

1

2i
(1.5.11)

∂f

∂z̄
=

(
∂f

∂x

)
y

∂x

∂z̄
+

(
∂f

∂y

)
x

∂y

∂z̄
=
∂f

∂x

1

2
+
∂f

∂y

−1

2i
(1.5.12)

which gives the correct Wirtinger derivative results. If we consider a full derivative with respect
to z = x + iy and consider it as a function of two real variables x and y we will find (use
2∆x = ∆z + ∆z̄ and 2i∆y = ∆z −∆z̄ )

df(z)

dz

∣∣∣∣
z=z0

= lim
∆z→0

f(z0 + ∆z )− f(z0)

∆z
= lim

∆z→0

f(z0) + ∂f
∂x

∆x + ∂f
∂y

∆y +O([∆x ,∆y ]2)− f(z0)

∆z

(1.5.13)

= lim
∆z→0

1
2
∂f
∂x

(∆z + ∆z̄ )− i
2
∂f
∂y

(∆z −∆z̄ )

∆z
+O([∆z ]2) (1.5.14)

= lim
∆z→0

∂f
∂x
−i ∂f

∂y

2
∆z +

∂f
∂x

+i ∂f
∂y

2
∆z̄

∆z
+O([∆z ]2) (1.5.15)

= lim
∆z→0

[
∂f
∂x
− i∂f

∂y

2
+

∂f
∂x

+ i∂f
∂y

2

∆z̄

∆z
+O([∆z ]2)

]
(1.5.16)

=
∂f

∂z

∣∣∣∣
z=z0

+
∂f

∂z̄

∣∣∣∣
z=z0

dz̄

dz

∣∣∣∣
z=z0

(1.5.17)
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Because dz̄
dz

is not differentiable anywhere, we must require ∂f
∂z̄
|z=z0 = 0. Using the previous notation

this means

1

2

(
∂u

∂x
+ i

∂v

∂x
+ i

∂u

∂y
+ i2

∂v

∂y

)
= 0 (1.5.18)

separating real and imaginary parts this then indeed says

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
(1.5.19)

Thus with this generalization, for z an array of complex variables with components zj we simply
must have ∂f/∂z̄j = 0 for all the zj. Note that this is very restrictive for functions. There is
no such restriction for zj real, the more common case in physics. Note also, that the Wirtinger
derivative makes our job much easier. We do not have to separate out zj into two real variables.
We simply check if the function has the complex conjugate in it. If it does not then we have an
analytic function. If it does, we have to see if there is cancellation. Thus we can actually just
interpret the Wirtinger derivative as a derivative with respect to the variable z̄j holding zj constant
or vice versa. Let’s now show that the Wirtinger derivatives satisfy properties similar to regular
differentiation rules. First, let’s show some amusing properties

∂f

∂zj
=
∂f̄

∂z̄j
(1.5.20)

∂f

∂z̄j
=
∂f̄

∂zj
(1.5.21)

This is shown by the definitions

∂f

∂zj
=

1

2

∂f

∂xj
− i ∂f

∂yj
=

1

2

(
∂f̄

∂xj
+ i

∂f̄

∂yj

)
=
∂f̄

∂z̄j
(1.5.22)

∂f

∂z̄j
=

1

2

∂f

∂xj
+ i

∂f

∂yj
=

1

2

(
∂f̄

∂xj
− i ∂f̄

∂yj

)
=
∂f̄

∂zj
(1.5.23)

Next, that a product of f(zj) and g(zj) with (complex) constants α and β yields the usual rule

∂(αf + βg)

∂zj
= α

∂f

∂zj
+ β

∂g

∂zj
(1.5.24)

∂(αf + βg)

∂z̄j
= α

∂f

∂z̄j
+ β

∂g

∂z̄j
(1.5.25)

This follows from the definition once again.

∂ (αf + βg)

∂zj
=

1

2

(
∂(αf + βg)

∂xj
− i∂(αf + βg)

∂yj

)
=

1

2

(
α
∂f

∂xj
+ β

∂g

∂xj
− iα ∂f

∂yj
− iβ ∂g

∂yj

)
=
α

2

(
∂f

∂xj
− i ∂f

∂yj

)
+
β

2

(
∂g

∂xj
− i ∂g

∂yj

)
= α

∂f

∂z
+ β

∂g

∂z
(1.5.26)
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∂ (αf + βg)

∂z̄j
=

1

2

(
∂(αf + βg)

∂xj
+ i

∂(αf + βg)

∂yj

)
=

1

2

(
α
∂f

∂xj
+ β

∂g

∂xj
+ iα

∂f

∂yj
+ iβ

∂g

∂yj

)
=
α

2

(
∂f

∂xj
+ i

∂f

∂yj

)
+
β

2

(
∂g

∂xj
+ i

∂g

∂yj

)
= α

∂f

∂z̄
+ β

∂g

∂z̄
(1.5.27)

The product rule is messier, but we have

∂(fg)

∂zj
=
∂f

∂zj
g + f

∂g

∂zj
(1.5.28)

∂(fg)

∂z̄j
=
∂f

∂z̄j
g + f

∂g

∂z̄j
(1.5.29)

Once again, we can use the definition to prove this result.

∂(fg)

∂zj
=

1

2

(
∂(fg)

∂xj
− i∂(fg)

∂yj

)
=

1

2

(
∂f

∂xj
g + f

∂g

∂xj
− i ∂f

∂yj
g − if ∂g

∂yj

)
=

1

2

(
∂f

∂xj
− i ∂f

∂yj

)
g +

1

2
f

(
∂g

∂xj
− i ∂g

∂yj

)
=
∂f

∂zj
g + f

∂g

∂zj

(1.5.30)

∂(fg)

∂z̄j
=

1

2

(
∂(fg)

∂xj
+ i

∂(fg)

∂yj

)
=

1

2

(
∂f

∂xj
g + f

∂g

∂xj
+ i

∂f

∂yj
g + if

∂g

∂yj

)
=

1

2

(
∂f

∂xj
+ i

∂f

∂yj

)
g +

1

2
f

(
∂g

∂xj
+ i

∂g

∂yj

)
=
∂f

∂z̄j
g + f

∂g

∂z̄j

(1.5.31)

Finally, we have the dreaded chain rule.

∂f(g(z))

∂zj
=
∂f

∂g
· ∂g
∂zj

+
∂f

∂ḡ
· ∂ḡ
∂zj

=
∑
k

∂f

∂zk

∣∣∣∣
z=g(z)

∂gk
∂zj

+
∑
k

∂f

∂z̄k

∣∣∣∣
z=g(z)

∂ḡk
∂zj

(1.5.32)

∂f(g(z))

∂z̄j
=
∂f

∂g
· ∂g
∂z̄j

+
∂f

∂ḡ
· ∂ḡ
∂z̄j

=
∑
k

∂f

∂zk

∣∣∣∣
z=g(z)

∂gk
∂z̄j

+
∑
k

∂f

∂z̄k

∣∣∣∣
z=g(z)

∂ḡk
∂z̄j

(1.5.33)

The second equality is simply using what ∂f
∂g

actually means. For the chain rule to make sense, g
outputs an array of complex variables for f . Then we can separate g into components gk where gk
corresponds to the same functional input as zk for the function f . It depends on multiple zk, so
then we can take the derivatives with respect to the zk and put the value for z = g(z) in instead
of z. If you do not see why this is equivalent, then you should investigate it yourself. For us, it
is simpler to just deal with g as a whole. To prove the chain rule we apply the definitions on the
right hand side (let the function g be broken into two real functions g = gx + igy, note that the
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dot product is necessary to give the right answer)

∂f

∂g
· ∂g
∂zj

=
1

4

(
∂f

∂gx
− i ∂f

∂gy

)
·
(
∂(gx + igy)

∂xj
− i∂(gx + igy)

∂yj

)

=
1

4

(
∂f

∂gx
− i ∂f

∂gy

)
·

γg︷ ︸︸ ︷(
∂gx
∂xj

+
∂gy
∂yj

+ i

[
∂gy
∂xj
− ∂gx
∂yj

]) (1.5.34)

∂f

∂ḡ
· ∂ḡ
∂zj

=
1

4

(
∂f

∂gx
+ i

∂f

∂gy

)
·
(
∂(gx − igy)

∂xj
− i∂(gx − igy)

∂yj

)

=
1

4

(
∂f

∂gx
+ i

∂f

∂gy

)
·

Γḡ︷ ︸︸ ︷(
∂gx
∂xj
− ∂gy
∂yj

+ i

[
−∂gy
∂xj
− ∂gx
∂yj

]) (1.5.35)

(1.5.36)

and so if we add them we find

∂f

∂g
· ∂g
∂zj

+
∂f

∂ḡ
· ∂ḡ
∂zj

=
1

4

[
∂f

∂gx
· (γg + Γḡ) + i

∂f

∂gy
· (Γḡ − γg)

]
(1.5.37)

γg + Γḡ = 2
∂gx
∂xj
− 2i

∂gx
∂yj

(1.5.38)

Γḡ − γg = −2
∂gy
∂yj
− 2i

∂gy
∂xj

(1.5.39)

which means

∂f

∂g
· ∂g
∂zj

+
∂f

∂ḡ
· ∂ḡ
∂zj

=
1

2

[
∂f

∂gx
·
(
∂gx
∂xj
− i∂gx

∂yj

)
− i ∂f

∂gy
·
(
∂gy
∂yj

+ i
∂gy
∂xj

)]
(1.5.40)

=
∂f

∂gx
· ∂gx
∂zj

+
1

2

∂f

∂gy
·
(
∂gy
∂xj
− i∂gy

∂yj

)
(1.5.41)

=
∂f

∂gx
· ∂gx
∂zj

+
∂f

∂gy
· ∂gy
∂zj

=
∂f

∂zj
(1.5.42)

In the same way, when we take ∂f(g(z))
∂z̄j

we find

∂f

∂g
· ∂g
∂z̄j

=
1

4

(
∂f

∂gx
− i ∂f

∂gy

)
·
(
∂(gx + igy)

∂xj
+ i

∂(gx + igy)

∂yj

)

=
1

4

(
∂f

∂gx
− i ∂f

∂gy

)
·

γ̄g︷ ︸︸ ︷(
∂gx
∂xj
− ∂gy
∂yj

+ i

[
∂gx
∂yj

+
∂gy
∂xj

]) (1.5.43)

∂f

∂ḡ
· ∂ḡ
∂z̄j

=
1

4

(
∂f

∂gx
+ i

∂f

∂gy

)
·
(
∂(gx − igy)

∂xj
+ i

∂(gx − igy)
∂yj

)

=
1

4

(
∂f

∂gx
+ i

∂f

∂gy

)
·

Γ̄ḡ︷ ︸︸ ︷(
∂gx
∂xj

+
∂gy
∂yj

+ i

[
∂gx
∂yj
− ∂gy
∂xj

]) (1.5.44)

(1.5.45)
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and so if we add them we find
∂f

∂g
· ∂g
∂z̄j

+
∂f

∂ḡ
· ∂ḡ
∂z̄j

=
1

4

[
∂f

∂gx
·
(
γ̄g + Γ̄ḡ

)
+ i

∂f

∂gy
·
(
Γ̄ḡ − γ̄g

)]
(1.5.46)

γ̄g + Γ̄ḡ = 2
∂gx
∂xj

+ 2i
∂gx
∂yj

(1.5.47)

γ̄ḡ − γ̄g = 2
∂gy
∂yj
− 2i

∂gy
∂xj

(1.5.48)

which means
∂f

∂g
· ∂g
∂z̄j

+
∂f

∂ḡ
· ∂ḡ
∂z̄j

=
1

2

[
∂f

∂gx
·
(
∂gx
∂xj

+ i
∂gx
∂yj

)
+ i

∂f

∂gy
·
(
∂gy
∂yj
− i∂gy

∂xj

)]
(1.5.49)

=
∂f

∂gx
· ∂gx
∂z̄j

+
1

2

∂f

∂gy
·
(
∂gy
∂xj

+ i
∂gy
∂yj

)
(1.5.50)

=
∂f

∂gx
· ∂gx
∂z̄j

+
∂f

∂gy
· ∂gy
∂z̄j

=
∂f

∂z̄j
(1.5.51)

Note that we could generalize to complex vectors and tensors all of the previous results so long as
we are careful about order. For complex vector arrays, for example, we’d have

∂f(g(z))

∂z
=
∂f

∂g
· ∂g
∂z

+
∂f

∂ḡ
· ∂ḡ
∂z

(1.5.52)

∂f(g(z))

∂z̄
=
∂f

∂g
· ∂g
∂z̄

+
∂f

∂ḡ
· ∂ḡ
∂z̄

(1.5.53)

To summaraize, we have the Wirtinger derivatives satisfying for functions f and g with complex
constants α and β and g a complex vector array such that

∂f

∂zj
=

1

2

(
∂f

∂xj
− i ∂f

∂yj

)
(1.5.54)

∂f

∂z̄j
=

1

2

(
∂f

∂xj
+ i

∂f

∂yj

)
(1.5.55)

∂f

∂z
=

1

2

∂f

∂xj
− i ∂f

∂yj
=

1

2

(
∂f̄

∂xj
+ i

∂f̄

∂yj

)
=
∂f̄

∂z̄j
(1.5.56)

∂f

∂z̄
=

1

2

∂f

∂xj
+ i

∂f

∂yj
=

1

2

(
∂f̄

∂xj
− i ∂f̄

∂yj

)
=
∂f̄

∂zj
(1.5.57)

∂(αf + βg)

∂zj
= α

∂f

∂zj
+ β

∂f

∂zj
(1.5.58)

∂(αf + βg)

∂z̄j
= α

∂f

∂z̄j
+ β

∂f

∂z̄j
(1.5.59)

∂(fg)

∂z̄j
= f

∂g

∂z̄j
+
∂f

∂z̄j
g (1.5.60)

∂f(g(z))

∂zj
=
∂f

∂g
· ∂g
∂zj

+
∂f

∂ḡ
· ∂ḡ
∂zj

=
∑
k

∂f

∂zk

∣∣∣∣
z=g(z)

∂gk
∂zj

+
∑
k

∂f

∂z̄k

∣∣∣∣
z=g(z)

∂ḡk
∂zj

(1.5.61)

∂f(g(z))

∂z̄j
=
∂f

∂g
· ∂g
∂z̄j

+
∂f

∂ḡ
· ∂ḡ
∂z̄j

=
∑
k

∂f

∂zk

∣∣∣∣
z=g(z)

∂gk
∂z̄j

+
∑
k

∂f

∂z̄k

∣∣∣∣
z=g(z)

∂ḡk
∂z̄j

(1.5.62)
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Now if we have all real variables xj we can write this in vector notation69 by writing f(x) and thus
at point x0 with ∆x = x− x0 we have

f(x) = f(x0) + ∆x · ∂f
∂x

∣∣
x0

+ ∆x ∆x :
1

2

∂2f

∂x2

∣∣
x0

+ · · · [∆x ]n
n· 1

n!

∂fn

∂xn
∣∣
x0

+ · · · (1.5.63)

where the |x0 indicate evaluate at x = x0 after taking the derivative and

xn =

n instances︷ ︸︸ ︷
xx · · ·x

is interpreted as a nth order polyad or polyadic (or tensor of order n) and not as a dot product
and if ∆x has J components we have

[∆x ]n
n· ∂

nf

∂xn
∣∣
x0

=
J∑

j1=1

· · ·
J∑

jn=1

∂nf

∂xj1 · · · ∂xjn

∣∣∣∣
x0

(∆xj1 ) · · · (∆xjn ) (1.5.64)

Here
n· can be thought of as a generalization of the dot and double dot products. A more “conven-

tional” representation using the nabla operator with

∇(n) ≡
n instances︷ ︸︸ ︷
∇∇· · · ∇

would be

f(x) = f(x0) + ∆x · ∇f |x0 + ∆x ∆x :
1

2
∇∇f |x0 + · · · [∆x ]n

n· 1

n!
∇(n)f |x0 + · · · (1.5.65)

Finally, it is often useful to approximate vectors and tensors. We can use vector f(x) and find

f(x) ≈ f(x0) + ∆x · ∂f

∂x

∣∣∣∣
x0

+ · · ·+ [∆x ]n
n· 1

n!

∂nf

∂xn

∣∣∣∣
x0

+ · · · (1.5.66)

where the notation does all of the work for us. Here the definition is given by (assuming three
dimensions, J = 3)

∇f =
∂f

∂x
=

3∑
j1=1

3∑
j=1

(
∂f j

∂xj1
+ f iΓjij1

)
ej1ej (1.5.67)

∇f =
∂f

∂x
=

3∑
j1=1

(
∂fj
∂xj1

− fiΓijj1

)
ej1ej (1.5.68)

Further derivatives become even more of a headache to calculate. Using Cartesian coordinates
makes the calculations much easier, as we can ignore all the metric component parts. In those
cases, we can write

∇(n)f =
∂nf

∂xn
=

3∑
j1=0

· · ·
3∑

jn=0

(
∂nf j

∂xj1 · · · ∂xjn

)
x̂j1 · · · x̂jnx̂j (1.5.69)

with x̂j the usual Cartesian unit vectors x̂1 = x̂, x̂2 = ŷ, x̂3 = ẑ.
69This can even be generalized to vector arrays x if we do not enforce the connection coefficients below.
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1.6 Why Linearization Works
All linear problems are alike, but each nonlinear problem is nonlinear in its own way.

— Paraphrase of Anna Karenina

We can also comment on the concept of linearization and its generalizations (though the gener-
alizations are not used nearly as often in plasma physics). First, let us explain what nonlinear
equations and linear equations are. A linear equation has the unknown appear in each term one
or zero times. A nonlinear equation is any equation that is not linear.70 Suppose we have some
nonlinear differential equations

∂n

∂t
+∇ · (nV) = 0 (1.6.1)

1

γ − 1

[
∂T

∂t
+ V · ∇T

]
= −nT∇ ·V (1.6.2)

∇×B = J (1.6.3)
∇ ·B = 0 (1.6.4)
∂B

∂t
=∇× (V ×B) (1.6.5)

∂V

∂t
+ V · ∇V = J×B− ∇p (1.6.6)

with p = nT . Note that these are very similar to the Ideal MHD equations.

So ∇p or ∂V
∂t

are linear while terms like V · ∇V or J×B are nonlinear.

Now, we assume that there is a solution to these equations and consider a perturbation away from
this steady state solution, sometimes called the equilibrium solution.71 A major assumption is in
deciding the ordering of terms. But for each q we will assume that it can be ordered such that

q = q0 + δq1 + δ2q2 + · · · =
∞∑
i=0

δiqi (1.6.7)

with δ a parameter of some sort such that δ � 1 and the qi = O(1), that is, are all of a similar
order so that δ actually does useful work. This assumption that all different unknowns have this
sort of dependence is not something actually required of any solution. For linearization (only using
i = 0, 1), this is more justified in that we will only keep linear terms and so small changes in one
term must distribute to small changes in other quantities that are coupled. But it is important
to note that each term could have a different δ (perhaps call it δqi for each quantity qi) and then
different orders would need to be balanced based on the relative ordering of the δqi ’s with each
other (that is we need relations δqi = O(δ

nqi
q0 ) for some nqi so that we can relate each δqi to all the

other δqj). In fact, different types of MHD equations are derived by having different relative values
for the various ordering parameters. All that really matters is that one is consistent. Remember

70I have heard that this is like dividing the world into bananas and non-bananas. This is a bit unfair. If your
world contained a variety of bananas, all edible, and then isolated cases of objects that were clearly not bananas
but shared little else in common, it would make sense to have banana and non-banana categories. For us, linear
equations are solvable while nonlinear equations generally are not analytically solvable.

71It is not usually a thermodynamic equilibrium, and so the use of equilibrium should instead be interpreted more
like a mechanical equilibrium where things are unchanging in time.
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122 Why Linearization Works

that by making such assumptions, it is always possible to miss important physical solutions that
do not match the ordering you are imposing.

I feel it needs to be belabored that we have assumed a form of solution given by (1.6.7) and
then investigate what that implies for q0, q1, q2, . . . , etc. If we find that it implies something
nonsensical or that the terms are all zero, then our approximation method has failed to give us any
insight. There is nothing in a general solution of partial differential equations to guarantee us that
linearization will work. In practice, we know that physical situations will provide us with examples
where linearization is useful. The further we’d like to extend solutions around these situations,
the more difficulty and more calculation we will have to endure.

With this in mind, the reasoning behind linearization is a type of balance between terms. What we
will use is a principle called dominant balance in which we say only terms of the same order need
to be considered at the same time because the larger terms are “balancing” each other (with the
smaller terms small enough they couldn’t possibly affect the larger terms to the accuracy we care
about). Here is one (admittedly, strange) way to think about it. Suppose there were two owners
each with one employee. Suppose they were splitting the money from giant crates containing giant
gold blocks of 10 000 kg. There can be really large number of these 10 000 kg gold blocks in a crate.
But inside each crate there is one treasure chest containing at most 100 kg of gold. The bosses
don’t care about any mass of gold less than 100 kg and so as long as no treasure chest is more than
that, they leave it as payment for their employees.

There is an even number of gold blocks contained in all of the crates, but they are not split
evenly between them. The bosses only care about the gold blocks and the employees are paid with
whatever treasure chest they get. First the bosses get their say. They only care about the big gold
blocks being equal, and so measure them out equally. They don’t care about the treasure chests.
This is like a zeroth approximation. The employees, however, may or may not be happy with this,
but their voice doesn’t count as much.

Suppose the bosses do care about keeping their employees happy, though. They don’t want to deal
with it themselves, though, and so tell the employees, they can split the treasure chests however
they want. Then the employees will balance the treasure chest gold, and we have a first order
approximation.

If both the bosses and employees split equally, then we have enforced a balance among the dominant
terms, and then the next dominant terms, and so we have equality overall. If the employees had
subemployees, and there were some gold rings in each treasure chest (say a couple of grams of
gold, and the employees only care about the treasure chest being equal up to a few grams), the
employees won’t care about splitting the gold rings evenly, but the subemployees would, and so
on. Each order only cares about it’s share, and if we want overall balance, we must first balance
the dominant terms.

The important thing is that at the outset we chose to split the gold rations into sizes that are
widely separated in mass so that we can deal with each mass size one at a time (as the various
levels of bosses and employees deal only with their gold mass size) so that we can stop the process
without worrying about the leftovers being large enough to upset the balance (this would be like
the treasure chest containing more gold than one of the gold blocks; the boss would then care
about it). Our mathematical method of dividing contributions with an ordering parameter works
in the same way.
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We consider only the largest contributions first, then we refine to more accurate answers. What is
crucial is that we split the quantities on each side of the equality into pieces that are essentially
independent of each other because of the vast difference in scale at each step.72 The ordering
parameter tells us how accurately we want our two sides of the equation to approximate each
other and ensures that we can split the equation up as we would like. Note the method can easily
fail to be accurate if quantities can affect each other because equality of the sides is not actually
guaranteed. This would be like in our example allowing a box in the crate to contain 1000 treasure
chests. Then the treasure chests may not be a negligible contribution and so if we didn’t fairly
distribute the treasure chests it would not be an equal split (and the bosses would be unhappy).

Going back to our example of ideal MHD-like equations, we can use the assumption that each
parameter can be separated into different contributions with an ordering parameter. The next
step is to expand our equations and collect terms of the same order in δ. For linearization, we
only care about terms up to order δ1. For this example, let’s take up to δ2 so we can see how
linearization can easily be generalized later. We have for (1.6.1)

∂

∂t
(n0 + δn1 + δ2n2) +∇ · ((n0 + δn1 + δ2n2)

(
V0 + δV1 + δ2V2

)
) = O(δ3) (1.6.8)[

∂n0

∂t
+∇ · (n0V0)

]
+ δ

(
∂n1

∂t
+∇ · (n0V1 + n1V0)

)
+ δ2

[
∂n2

∂t
+∇ · (n1V2 + n2V1)

]
= O(δ3)

(1.6.9)

and then for (1.6.2)

1

γ − 1

[
∂

∂t
+ (V0 + δV1 + δ2V2) · ∇

] [
T0 + δT1 + δ2T2

]
= −(n0 + δn1 + δn2)(T0 + δT1 + δ2T2)∇ ·

(
V0 + δV1 + δ2V2

) (1.6.10)

leading to[
1

γ − 1

{
∂T0

∂t
+ V0 · ∇T0

}
+ n0T0∇ ·V0

]
+ δ

[
1

γ − 1

{
∂T1

∂t
+ V0 · ∇T1 + V1 · ∇T0

}
+ (n1T0 + n0T1)∇ ·V0 + n0T0∇ ·V1

]
+ δ2

[
1

γ − 1

{
∂T2

∂t
+ V0 · ∇T2 + V1 · ∇T1 + V2 · ∇T0

}
+ n0T0∇ ·V2

+ (n0T1 + n1T0)∇ ·V1 + n1T1∇ ·V0

]
= O(δ3)

(1.6.11)

For the next equation (1.6.3)

∂

∂t

[
B0 + δB1 + δ2B2

]
=∇× ([V0 + δV1 + δ2V2]× [B0 + δB1 + δ2B2]) (1.6.12)

72If the treasure chests contained 1000 kg of gold each, you could follow the procedure, but if you stopped at just
equalizing the giant gold blocks, the bosses would get upset if they learned they didn’t get the share they were
promised.
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[
∂B0

∂t
−∇× (V0 ×B0)

]
+ δ

[
∂B1

∂t
−∇× (V0 ×B1 + V1 ×B0)

]
+ δ2

[
∂B2

∂t
−∇× (V0 ×B2 + V1 ×B1 + V2 ×B0)

]
= O(δ3)

(1.6.13)

and then for (1.6.5)

{
∂

∂t
+
[
V0 + δV1 + δ2V2

]
· ∇
}[

V0 + δV1 + δ2V2

]
= (∇×

[
B0 + δB1 + δ2B2

]
)×

[
B0 + δB1 + δ2B2

]
− ∇

(
[n0 + δn1 + δ2n2][T0 + δT1 + δ2T2]

) (1.6.14)

[
∂V0

∂t
+ V0 · ∇V0 − (∇×B0)×B0 + ∇(n0T0)

]
+ δ

[
∂V1

∂t
+ V1 · ∇V0 + V0 · ∇V1

− (∇×B1)×B0 + (∇×B0)×B1 + ∇(n0T1 + n1T0)

]
+ δ2

[
∂V2

∂t
+ V0 · ∇V2 + V1 · ∇V1 + V2 · ∇V0

−∇× (B2)×B0 − (∇×B1)×B1 − (∇×B0)×B2

+ ∇(n0T2 + n1T1 + n2T0)

]
= O(δ3)

(1.6.15)

You might worry that I skipped (1.6.4), but it simply states that

∇ ·B0 + δ∇ ·B1 + δ2∇ ·B2 = O(δ3) (1.6.16)

Because δ changes the order it is then clear for any Bj that we have ∇ ·Bj = 0.

Now we assumed we had a steady state so ∂q0
∂t

= 0 for all quantities stating

∇ · (n0V0) = 0 (1.6.17)
1

γ − 1
V0 · ∇T0 = −n0T0∇ ·V0 (1.6.18)

∇ · (V0 ×B0) = 0 (1.6.19)

�
�
���

0
∂V0

∂t
+ V0 · ∇V0 = (∇×B0)×B0 − ∇(n0T0) (1.6.20)

We have eight unknowns and eight equations.
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The next order O(δ) equations are

∂n1

∂t
= −∇ · (n0V1 + n1V0) (1.6.21)

1

γ − 1

{
∂T1

∂t
+ V0 · ∇T1 + V1 · ∇T0

}
= −(n1T0 + n0T1)∇ ·V0 + n0T0∇ ·V1 (1.6.22)

∂B1

∂t
=∇ · (V0 ×B1 + V1 ×B0) (1.6.23)

∂V1

∂t
+ V1 · ∇V0 + V0 · ∇V1 = (∇×B1)×B0 + (∇×B0)×B1 + ∇(n0T1 + n1T0) (1.6.24)

Once again, 8 equations and 8 unknowns since we have all the subscript 0 terms. In principle, we
can solve for all of the first order (subscript 1) terms which are the linearized terms. For example,
one can use Fourier transforms if the steady-state terms have no spatial dependences. Note that
unless our previous solutions for O(δ0 = 1) terms are especially simple, it might be as difficult to
solve this system of equations as the original system without the ordering parameter. Thus, we
see that linearization may always work, but it may not always be useful. Context again decides
whether linearization will provide us physical insight.

After solving for these we could then go for the next order O(δ2) which would entail solving

∂n2

∂t
+∇ · (n1V2 + n2V1) (1.6.25){

∂T2

∂t
+ V0 · ∇T2 + V1 · ∇T1 + V2 · ∇T0

}
+ n0T0∇ ·V2

+ (n0T1 + n1T0)∇ ·V1 + n1T1∇ ·V0

(1.6.26)

∂B2

∂t
=∇ · (V0 ×B2 + V1 ×B1 + V2 ×B0) (1.6.27)

∂V2

∂t
+ V0 · ∇V2 + V1 · ∇V1 + V2 · ∇V0

=∇× (B2)×B0 + (∇×B1)×B1 + (∇×B0)×B2

− ∇(n0T2 + n1T1 + n2T0)

(1.6.28)

which can in principle be solved once we have all zeroth and first order terms solved for above.
We can then write out our solutions using the series we developed above for each quantity q as

q ≈ q0 + δq1 + δ2q2 (1.6.29)

Once we have gone to O(δ2) however, it is pretty clear that general solutions become more and
more difficult to work out as the equations become longer and longer (not necessarily much more
intrinsically difficult, however, but often they actually are more difficult). Usually the second order
expansion is considered too much work for a limited gain. For if δ � 1 then we are only making
a correction of δ2 � δ. So you need to always weigh the difficulties versus the fruits of the labor.
It may be better to find a different approximation than to work out the second order results.

When doing such calculations, if we assume q0 are constant in time and space, then it is common to
assume that the linear (first order) terms are in the form of plane waves with spatial and temporal
dependence exp[i(k · x− ωt)] which is equivalent to a Fourier-Laplace transform as long as there
are no terms with spatial dependence outside of the first-order terms. When this is the case, note
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126 Multiple Scale Analysis

that the second order O(δ2) equations cannot easily be calculated by the same method, and so
finding a solution for the second order equations is actually a fairly difficult task. This is why it is
rarely done in practice.

1.7 Multiple Scale Analysis
Robert [Oppenheimer] replied bluntly, “I’m in difficulties.” Bohr asked, “Are the dif-
ficulties mathematical or physical?” When Robert replied, “I don’t know,” Bohr said,
“That’s bad.”

— From American Prometheus[3, p. 54]

Multiple scale analysis is, essentially, a generalized perturbation method. But the multiple scale
analysis works with only a few terms in a series, whereas regular (that is usual) perturbation series
(what I covered in the linearization Section 1.6) may require an infinite number of terms to recover
useful information. Generally in physics, we think of the multiple scales as being in time, though
space is always a possibility as well. I will talk in the language of multiple time scale analysis, but
one can easily generalize to other situations.

The key idea is assuming that our problem has multiple time scales that we care about and are
relevant. In addition these time scales are separated by an ordering parameter ε, and we think of
things changing ever more slowly on the longer and longer time scales so that the time separation
makes sense. Then we have time t written for each of these scales as

t = ε−jτj (1.7.1)

with each τj being a time variable associated with the scale εj. With these j independent time
variables we will then analyze the problem.73 If we have an equation with an operator G (that can
involve differentiation, integration, etc., all the things we normally see) and given driving function
s(x, t) we can form an equation

G(f(x, t)) = s(x, t) (1.7.2)

for f(x, t) with appropriate boundary conditions.

Calling all the τj the vector array T, we can write

f(x, t)→ f(x, T) (1.7.3)
s(x, t)→ s(x, T) (1.7.4)

We can consider each time scale as independent of the others, but dependent on t itself so that for
any generic function g(t) we have

∂g

∂t
=
∞∑
j=0

∂g

∂τj

dτj
dt

=
∞∑
j=0

εj
∂g

∂τj
(1.7.5)

73That is we solve a more complicated problem from a variable perspective and use the extra freedoms inherent
in the extra complexity to match onto our original problem. This is like finding the answer to the moments of a
Gaussian by noticing that for F =

´∞
−∞ dt exp(−αt2) =

√
π/α and so we can take d

dα to find the answer instead of
redoing each integral. We usually only deal with two scales in multiple scale analysis as it usually becomes more
difficult to solve the equations as you go on.
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That is, we artifically treat τj as independent of each other but dependent on t. Later we use the
acutal relationships between the time scales to form our solution. Finally, we use a perturbation
series

f(x, T) =
∞∑
j=0

εjfj(x, T) (1.7.6)

In doing so, we have added j− 1 extra independent variables which gives too much freedom to our
solutions. If we are lucky, as we usually are, then we will enforce j−1 new conditions that rid us of
secular74 terms with so-called solvability conditions. These usually turn out to be something like
the integral of something or some expression is zero in cases of physical interest. These solvability
conditions are not too complicated and so we get a physical solution by finding a more general
solution and reducing it to a case consistent with our actual case.

An example will make this clearer. Following the usual approach, we choose the Duffing equation

d2y

dt2
+ y + εy3 = 0 (1.7.7)

with ε� 1 with y(0) = 1 and dy
dt
|y=0 = 0. If we used a typical perturbation series we find

y =
∞∑
j=0

εjyj (1.7.8)

and so find

d2y0

dt2
+ ε

d2y1

dt2
+ y0 + εy1 + εy3

0 = O(ε2) (1.7.9)

Thus order by order we find

d2y0

dt2
+ y0 = 0 (1.7.10)

d2y1

dt2
+ y1 + y3

0 = 0 (1.7.11)

If we enforce the boundary conditions, then the solution to the zeroth order equation is clearly
a0 cos(t). The second equation then states

d2y1

dt2
+ y1 = −a3

0 cos3 t (1.7.12)

We can solve this ODE by any method you choose. The homogenous solution is clearly going to
be b0 cos(t). The particular solution is

3a3
0

8
t sin(t)− a3

0

32
cos(3t) (1.7.13)

Thus the solution is

y ≈ a0 cos(t) + ε

[
b0 cos(t)− a3

0

32
cos(3t) +

3a3
0

8
t sin(t)

]
(1.7.14)

74That is terms that grow unphysically, and so for a physical solution should be set to zero somehow.
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However, when t ∼ 1/ε, then our perturbation series fails because then εt sin(t) grows to be on the
y0 scale rather than the y1 scale. This is a secular term.

If we had instead started with a multiple time scale analysis we introduce (T = [τ0, τ1])

t = τ0 + ετ1 (1.7.15)
y = y0 + εy1 (1.7.16)

and use

dy

dt
=
∂y0

∂τ0

+ ε
∂y0

∂τ1

+ ε
∂y1

∂τ0

+O(ε2) (1.7.17)

∂2y

∂t2
=
∂2y

∂τ 2
0

+ 2ε
∂2y

∂τ1∂τ0

+ ε
∂2y1

∂τ 2
0

(1.7.18)

and so our equation becomes

∂2y0

∂τ 2
0

+ 2ε
∂2y0

∂τ1∂τ0

+ ε
∂2y1

∂τ 2
0

+ y0 + εy1 + εy3
0 = O(ε2) (1.7.19)

and so order by order we get

∂2y0

∂τ 2
0

+ y0 = 0 (1.7.20)

∂2y1

∂τ 2
0

+ 2
∂2y0

∂τ1∂τ0

+ y3
0 = 0 (1.7.21)

Now the first equation clearly has a solution of the form

y0 = a(τ1) cos(τ0) = A(τ1) exp(iτ0) + A∗(τ1) exp(−iτ0) (1.7.22)

We then have

y3
0 = A(τ1)3 exp(3iτ0) + 3A(τ1)2A∗(τ1) exp(2iτ0 − 2iτ0)

+ 3A(τ1)A∗(τ1)2 exp(iτ0 − 2iτ0) + A(τ1)3 exp(−3iτ0)
(1.7.23)

= A(τ1)3 exp(3iτ0) + 3A(τ1)2A∗(τ1) exp(iτ0) + 3A(τ1)A∗(τ1)2 exp(−iτ0) + A(τ1)3 exp(−3iτ0)
(1.7.24)

= a(τ1)3 cos3(τ0) (1.7.25)
∂2y0

∂τ1∂τ0

=
∂

∂τ0

[
∂A(τ1)

∂τ1

exp(iτ0)

]
+

∂

∂τ0

[
∂A∗(τ1)

∂τ1

exp(−iτ0)

]
= i

∂A(τ1)

∂τ1

exp(iτ0) +−i∂A
∗(τ1)

∂τ1

exp(iτ0)

(1.7.26)

= −∂a(τ1)

∂τ1

sin τ0 (1.7.27)

So that the first order equation reads

∂2y1

∂τ 2
1

+ y1 = −a3 cos3(τ0) +
∂a(τ1)

∂τ1

sin τ0 (1.7.28)
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We’d pretty clearly like to have the sin τ0 term on the right disappear. The cos3(τ0) term also
hides a cos τ0 term that will cause trouble. That is we have

cos3 τ0 =
3 cos τ0 + cos(3τ0)

4
(1.7.29)

and so we want

−3a3 cos τ0

4
+
∂a

∂τ1

sin τ0 = 0 (1.7.30)

Now we have a problem. It seems like a will depend on τ0 which would mean our perturbation
series assumptions about a are wrong. So we revert to the A equations, because it is clear that
it is not simple to remove the τ0 dependence with cosines and sines (though, in principal it is
possible, as we will see by adding in phases to the cos and sin terms). We then see that we want
the coefficients of exp(±iτ0) to be zero or else we will have secular terms. These seem like two
equations, but they are simply complex conjugates of each other so we only need to solve

−3A2A∗ − 2i
dA

dτ1

= 0 (1.7.31)

which has no difficult to eliminate τ0 dependence. We write A = R(τ1) exp(iθ(τ1)) and see the
above equation then says

−3R3 exp(iθ)− 2i

[
dR

dτ1

+ iR
dθ

dτ1

]
exp(iθ) = 0 (1.7.32)

Then the real and imaginary parts [after dividing by exp(iθ)] say

−3R3 + 2R
dθ

dτ1

= 0 (1.7.33)

dR

dτ1

= 0 (1.7.34)

so R is a constant with respect to τ1, say R0 = R(0) with θ0 = θ(0) and we find

dθ

dτ1

=
3R2

2
(1.7.35)

θ =
3R2

2
τ1 + θ0 (1.7.36)

This then yields

A = R0 exp

(
i
3R2

0

2
τ1 + iθ0

)
(1.7.37)

This is the solvability condition that we were looking for before, as it will remove the secular term.
Thus we find

Y0 = A exp(iτ0) + A∗ exp(−iτ0) = R0 exp

(
iτ0 + i

3R2
0

2
τ1 + iθ0

)
−R0 exp

(
−iτ0 − i

3R2
0

2
τ1 − iθ0

)
(1.7.38)

= 2R0 cos

(
τ0 +

3R2
0

2
τ1 + θ0

)
(1.7.39)
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We require Y0(0) = 1 and Y ′0(0) = 0. Thus R0 = 1
2
and the solution then becomes

Y0 = cos

(
t+

3

8
εt+ θ0

)
(1.7.40)

and we have succeeded at “zeroth” order. Note that this solution does not present the same problem
as t ∼ 1/ε. We now simply require that εt be O(1) for our solution to be all right.

However, failure is often more instructive than success. What if we tried this method on an
oscillator equation where the oscillation frequency changes on the slow time scale. That is, we
want to solve

d2y

dt2
+ ω2(εt)y(t) = 0 (1.7.41)

If we introduced εt = τ then the equation above becomes

ε2
d2y

dτ 2
+ ω2(τ)y(τ) = 0 (1.7.42)

which is the one dimensional Schrödinger equation that we have solved elsewhere in this book. So
for multiple scale analysis we introduce

t = τ0 + ε−1τ1 (1.7.43)
y = y0 + εy1 (1.7.44)

Remember that ω is slowly varying, and we see that we have

∂2y0

∂τ 2
0

+ 2ε
∂2y0

∂τ0∂τ1

+ ε
∂2y1

∂τ 2
0

+ ω2(τ1)y0 + εω2(τ1)y1 = 0 (1.7.45)

So zeroth order yields

∂2y0

∂τ 2
0

+ ω2y0 = 0 (1.7.46)

and first order yields

2
∂2y0

∂τ0∂τ1

+
∂2y1

∂τ 2
0

+ ω2(τ1)y1 = 0 (1.7.47)

The zeroth order equation should yield

y0 = A(τ1) exp(iω(τ1)τ0) + A∗(τ1) exp(−iω(τ1)τ0) (1.7.48)

The first order equation states

∂2y1

∂τ0

+ ω2(τ1)y1 = −2
∂

∂τ1

[iωA exp(iωτ0)− iωA∗ exp(−iωτ0)] (1.7.49)
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The right hand side can be expanded out to

− 2
∂ω

∂τ1

[iA exp(iωτ0)− iA∗ exp(−iωτ0)]

− 2

[
i
∂A

∂τ1

ω exp(iωτ0)− i∂A
∗

∂τ1

ω exp(−iωτ0)

]
− 2

[
i2τ0

∂ω

∂τ1

Aω exp(iωτ0) + (−i)2τ0
∂ω

∂τ1

A∗ω exp(−iωτ0)

] (1.7.50)

= −2i exp(iωτ0)

[
∂ω

∂τ1

A+ ω
∂A

∂τ1

+ iτ0
∂ω

∂τ1

A

]
+ 2i exp(−iωτ0)

[
∂ω

∂τ1

A∗ + ω
∂A∗

∂τ1

− iτ0
∂ω

∂τ1

A∗
] (1.7.51)

Now in order to get the right-hand side secular terms to be zero we have to deal with τ0 terms
which cannot be removed. We cannot get rid of the terms in brackets by a clever use of A (try
assuming a nonzero A and see what you find). We must have A = 0 to ensure they are zero, which
means our approximation was of zero. That’s not very useful. In fact, this shows that even if
ω, the oscillation, changes on the ετ0 = τ1 time scale, then multiple scale analysis will fail. That
means if we have something that changes on the long time scale, we need to change it into a form
where ε is times the function of y(t), without an εt dependence. For us this would involve using
a new time variable so that the term ω2(ετ)y → εG(y) where G is some function of y. One can
show that a time variable such as

T =

ˆ τ0

dt′ ω(εt′) =
1

ε

ˆ τ1

ds ω(s) (1.7.52)

will get us into the correct form.75

1.7.1 A More Complicated Variant

Finally, let’s consider a more difficult example with a twist. Consider a relationship

dx′(t′)

dt′
= f(x′, t′) (1.7.53)

First let’s introduce a characteristic time scale. Suppose we are interested in solutions that are
approximately constant over ∆t ′ = t0, and then have a characteristic length scale L0 so that
|δx′ | ∼ L0. Then we introduce t = t′/t0 and x = x′/L0 and can write76

dx(t)

dt
=

t0
L0

f(x, t) (1.7.54)

In previous analyses we used τ0 = t and created a long time scale ετ1 = t. However, there is
nothing wrong with choosing ε = 1/δt with δt � 1. Then we have τ1 = δtt is a short time scale
instead of a long time scale. We will still require that the oscillation is constant on the long time

75For more on multiple scale analysis, see Bender and Orzsag[2], which has illuminating discussions of the limits
and benefits of this method.

76Usually we set t0 = 1 as a natural frequency and L0 = 1 as a natural length when we solve this analytically,
but I’ll retain the t0 and L0 to help remind us that we are using normalized equations.
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132 Multiple Scale Analysis

scale, however. We can then perform the multiple scale analysis with t = τ0 and τ1 = δtt as normal,
though we now wish to solve over τ0 time scales with small corrections due to τ1, the short scale.
To do so we can introduce a periodicity requirement on τ1 so that it retains oscillatory behavior.
First we write

dx(τ0, τ1)

dt
=

t0
L0

f(x, τ0, τ1) (1.7.55)

dx(τ0, τ1)

dt
=
∂x

∂τ0

∂τ0

∂t
+
∂x

∂τ1

∂τ1

∂t
=
∂x

∂τ0

+
1

δt

∂x

∂τ1

(1.7.56)

For periodicity, we can introduce a period T such that ∆τ 1

T
= δt for a characteristic time in τ1

(which is δt∆t for characteristic times in t which we set to ∆t ∼ 1 via using a time scale t0). We
can then introduce the series for x

x(τ0, τ1) = x0(τ0, τ1) + δtx1(τ0, τ1) + · · · (1.7.57)

Note that if we average over τ1 we use

〈q(X, τ0, τ1)〉τ1 ≡
´ T

0
ds q(X, τ0, s)´ T

0
ds

=
1

T

ˆ 2π

0

ds q(X, τ0, s) (1.7.58)

It would then be nice to filter out x into components that are independent of τ1. That is

〈x(τ0, τ1)〉τ1 = X(τ0) (1.7.59)
〈x(τ0, τ1)〉τ1 = X0(τ1) + δtX1(τ1) + · · · (1.7.60)

Now we can define

x(τ0, τ1)−X(τ0) ≡ κξ(X(τ0), τ0, τ1) (1.7.61)

However, there is now a question of how close x and X are, which is why there is an ordering
parameter κ. We will see if we can get some new information by imposing a new ordering. For
example, if X(τ0) is essentially the same as x at the spatial scales we are interested in, then ξ can
be considered small and the ordering parameter κ will be small.

So now we can expand X and ξ in perturbation series

X = X0(τ0) + δtX1(τ0) + · · · (1.7.62)
ξ = ξ0(X, τ0, τ1) + δtξ1(X, τ0, τ1) + · · · (1.7.63)

However, now ξi has a dependence on X, which has a dependence on τ0. We want the full τ0

variation assuming τ1 is independent of τ0. Thus

∂x

∂τ0

=
dX

dτ0

+

κ dξ
dτ0︷ ︸︸ ︷

κ
∂ξ

∂τ0

+ κ
∂X

∂τ0

· ∂ξ
∂X

(1.7.64)

We then have for dx
dt

that

∂X0

∂τ0

+ κ
dξ0

dτ0

+
κ

δt

∂ξ0

∂τ1

+ δt
∂X1

∂τ0

+ κδt
dξ1

dτ0

+ κ
∂ξ1

∂τ1

+O(δ2
t + κ2) (1.7.65)
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Finally, we can rewrite f so

f(x, τ0, τ1) = f(X + κξ, τ0, τ1) (1.7.66)

which makes it easier to Taylor expand

f(X + κξ, τ0, τ1) = f(X, τ0, τ1) + κξ ·
[
∂f

∂x

]
x=X

+O(κ2) (1.7.67)

Clearly, the above could be rewritten as

f(X0 + δtX1 + κξ0 + · · · , τ0, τ1) = f(X0, τ0, τ1) + [δtX1 + κξ0] ·
[
∂f

∂x

]
x=X0

+O(κ2, δ2
t ) (1.7.68)

but this form is actually in some sense a worse equation, because it is less accurate once we know
X. Either form is admissible.

Now, we’d like our equations to be consistent, which means that when we average them over τ1

we’d like there to be terms balancing on all sides. We are now confronted with the κ conundrum.
What should it be in terms of δt. Let’s consider a couple of different options. First suppose κ = 1.
Then the dominant term will be ∂ξ0

∂τ1
= 0. This means ξ0(X, τ0, τ1) = ξ0(X, τ0) which means

ξ0 = 0. We then require 〈x0〉τ1 = X0 by definition which means that if x has τ1 dependence then
〈ξ0〉τ1 6= 0. Thus κ = 1 is a contradiction. This tells us that κ = δαt for α ≤ 0 is impossible.77
However, we are left with freedom for α a positive integer. For α > 1 we would have

∂X0

∂τ0

=
t0
L0

f(X, τ0, τ1) (1.7.69)

This is problematic since f is a function of τ1 while the ∂X0

∂τ0
is not. This means that we would

require f not be a function of the small time scale, a requirement we cannot impose since we
assumed it has such a dependence! This is the crucial clue. What term has τ1 dependence that
with a proper α could rise to O(1). Clearly δα−1

t
∂ξ0

∂τ1
is the term, as it is the only one that could

do the job. Then α = 1 and we see

∂X0

∂τ0

+
∂ξ0

∂τ1

=
t0
L0

f(X, τ0, τ1) (1.7.70)

If we average over τ1 we find 〈
∂X0

∂τ0

+
�
�
�∂ξ0

∂τ1

〉
τ1

=
t0
L0

〈f(X, τ0, τ1)〉τ1 (1.7.71)

∂X0

∂τ0

=
t0
L0

〈f(X, τ0, τ1)〉τ1 (1.7.72)

which is now fine as a solvability condition. And we see we recover that ξ0 is the part minus the
average, as we desired

∂ξ0

∂τ0

=
t0
L0

f − 〈g〉τ1 (1.7.73)

ξ0 − ξ0(τ1 = 0) =
t0
L0

ˆ τ0

0

dτ ′
[
f − 〈f〉τ1

]
τ1=τ ′

(1.7.74)

77If α < 0 we would still have a leading term of ∂ξ0

∂τ1
= 0.
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And to first order we have

∂X1

∂τ0

+
dξ0

dτ1

+
∂ξ1

∂τ1

=
t0
L0

[X1 + ξ0] ·
[
∂f

∂x

]
x=X

(1.7.75)

Remember that

dξi
dτ0

=
∂ξi
∂τ0

+
∂X

∂τ 0

· ∂ξi
∂X

=
∂ξi
∂τ0

+
∂X0

∂τ0

· ∂ξi
∂X0

+O(δt) (1.7.76)

Thus we find

∂X1

∂τ0

+
∂ξ0

∂τ0

+
∂X0

∂τ0

· ∂ξ0

∂X0

+
∂ξ1

∂τ1

=
t0
L0

[ξ] ·
[
∂f

∂x

]
x=X

=
t0
L0

[X1 + ξ0] ·
[
∂f

∂x

]
x=X0

(1.7.77)

Then the solubility condition is going to come from the τ1 average again, and we find〈
∂X1

∂τ0

+
�
�
�∂ξ0

∂τ0

+
HH

HHHH

∂X0

∂τ0

· ∂ξ0

∂X0

+
�
�
�S
S
S

∂ξ1

∂τ1

〉
τ1

=
t0
L0

〈
[ξ] ·

[
∂f

∂x

]
x=X

〉
τ1

(1.7.78)

The right-hand side ξ· doesn’t cancel out of the τ1 average because it is multiplying ∂f/∂x, and
so it no longer necessarily averages out to zero. And so our solvability criterion is

∂X1

∂τ0

=
t0
L0

〈
[ξ] ·

[
∂f

∂x

]
x=X

〉
τ1

=
t0
L0

〈
[X1 + ξ0] ·

[
∂f

∂x

]
x=X0

〉
τ1

(1.7.79)

Clearly the X1 + ξ0 form is difficult to work with, and since we have f(X, τ0, τ1) just as easily as
f(x, τ0, τ1) at this order, that form is to be preferred. Indeed, we can even replace ξ with ξ0 and
retain that the expression is accurate to O(δ2

t ). This means we can write with τ0 → t

dX

dτ0

=
dX0

dτ0

+ δt
dX1

dτ0

+O(δ2
t ) (1.7.80)

dX

dt
=

dX0

dt
+ δt

dX1

dt
+O(δ2

t ) (1.7.81)

And so plugging in what we have found from the solvability conditions we find

dX

dt
=

t0
L0

〈f(X, t, τ1)〉τ1 +
t0
L0

ε

〈
ξ0 ·

[
∂f(X, t, τ1)

∂x

]
x=X

〉
τ1

+O(δ2
t ) (1.7.82)

We can translate this into a plasma relevant situation by considering δt ∼ t0Ω. Then what we have
found for ξ is called the gyromotion, and we find the gyrocenter X moves based on a combination
of the gyroaverage of the force plus a gyroaverage of the gradient of the force dotted into the
gyromotion. Finally, there is one more thing to think about. The question of how to actually do
the τ1 average when we return to just the single t time variable. The answer is that we simply
have to consider any εt terms as if they are a separate variable when performing the averages of
f(x, t). If you have formulated the problem correctly, then εt terms should naturally occur in the
form of f . Indeed, sometimes we start off with two variables that have such a scale separation for
f so that f(x, τ0, τ1) is not an ansatz for simplification, but a truth (such as gyrophase and time
when thinking about a phase space).
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1.8 The Calculus of Variations
And what are these Fluxions? The Velocities of evanescent Increments? And what
are these same evanescent Increments? They are neither finite Quantities nor Quan-
tities infinitely small, nor yet nothing. May we not call them the ghosts of departed
quantities?

— George Berkeley

The calculus of variations, sometimes called variational calculus, is a way of applying calculus
to “generalized” functions. You can see that George Berkeley may not have been impressed in
extending calculus beyond functions.78 We will explore the basics of what functionals are, how
we can take something like a derivative, look at a couple of examples, and consider the use of
variational methods in computational algorithms.

1.8.1 Basics of Variational Calculus

Variational calculus really is calculus with functionals. A functional is essentially a function of
functions. So for a functional S written as S[f ] with f being a function, the input is a function in
the same way that for f(x) the x is an input. It is customary to use square brackets to indicate a
functional rather than a function. Just like functions, we want our functionals to spit out real or
complex numbers, which we then associate with the function. What sort of magic is a functional,
then? Well, typically we think of a functional as an integral. Technically, they don’t have to
be, but the vast majority of the time when we [physicists] talk of functionals we are thinking of
integrals.79 Thus

S[f ] =

ˆ t1

t0

dt f(t) (1.8.1)

where t0 and t1 are fixed is a possible form for a functional S[f ]. We could also write

S[f ] =

ˆ t1

t0

dt L(t, f(t), f ′(t), . . .) (1.8.2)

where L is a function that takes t, f , and its derivatives. In fact, if we choose t1 = t where t is
an unknown complex or real value, then we can use the same ideas, so long as we understand that
t is fixed when doing the integration. In addition, it is typical to consider functionals that spit
out real numbers so that we do not have to deal with complex calculus theory. So we will then
consider real functionals.

A question you should ask yourself is what it will mean for f(t) and f ′(t) to be “independent”
of each other. An example may be a useful crutch to understanding here. Suppose we had
f(x) = 1 +x+ x2. We could write this as f(x, x2) = 1 +x+ x2. Are x and x2 independent of each
other? It clearly depends on what is meant by independent. If we mean ∂x2

∂x
= 0 when considering

78In full fairness to Berkeley, we now have the limit formalism and nonstandard analysis to make infinitesimals
rigorous. Back in his time, his critiques rang rather true.

79What an “integral” is, is actually not always so simple. Should we allow
´ t1
t0

dt δ(t)f(t) to count? Even though
δ(t), the Dirac delta function, is not really a function (but a generalized distribution)? Further, one could have
functionals of the form S[f ] = [

´ t1
t0

dt f(t)]/[1 +
´ t1
t0
g(t)f(t)] which is not “just” an integral.
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136 The Calculus of Variations

x2 a function of x, then they are not independent. But suppose we ask a different question.
Suppose we ask how f varies for a given x and x2 (with x2 not necessarily x ∗ x under our initial
consideration). One way of answering such a question is to consider x and x2 independent of each
other (so ∂x2/∂x = ∂x

∂x2 = 0 because we think of x2 as y and so not necessarily the same as x2)
and use a chain rule. Clearly, this is equivalent to considering a function f(x, y) and later setting
y = x2, but we can use the x2 notation so long as we realize it is actually independent of x at this
point in our calculation. We then have

df =
∂f

∂x
dx+

∂f

∂x2
d(x2) =

∂

∂x

(
1 + x+ x2

)
dx+

∂

∂x2

(
1 + x+ x2

)
d(x2)

=

[
�
�
�∂1

∂x
+
∂x

∂x
+
S
S
S

∂x2

∂x

]
dx+

[
�
�
�∂1

∂x2
+
�
�
�S
S
S

∂x

∂x2
+
∂x2

∂x2

]
d(x2) = dx+ d(x2)

(1.8.3)

df =
∂f

∂x
dx+

∂f

∂y
dy =

∂

∂x
(1 + x+ y) dx+

∂

∂y
(1 + x+ y) dy

=

[
�
�
�∂1

∂x
+
∂x

∂x
+
A
A
A

∂y

∂x

]
dx+

[
�
�
�∂1

∂y
+
�
�
�A
A
A

∂x

∂y
+
∂y

∂y

]
dy = dx+ dy

(1.8.4)

where the second makes it clear how this actually works. We can then use that dy = d(x2) = 2x dx

df = (
∂f

∂x
+ 2x

[
∂f

∂y

]
y=x2

) dx = (
∂f

∂x
+ 2x

∂f

∂x2
) dx = (1 + 2x) dx (1.8.5)

and so x and x2 are not independent when we finally put values in for x, but were before we enforced
the relationship between them. So the ∂f

∂x
+2x ∂f

∂x2 part acts as if x and x2 are independent for taking
derivatives, but that is because we were not originally enforcing the connection between x and x2,
but were using y which later happens to equal x2. It is in this sense that it always makes sense to
consider a function as varying on its dependent variables, regardless of the dependencies of those
dependent variables on each other. If those dependent variables have dependencies on each other,
we can incorporate that information later. For functionals, the situation is completely analogous.
When we consider variations in S[f, f ′], we are actually considering variations in S[f, g] and then
using that g = f ′ after considering the variations. When we are considering independent variations
(keeping f and g separate), we can consider ∂f

∂g
= 0 since these are completely arbitrary functions.

It is only when we impose the condition g = f ′ that this condition no longer formally holds [this
happens, for example, when we perform integration by parts or assign boundary conditions].

We can now ask what is an extremal value of S over some function space for f . This just means,
out of the permissible f we allow, we want ours to gives a critical point (usually a minimum or
maximum). It is important to consider what functions f we allow, since otherwise we could have
pathological functions that are not continuous or differentiable. For us in physics world, we will
only consider continuous functions, and I will mostly only consider differentiable functions (up to
the required order we need). Now, to find the extremal value for f given a path (we fix t0 and t1),
then we need to find the variation in S[f ]. This is denoted δS . We can define a new thing called
a functional derivative for many functionals. We use the definition for S[f ] that for δf = εφ an
arbitrary function80 that

δS [f, δf ] ≡ lim
ε→0

S[f + εφ]− S[f ]

ε
=

d

dε
(S[f + εφ])ε=0 (1.8.6)

80Arbitrary up to satisfying our admissibility constraints.
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Because δf is an arbitrary function, this is often abbreviated to δS [f ] = δS , omitting the brackets.
When this is proportional to εφ = δf we can write the derivative as δS

δf
to denote the variation of

S with respect to f (when it exists). That is using εφ = δf we define the part in front of δf as
the variational/functional derivative via

δS

δf
δf =

d

dε
[S[f + εφ]]ε=0,φ→δf (1.8.7)

We can then write either (in the cases where our functionals are integrals)

δS =

ˆ t1

t0

dt
δS

δf
δf (1.8.8)

δS =

ˆ t1

t0

dt
δS

δf
φ (1.8.9)

depending upon whether we wish to actually write out the φ portion of δf . The φ is in some sense
visually more sound as it connects to the mathematically rigorous method in a simple and obvious
way, but with the δf it is also clear what is meant and it is visually more understandable as a
notation by itself. I will prefer the δf notation, but I’ll go through one example with the εφ so
that you can understand the connection.

In fact, our functional δS as a variation is the same as what is called a Gâteaux derivative. This
is a generalization of a directional derivative. The δS

δf
, when it exists, is then a Frechét derivative.

Suppose you have function F and want the “derivative” of F at a position x in the direction g in
whatever space81 we are dealing with. Then the Gâteaux derivative is defined to be

dF (u; g) = lim
ε→0

F (u+ εg)− F (u)

ε
=

d

dε
[F (u+ εg)]ε=0 (1.8.10)

when it exists. The Frechét derivative requires that the variation be linear in g.

As an example, consider

S[f ] =

{´ t1
t0

dt [f(t)]3

[f ′(t)]2+[f(t)]2
f 6= 0

0 f = 0
(1.8.11)

which can be viewed through the integrand L as

L(t, f, f ′) =

{
[f ]3

[f ′]2+[f ]2
f 6= 0

0 f = f ′ = 0
(1.8.12)

Then we can consider the variation when f [and also f ′] is the zero function.

δS [0, εg] =
d

dε
[S[0 + εg]]ε=0 (1.8.13)

=
d

dε

[ˆ t1

t0

dt
ε3g3

ε2g′2 + ε2g2

]
ε=0

=
d

dε

[ˆ t1

t0

dt ε
g3

g′2 + g2

]
ε=0

(1.8.14)

=

ˆ t1

t0

dt
g3

g′2 + g2
(1.8.15)

81These functions are no longer functions of real and complex variables, but of all sorts of spaces (such as Hilbert
spaces).
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which cannot depend on g (that is, g, g′) linearly. Thus δS
δf

does not exist at f = f ′ = 0. However,
at any location besides f = f ′ = 0 we find

δS [f, εg] =
d

dε
[S[f + εg]]ε=0 (1.8.16)

=
d

dε

[ˆ t1

t0

dt
[f + εg]3

[f + εg]2[f ′ + εg′]2 + ε2g2

]
ε=0

(1.8.17)

=

ˆ t1

t0

dt
f 2(3f ′2g − 2ff ′g′ + f 2g)

(f 2 + f ′2)2
(1.8.18)

which is linear in g [if we integrate by parts] (that is, it is linear in g, g′, etc.). So, when L has
no problematic points, we can see that we have δS

δf
existing everywhere. We mostly deal with such

functionals in physics.

To make this truly rigorous, you can consult a mathematics textbook, preferably explaining the
subtleties of Gâteaux derivatives but the idea is fairly simple. We now can just apply the normal
rules of calculus and differentials, treating the functions as if they were variables, with the idea
that we can expand the functions in Taylor-like series retaining only first order in δf terms for
the first variation. For L(t, f, f ′, . . . , f (n)) with all of the f (j) being independent variables for L,
we can apply the same rule, but we can simply realize that this is just the usual differentials we
had been using before so that

δL =
δL

δt
δt +

δL

δf
δf +

n∑
j=1

δL

δf (j)
δf (j) =

∂L

∂t
δt +

∂L

∂f
δf +

n∑
j=1

∂L

∂f (j)
δf (j) (1.8.19)

Here you simply have to recognize that I have defined δL
δf

= ∂L
∂f

when L is a function rather than a
functional. Also, δt is typically zero, (and pretty much always is in any actual application of the
calculus of variations).

Now, given S and L = L(t, f, f ′), we can find the first variation via82

δS = [S[f + δf ]− S[f ]] +O(δ2)

=

ˆ t1

t0

dt

[
L(t, f + δf , f ′ + δf )− L(t, f, f ′)

ε

]
+O(δ2)

=

ˆ t1

t0

dt

[
��

���
�

L(t, f, f ′) + δL
δf
εφ+ δL

δf ′
εφ′ +O(δ2)−����

��
L(t, f, f ′)

ε

]

=

ˆ t1

t0

dt

[
∂L

∂f
φ+

∂L

∂f ′
φ′
]

(1.8.20)

where we have used δf ′ = εφ′(t). Then we can integrate by parts and use that φ(t1) = φ(t0) = 0

82I abuse notation by adding O(δ2) to mean take only terms with a δf (or δf (j) for any jth derivative), but
ignore any terms (δf (j))(δf (k)) or higher where we act as if the δ’s are an ordering parameter like the ε’s in εφ.
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by definition.

δS =

ˆ t1

t0

dt

[
∂L

∂f
φ+

∂L

∂f ′
φ′
]

=

ˆ t1

t0

dt

[
∂L

∂f
φ+

d

dt

[
∂L

∂f ′
φ

]
− d

dt

(
∂L

∂f ′

)
φ

]
=

�
�
�
�
�[

∂L

∂f ′
φ

]t1
t0

+

ˆ t1

t0

dt

[
∂L

∂f
φ− d

dt

(
∂L

∂f ′

)
φ

]
=

ˆ t1

t0

dt

[
∂L

∂f
− d

dt

(
∂L

∂f ′

)]
φ =

ˆ t1

t0

dt
δS

δf
φ

(1.8.21)

We have then found the Euler-Lagrange equation is the variational derivative of S.

You might worry that our expansion does not make sense because f and f ′ are not independent of
each other. What you have to remember is that for L(x, f, f ′), is that they are. For L(x, f, f ′) =
L(x, f, g), L doesn’t care that g = f ′. L thinks of it as a separate variable. We enforce a relationship
through δf ′ = dδf

dt
, or by using the same φ (or derivative of φ) when perturbing f and g. This is

why it is fine to consider f and f ′ as separate variables for looking at variations. Only along the
actual path/trajectory do we actually have a further relationship.

In practice, the pseudorigorous83 way of doing the above is via δf (t0) = δf (t1) = 0. We use the
δf formulation assuming that S has no problematic points so that we can write

δS = S[f + δf ]− S[f ] +O(δ2) (1.8.22)

by which I mean that δS is only the part of S[f + δf ]−S[f ] that contains a single δ of f or some
derivative of f in it. That is we ignore all contributions that have a δ times another δ. Remember,
once again, that this assumes that we have nice enough functions that we get things linear in δf
(and its derivatives). Then we find with the δf rather than εφ formulation that

δS = S[f + δf ]− S[f ] +O(δ2)

=

ˆ t1

t0

dt [L(t, f + δf , f ′ + δf ′ )− L(t, f, f ′)] +O(δ2)

=

ˆ t1

t0

dt

[
���

���L(t, f, f ′) +
δL

δf
δf +

δL

δf ′
δf ′ −����

��
L(t, f, f ′)

]
+O(δ2)

=

ˆ t1

t0

dt

[
∂L

∂f
δf +

∂L

∂f ′
δf ′
]

+O(δ2)

=

ˆ t1

t0

dt

[
∂L

∂f
δf +

∂L

∂f ′
dδf

dt

]
+O(δ2)

=

ˆ t1

t0

dt

[
∂L

∂f
δf +

d

dt

[
∂L

∂f ′
δf

]
− d

dt

(
∂L

∂f ′

)
δf

]
+O(δ2)

=

�
�
�
�
��[

∂L

∂f ′
δf

]t1
t0

+

ˆ t1

t0

dt

[
∂L

∂f
δf − d

dt

(
∂L

∂f ′

)
δf

]
+O(δ2)

=

ˆ t1

t0

dt

[
∂L

∂f
− d

dt

(
∂L

∂f ′

)]
δf +O(δ2)

=

ˆ t1

t0

dt
δS

δf
δf +O(δ2)

(1.8.23)

83Pseudorigorous because it is in essence a shorthand for the rigorous way, and I have never actually proven that
functional derivatives have a sensible definition.
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Leading again to

δS

δf
=
∂L

∂f
− d

dt

(
∂L

∂f ′

)
(1.8.24)

Then we can find the extremal function by setting this to zero, yielding

∂L

∂f
− d

dt

(
∂L

∂f ′

)
= 0 (1.8.25)

This can also be thought of as saying that the coefficient of δf must be zero so that δS is zero.

Because the above process is somewhat laborious, people often write

δS = δ

ˆ t1

t0

dt L(t, f, f ′) =

ˆ t1

t0

dt

[
�
�
�δL

δt
δt +

δL

δf
δf +

δL

δf ′
δf ′
]

(1.8.26)

and then proceed, but you should realize that this is a shorthand that works because of the
laborious procedure outlined above. It is correct, and as we will see, the generalization is correct
because we are essentially just writing out a Taylor series, but the above is not the definition.
Also, remember that δt = 0 because we don’t allow variation in t for this process.

Now, we can extend to higher variations. This can involve subtleties, but in general it is a
straightforward procedure. In this case you go to O(ε3) or O(δ3) and only consider the terms
proportional to ε2 or (δf )2 using that

δ2S [f, εφ] =
d2

dε2
[S[f + εφ]]ε=0 (1.8.27)

δ2S =
d2

dε2
[S[f + εφ]]ε=0,φ→δf (1.8.28)

We can use a shorthand form

δ2S = S[f + δf ]− S[f ]− δS +O(δ3) (1.8.29)

Again, the O(δ3) means that δ2S contains only contributions where two δ’s (or less, though these
are eliminated by δS ) appear in each term. One of the subtleties possible in higher derivatives is
whether you consider the same direction when doing the variation. For our functional derivatives,
it does not make much sense to use different directions, but one can consider this as a variation of
the Gâteaux derivatives. That is one could consider the first variation with respect to εφ but the
second variation with respect to κψ and have ε and κ go to zero. In any case, I will adopt as a
definition of the second variation (and higher) the above definitions.

For the example we looked at previously, we find the second variation to be given by

δ2S =

ˆ t1

t0

dt [L(t, f + δf , f ′ + δf ′)− L(t, f, f ′)− δS ]

=

ˆ t1

t0

dt

[
∂2L

∂f 2
(δf )2 + 2

∂2L

∂f∂f ′
δf δf ′ +

∂2L

∂δf ′ ∂δf ′
(δf ′)2

] (1.8.30)

This simply is the second variation. Note how there is nothing else that can be said and we don’t
have a simple form δ2S

δf2 (δf )2 in general. [Let ∂2L/∂δf ′∂δf ′ ≡ ∂2L/∂δf ′ 2]
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If we have a δS = 0 then we can make some simplifications. Note 2δf (δf ′) = d(δf )2

dt
and we see

δ2S =

ˆ t1

t0

dt

[
∂2L

∂f 2
(δf )2 +

d

dt

[
∂2L

∂f∂f ′
(δf )2

]
− d

dt

∂2L

∂f∂f ′
(δf )2 +

∂2L

∂δf ′ 2
(δf ′)2

]
(1.8.31)

δ2S =

ˆ t1

t0

dt

[(
∂2L

∂f 2
− d

dt

∂2L

∂f∂f ′

)
(δf )2 +

∂2L

∂δf ′ 2
(δf ′)2

]
(1.8.32)

δ2S =

ˆ t1

t0

dt

[
∂

∂f���
��

���
���

(
∂L

∂f
− ∂

∂f

d

dt

∂L

∂f ′

)
(δf )2 +

∂2L

∂δf ′ 2
(δf ′)2

]
(1.8.33)

δ2S =

ˆ t1

t0

dt

[
∂2L

∂δf ′ 2
(δf ′)2

]
(1.8.34)

This implies that ∂2L
∂δf ′ 2

determines the sign of δ2S at δS = 0. This is important because if
δ2S > 0 then we have a minimum and if δ2S < 0 then we have a maximum, just as for the second
derivative test. In our case, we see that this test simplifies to ∂2L

∂δf ′ 2
≷ 0 ⇒ δ2S ≷ 0 and δ2S = 0

is inconclusive. Note that ∂2L
∂δf ′ 2

may not be wholly positive or negative, in which case we simply
have to calculate the integral.

Note that in general we can define nth variations, but they are hardly every used in practice. In
addition, for a function S[f, g], we define δS

δg
similar to a partial derivative: we vary g but not f .

So given S[f, g], and T [f ] we define

δS [f, g; 0, εφ] =
d

dε
(S[f, g + εφ])ε=0 (1.8.35)

δS [f, g; εφ, 0] =
d

dε
(S[f + εφ, g])ε=0 (1.8.36)

δS [f, g; 0, δg ] =
d

dε
(S[f, g + εφ])ε=0,φ→δg (1.8.37)

δS [f, g; δf , 0] =
d

dε
(S[f + εφ, g])ε=0,φ→δf (1.8.38)

δnT [f ; εφ] =
dn

dεn
(T [f + εφ])ε=0 (1.8.39)

δnT [f ; δf ] =
dn

dεn
(T [f + εφ])ε=0,φ→δf (1.8.40)

To finish the thought on second (and higher order) variations, we could also consider

δ2T [f ; εφ, τψ] =
∂2

∂τ∂ε
(T [f + εφ+ τψ])τ=ε=0 (1.8.41)

Generally, the second variation is only interesting when εφ and τψ are the same and so we get the
second variation formula from above with 2ε instead of ε, which can be absorbed into the arbitrary
φ.

Last, mathematically we have the “usual” properties of derivatives. For S[f ] and T [f ] we find

δ(T + S) =
d

dε
(T [f + εφ] + S[f + εφ])ε=0 =

d

dε
(T [f + εφ])ε=0 +

d

dε
(S[f + εφ])ε=0 = δT + δS

(1.8.42)

δ(TS) =
d

dε
(T [f + εφ]S[f + εφ])ε=0 = T [f ]

d

dε
(S[f + εφ])ε=0 +

d

dε
(T [f + εφ])ε=0 S[f ] = TδS + δS T

(1.8.43)
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142 The Calculus of Variations

There is a generalized chain rule for Gâteaux derivatives, but for us functionals cannot take another
functional as an argument since a functional outputs a scalar and takes in a function.

Similarly, there is nothing that prevents us from considering a functional involving functions of
multiple dimensions, such as an L with L(x, f(x), ∂f

∂x
, . . .) so long as our functional still gives us a

real number as an output. Thus

S[f ] =

ˆ
V0

dnx L(x, f(x),
∂f

∂x
, . . .) (1.8.44)

is perfectly fine (assume that L includes any Jacobian factor). Here the volume V0 is fixed, and we
require that on the boundary of V0, given by ∂V0 = S0, that our function f is not allowed to vary.
For example, choose L = ∂f

∂x
· ∂f
∂x
, a fairly common example in reality, and consider a boundary

value problem where we want to find the set of functions that can solve our problem for certain
given conditions on the boundary (consider Dirichlet conditions where we force f to be something
on the boundary; clearly we can also consider any set, though we must incorporate them into δf
and ∂δf

∂x
, etc.). For simplicity, we will call call p = ∂f

∂x
and δp = ∂δf

∂x
so δp is O(δf ). Then the

variation of L is given by

L(f + δf , p + δp )− L(f, p) =
∂L

∂p
· δp +O([δf ]2) (1.8.45)

and so

δS =

ˆ
V0

d3x
∂L

∂p
· δp (1.8.46)

With Dirichlet boundary conditions we know that if we can get δf into surface terms, it vanishes
(or is a constant, at the least, but we will consider the vanishing case). Thus we write the above
as (and then use the divergence theorem)

δS =

ˆ
V0

d3x
∂L

∂p
· ∂
∂x
δf =

ˆ
V0

d3x

[
∂

∂x
·
(
∂L

∂p
δf

)
− ∂

∂x
·
(
∂L

∂p

)
δf

]
=
��

���
��

���
ˆ
S0

d2x n̂ · ∂L
∂p
δf −

ˆ
V0

d3x
∂

∂x
·
(
∂L

∂p

)
δf

= −
ˆ
V0

d3x
∂

∂x
·
(
∂L

∂p

)
δf

(1.8.47)

Thus, in this case, we require ∂
∂x
· ∂L
∂p

= 0 since δf can be arbitary. If this feels like a strange
requirement we can consider a more concrete interpretation. If we took the case that f is an
electricstatic potential with x = x the physical position in space, then ∇f = p = −E is the
negative of the electric field (in a purely electrostatic situation). Thus we are saying that we need
with L = ∇f · ∇f = p · p that

∂L

∂p
=
∂p · p
∂p

=

=1︷︸︸︷
∂p

∂p
·p + p · ∂p

∂p
= 2p (1.8.48)

∂

∂x
· ∂L
∂p

= 2
∂

∂x
· p = 2

∂

∂x
· ∂f
∂x

= −2∇ · E (1.8.49)
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So the divergence of E being zero (i.e., no charge in the region) will minimize the above integral
over a given volume given some Dirichlet boundary conditions. Since the above is related to the
electrostatic potential energy, we see that this gives us a lowest potential energy state. That is,
Laplace’s equation fo rthe potential f , given by ∇2f = 0 is what we require to minimize f in the
physical region.

There is also another use of variational principles, especially with computations. In this case we
may be interested in finding a good enough approximation for some problem. Usually we then say
let’s restrict the permissible functions to something simple I can deal with, such as a sum of basic
analytic fucntions. Because we are using simpler functions, this means that we won’t get perfect
accuracy, but we may ask what set of functions provides only a small amount of error. Here the
error is a functional. You may ask, how do we know the error? For if we had the solution, we could
simply use that. If we have the function we are trying to find f being approximated by something
like ψ =

∑
i aiψi then the error

E[ψi] =

ˆ x1

x0

dx [f − aiψi] (1.8.50)

is not very useful. But remember, f must be satisfying some equation. Suppose it is a differential
equation. Say

∂f

∂x
· ∂f
∂x

+ p2f = 0 (1.8.51)

subject to f = 0 on the boundary of the volume V0. Then clearly the error in ψ can be written as

E[ψ] =

ˆ
V0

d3x

(
∂ψ

∂x
· ∂ψ
∂x

+ p2ψ

)
(1.8.52)

We would like the extremal position for ψ (we can then check if it makes the error small, or if it is
the largest possible error), and so we can use the calculus of variations. Clearly, if ψ can represent
f perfectly, then we will simply find ψ = f as our solution. If ψ cannot represent f then we will
get the best approximation available. In reality, most people recast the problem immediately by
having E(ψ)→ E(ai) because we choose ψi linearly independent of each other. Then it is simply
a usual minimization problem because E(ai) is a function.

1.8.2 Variation with Constraints

There is also the satisfaction of “making friends with the function”, to use Tai-Tsun
Wu’s poetical phrase: brute force numerical computation is often no better at giving
insight into the physics of the structure of the solution than television is at giving
insight into real human behavior.

— J. P. Boyd[5, p. 542]

In general, for a L(t, f, f′, . . .), we may have some condition G(t, f) = 0. This G may be an integral
relation as above, or it may be something we want true of the function at every part in the domain.
The important thing is it can be written as an equation equalling zero and involves only f.84 For
then we can enforce it by adding the constraint into our variational problem. This means we must

84Such constraints are called holonomic from Greek for “whole law”. A holonomic constraint corresponds to an
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144 The Calculus of Variations

impose that the constraints disappear with a displacement δf over all of the variations, and not
just over our final path. The failure of this to be true for non-holonomic constraints is the essential
reason why we cannot do this for G(t, f, f′, . . .) = 0. Remember

S =

ˆ t1

t0

dt L (1.8.53)

and we find

δG =
∂G

∂t
δt +

∂G

∂f
· δf (1.8.54)

Thus, when we write

δS = 0 (1.8.55)

we add in the variation of δλG (with λ = λ(t) a new coordinate parameter) and consider S̃ = S+λG
via

δS̃ = δS + δ(λG) =

ˆ t1

t0

dt [δL + λδG +Gδλ ] (1.8.56)

δS̃ =

ˆ t1

t0

dt

[(
∂L

∂f
+
∂G

∂f

)
· δf +

∑
j>0

{
∂L

∂f(j)

}
· δf(j) +Gδλ

]
(1.8.57)

It is worth considering multiple constraints Gi(t, f) = 0 for some number of i less than the degrees
of freedom.85

δS̃ =

ˆ t1

t0

dt

[(
∂L

∂f
+
∑
i

λi
∂Gi

∂f

)
δf +

∑
j>0

{
∂L

∂f(j)

}
f̃(j) +

∑
i=1

Giδλ i

]
(1.8.58)

This gives us (assume δf (j) = 0 at the endpoints) 86

∂L

∂f
+
∑
i

λi
∂Gi

∂f
+
∑
j>0

[
(−1)j

dj

dtj
∂L

∂f(j)

]
= 0 (1.8.59)

If we solved the original S without the λi we could clearly use some new set of functions that
incorporate the Gi constraints. That is when we have Gi(f, t) = 0 this means some of the f are
not independent of each other. We form the f̃ from the f that are independent of each other.
Then we must have a relationship F(f̃, t) = f satisfied by the f̃, and so Gi(t, f) = Gi(t, F) = 0 is

integrable system. Thus a non-holonomic constraint depends on the path in configuration space. Other than a
special case of semiholonomic constraints (G depends only linearly on the f′ in such a way that it actually is a
holonomic constraint in disguise), the Lagrange multiplier method for constraints will not work. See Flynn[12] and
Flygare[13] for approaches to non-holonomic constraints using D’Alembert’s principle along with another way of
showing the Lagrange multiplier method fails for non-holonomic constraints in general.

85So that this is not an overconstrained problem. This just says the number of Gi is less than the number of
elements in f.

86Note that (−1)j are necessary because if the number of integration by parts is j, then we introduce j (−1)’s
for that term.
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satisfied. Clearly if we use this new set f̃ we must have, through the Euler-Lagrange equations,
that

∂L

∂f̃
+
∑
j

(−1)j
dj

dtj
∂L

∂f̃(j)
= 0 (1.8.60)

Thus, if we wish to switch between f̃ and f we can easily see

∂L

∂f̃
=
∂L

∂f
· ∂f
∂f̃

(1.8.61)

For the next order we see

∂L

∂f̃′
=
∂L

∂f′
· ∂f

′

∂f̃′
(1.8.62)

Now if we view f = F(f̃, t) then we can more simply write f = f(f̃, t) and we have

∂f′

∂f̃′
=

∂

∂f̃′
df

dt
=

∂

∂f̃′

[
∂f

∂f̃
f̃′ +

∂f

∂t

]
(1.8.63)

=
@
@
@@

∂f

∂f̃∂f̃′
f̃′ +

∂f

∂f̃
+
�
�
��∂

∂t

∂f

∂f̃′
(1.8.64)

where the last relation uses f = F(f̃, t) has no dependence on f̃′ and so ∂f/∂f̃′ = 0. Thus

∂f′

∂f̃′
=
∂f

∂f̃
(1.8.65)

The next order has

∂f′′

∂f̃′′
=

∂

∂f̃′′
d

dt

[
∂f

∂f̃
f̃′ +

∂f

∂t

]
=

∂

∂f̃′′

[
∂f′

∂f̃
f̃′ +

∂f

∂f̃
f̃′′ +

∂2f

∂f̃∂t
+
∂2f

∂t2

]
=

∂

∂f̃′′

[(
∂2f

∂f̃2
+

∂2f

∂t∂f̃

)
f̃′ +

∂f

∂f̃
f̃′′ +

∂2f

∂f̃∂t
+
∂2f

∂t2

]
=

∂

∂f̃′′

(
���

���
���∂2f

∂2f̃
f̃′ +

∂f

∂t∂f̃
f̃′
)

+
∂f

∂f̃

∂f̃′′

∂f̃′′
+

∂

∂f̃′′�
�
�∂2f

∂t2

=
∂f

∂f̃

(1.8.66)

where we use that ∂f/∂f̃(j) = 0 for all j except j = 0 and that ∂f̃(j)/∂f̃(k) = 0 except for j = k.
Any other order can be written as

∂f(j)

∂f̃(j)
=

∂

∂f̃(j)

dj

dtj
[f] =

∂

∂f̃(j)

[
∂f

∂f̃
· f̃(j) +

j−1∑
i=1

Hi(f, ∂f) · f̃i
]

=
HHH

HHHH

∂

∂f̃(j)

(
∂f

∂f̃

)
f̃(j) +

∂f

∂f̃
· ∂f̃

(j)

∂f̃(j)
+
���

���
���

���
�

∂

∂f̃(j)

j−1∑
i=1

Hi(f, ∂f) · f̃(i)

(1.8.67)
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where Hi(f, ∂f) means any number of partial derivative of f with respect to t or f̃. Clearly
∂Hi/∂f̃

(j) = 0 for j ≥ 1 because f has no dependence on any derivatives of f̃. In addition
∂f̃(i)/∂f̃(j) = 0 for i < j because they are assumed to be independent as we discussed above. Thus
we get the given cancellations and we find in general

∂f(j)

∂f̃(j)
=
∂f

∂f̃
(1.8.68)

When using Newton dot notation, this is usually called canceling the dots because we have

∂q

∂q̃
=
∂q̇

∂ ˙̃q
=
∂q̈

∂¨̃q
= · · · (1.8.69)

and it looks like you just cancel the dots from a fraction. This is another abuse of notation, but it
is a convenient one. Note that if f depended on the f̃(j) cancelling the dots would not work! The
fact that we can cancel the dots is the key reason that we can use Lagrange multipliers, as we will
see. Armed with this, we can continue on our path of justifying Lagrange multipliers. Remember
we have

∂L

∂f̃
+
∑
j

(−1)j
dj

dtj
∂L

∂f̃(j)
= 0 (1.8.70)

and so

∂L

∂f̃(j)
=
∂f(j)

∂f̃(j)
· ∂L
∂f(j)

=
∂f

∂f̃
· ∂L
∂f(j)

(1.8.71)

Thus we can write

∂f

∂f̃
·
[
∂L

∂f
+
∑
j

(−1)j
dj

dtj
∂L

∂f

]
= 0 (1.8.72)

Thus we see ∂f
∂f̃

is perpendicular to the Euler-Lagrange equations without the constraint. This
means the projection of the original Euler-Lagrange equations along the Gi = 0 defining surface
are zero. In other words, when we insert the f and also impose Gi = 0, we find that the Euler-
Lagrange equations must be zero when dotted by ∂f

∂f̃
.

We remember that our δS̃ automatically enforces Gi = 0 and has extra force terms∑
i

λi
∂Gi

∂f
(1.8.73)

Note that for each Gi we have (from Gi = 0)

0 =
∂Gi

∂f̃
=
∂f

∂f̃
· ∂Gi

∂f
(1.8.74)

Thus the projection of ∂Gi/∂f by dotting ∂f
∂f̃

into it is by our very construction equal to zero.

Our Lagrange multiplier equation would state if we assumed all δf independent that we would
have

∂L

∂f
+
∑
j>0

(−1)j
dj

dtj
∂L

∂f
= −

∑
i

λi
∂Gi

∂f
(1.8.75)
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So we see that with δS̃ we get a solution of the form

0 =
∂f

∂f̃
·
[
−
∑
i

λi
∂Gi

∂f

]
=
∂f

∂f̃
·
[
∂L

∂f
+
∑
j>0

(−1)j
dj

dtj
∂L

∂f

]
(1.8.76)

This means by treating the δf independent with the Lagrange multipliers, we actually get back
that

∂f

∂f̃
·
[
∂L

∂f
+
∑
j

(−1)j
dj

dtj
∂L

∂f

]
= 0 (1.8.77)

along with Gi = 0 enforced by the δλi terms vanishing. Thus we have the same set of equations
as we did when we solved it the “proper way” without extra degrees of freedom, where we saw the
solution had to be zero when dotted by ∂f

∂f̃
. Then this solution with Lagrange multipliers is the same

as the method using the f̃ that has the constraints intrinsically, and so is an equivalent solution
method. The extra terms are the constraint forces. We can view this in geometric language. We
made sure that our solution is along the surface created by the constraints Gi = 0, and saw that
the solution is the point where the contour surfaces of Gi and L coincide. That is where the
gradients of Gi and L point parallel or antiparallel.

Thus, when we find the minimal L as if the f has no constraints on it, we get the same form
of solution as when we solve with f̃ with the proper constraints. The λi are there to allow us
the freedom necessary to put the constraints on Gi and get the f as if they had no constraints.
Just remember that Lagrange multipliers allow us to solve a new problem that will automatically
satisfy the constraints we required of the original problem. The geometric idea is that a point that
satisfies the ∂L

∂f
−λ∂G

∂f
= 0 will have ∂L

∂f
and ∂G

∂f
parallel. Consider a given function and a constraint

(the black line) in Figure 1.9. That is if we consider the contours of constant L and the contours of
constant G, then a maximum or minimum value satisfying the constraint must have the gradients
of L and G pointing in the same direction. That is, the perpendicular to the contours of L and G
at some point must be parallel or antiparallel. Otherwise we could move along the G contour to
some other point and have L get greater or smaller (because the gradient of L is then along G),
contradicting our original assumption that we were at a minimum or maximum.

Suppose we want to enforce a constraint on our problem with ψ above. For example, if we want
to ensure we find a minimization, we might desire

ˆ
V0

d3x r(x)ψ2 = 1 (1.8.78)

for some weighting function r(x) so that ψ can’t get arbitrarily large.

δE = δE + δG =

ˆ
V0

d3x

[
2
∂δψ

∂x
· ∂ψ
∂x

+ 2p2ψδψ + 2λrψδψ

]
=
��

���
���

���
�

2

[
∂

∂x
·
(
∂ψ

∂x
δψ

)]
∂V0

+

ˆ
V0

d3x

[
−2

∂ψ

∂x
δψ + 2(p2 + λr)ψδψ

]
= 2

ˆ
V0

d3x

[
− ∂

∂x
· ∂ψ
∂x

+ (p2 + λr)ψ

]
δψ

(1.8.79)
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148 The Calculus of Variations

Figure 1.9: We can see how the maximum value of the contours is where the constraint line (black)
is exactly tangential to the contours. This means that the gradient of the function points exactly
perpendicular to the constraint line as seen above.

and so the ψ we require must satisfy

∂

∂x
· ∂ψ
∂x

= (p2 + λr)ψ (1.8.80)

with λ a constant. You might think this is not much better than our original problem, but, in
fact, this is fairly incredible. We reduced minimization over an integral with a constraint down to
a partial differential equation. In addition, if we multiply by ψ and integrate we find that our λ is
given by ˆ

V0

d3x
∂

∂x
· ψ∂ψ

∂x
=
���

���
���

ˆ
V0

∂

∂x
·
(
∂ψ

∂x
ψ

)
−
ˆ
V0

d3x
∂ψ

∂x
· ∂ψ
∂x

(1.8.81)
ˆ
V0

d3x (p2 + λr)ψ2 = λ+

ˆ
V0

d3x p2ψ2 (1.8.82)

Q[ψ] ≡
ˆ
V0

d3x

[
∂ψ

∂x
· ∂ψ
∂x

+ p2ψ2

]
(1.8.83)

λ = −Q[ψ] (1.8.84)

In fact, this problem is usually presented as minimize ψ for functional87

S[ψ] ≡ Q[ψ]

R[ψ]
(1.8.85)

Q[ψ] ≡
ˆ
V0

d3x

[
∂ψ

∂x
· ∂ψ
∂x

+ p2ψ2

]
(1.8.86)

R[ψ] ≡
ˆ
V0

d3x r(x)ψ2 (1.8.87)

87This method uses the Rayleigh quotient.
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since δQ = δE from before without the Lagrange multiplier constraint, we realize

δS [ψ] = − Q[ψ]

R[ψ]2
δR +

δQ

R[ψ]
(1.8.88)

We can multiply through by R[ψ] since δS = 0 will still be zero in this case

0 = R[ψ]δS = −S[ψ]δR + δQ (1.8.89)

0 = −S[ψ]

ˆ
V0

d3x 2rψδψ + 2

ˆ
V0

d3x

[
− ∂

∂x
· ∂ψ
∂x

+ p2ψ

]
δψ (1.8.90)

0 = −S[ψ]rψ − ∂

∂x
· ∂ψ
∂x

+ p2ψ (1.8.91)

∂

∂x
· ∂ψ
∂x

=
(
p2 − S[ψ]r

)
ψ (1.8.92)

which we recognize as the same problem as we found with the original method with a constraint
in (1.8.80), but now with λ = −S[ψ] = −Q[ψ]/R[ψ]. Back then we had the restriction imposed
that R[ψ] = 1, and so we see we do get the same solution.

1.9 Hamiltonians and Hamilton-Jacobi Equations
In almost all textbooks, even the best, this principle is presented so that it is impossible
to understand (K. Jacobi Lectures on Dynamics, 1842-1843). I do not choose to break
with tradition.

— V. I. Arnol’d, on the principle of least action[31, p. 246]

This will be a whirlwind tour of classical mechanics. First, we start with the Lagrangian. I will
denote it L.88 It can be motivated by considering virtual forces, but I will simply posit that it
is given by the kinetic energy minus the potential energy as L = T − V . We will form a set of
generalized coordinates xi with i indexing each particle and the set of velocities associated with
them vi = dxi

dt
= ẋi where time is t. We have for Cartesian position Xi = X(xi|all i) and velocity

Vi = Ẋi = Ẋi(ẋi|all i) so that

T (ẋ1, . . . , ẋn, t) ≡
1

2

n∑
i=1

miVi ·Vi (1.9.1)

where we use the expressions of Vi in terms of vi and t so that Vi ·Vi is fully in terms of vi and
t. Then we use a potential V given by

V = V (x1, . . . , xn, ẋ1, . . . , ẋn, t) (1.9.2)

For conservative potentials then V = V (x1, . . . , xn, t). I will then write x and v = ẋ to indicate
all of the xi and vi, respectively. To elaborate the calculation, we have that Xi = Xi(x, t) so that

88Sometimes L is used for a Lagrangian and L is used for a Lagrangian density in some fields of physics. The
Lagrangian density satisfies L =

´
dnq L where n is the number of generalized positions, so an integral over the

volume of generalized positions. Similarly, some write the Hamiltonian H and Hamiltonian density H, but I will
just use H for the Hamiltonian in this section.

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



150 Hamiltonians and Hamilton-Jacobi Equations

each Xi depends on all of the generalized coordinates x. This means through the chain rule that

dXi

dt
=

n∑
j=1

∂Xi

∂xj
ẋj +

∂Xi

∂t
(1.9.3)

which allows us to write the expression for T quite easily.

Note that if we switch to a relativistic case, you may expect we use a new kinetic energy given by

T =
n∑
i=1

[γi(ẋi)− 1]m0ic
2 (1.9.4)

but this is wrong. In fact, the correct formulation is

L = −
n∑
i=1

m0ic
2

γi(ẋi)
− V (x, ẋ, t) (1.9.5)

If we have holonomic constraints this means by definition that they can be expressed via

fj(x, t) = 0 (1.9.6)

for each holonomic constraint j (assume there are m of them). A holonomic constraint just means
that the state of the system is completely determined by its location, and is not path depen-
dent. A non-holonomic constraint is path dependent and not treatable by standard Lagrangian or
Hamiltonian mechanics. Note that if the Lagrangian L is explicitly time dependent, this means t
appears in L outside of any xi and ẋi. The Lagrangian is always a function of t implicitly through
the generalized positions and velocities. Then Lagrangian mechanics states that the Lagrangian
satisfies a form of the Euler-Lagrange equation

∂L
∂xi
− d

dt

∂L
∂ẋi

+
m∑
j=1

λj
∂fj
∂xi

= 0 (1.9.7)

where λj is a Lagrange multiplier giving a generalized force associated with each holonomic con-
straint. Note that this is true for each xi. Clearly each holonomic constraint removes one degree
of freedom because we can use a holonomic constraint to write an xj in terms of all the other xi
with i 6= j. Thus this will have 3n−m degrees of freedom.

If we instead use no holonomic constraints, but use only the necessary generalized coordinates,
then the equation simplifies down to what is typically called the Euler-Lagrange equation

∂L
∂xi

=
d

dt

∂L
∂ẋi

(1.9.8)

which is the traditionally used form.

One can then easily show that this yields Newton’s laws under regular Cartesian coordinates, and
so it is equivalent.
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We can then form the action from89

S =

ˆ t

t0

dt L(x(t), ẋ(t), t) (1.9.9)

If we use a variational principle, called Hamilton’s principle, then the action should be “mini-
mized”.90 Then using variational calculus, we write this as

δS = 0 =

ˆ t

t0

dt δL (1.9.10)

where variational calculus uses the same rules as differentials, so (using the summation convention)

δL =
δL
δxi

δxi +
δL
δẋi

δẋi +
δL
δt
δt (1.9.11)

Now, we have to fix the endpoints in time and so δt = 0 by definition. We must also then have
δxi (t0) = 0 = δxi (t) so that there is no variation at the ends of the integral. We can then use
that we can reverse the order of variation and time derivatives for well behaved functions so that
δẋi = d

dt
δxi . We can then write this as a total differential for d

dt
writing

δL
δẋi

δẋi =
d

dt

[
δL
δẋi

δxi

]
− d

dt

(
δL
δẋi

)
δxi (1.9.12)

which then means the integral becomes

δS = 0 =

ˆ t

t0

dt

[
δL
δxi

δxi +
�
��

�
��
�d

dt

[
δL
δẋi

δxi

]
− d

dt

(
δL
δẋi

)
δxi

]

=

ˆ t

t0

dt

{[
δL
δxi
− d

dt

(
δL
δẋi

)]
δxi

} (1.9.13)

In order for this to vanish then the coefficient of δxi must be zero identically. But we see that this
is just the Euler-Lagrange equation.

At this point, you may be asking yourself, where are the Hamiltonians and what is the Hamilton-
Jacobi equation? Do not worry, I will now explain.

First, Hamiltonian mechanics is yet another formulation of classical mechanics. If we impose a
Legendre transform on the Lagrangian, we will get a Hamiltonian. The Legendre transform only
works on convex functions. A convex function is a function such that when you draw a straight
line between any two points, the function values are below that line. For differentiable functions,
this means that the second derivative is non-negative everywhere. If we fix x then the L(ẋ, x, t)

is such a convex function91 because V ·V ∂
∂V

∂(V·V)
∂V

= 21. For any sensible set x, then the ẋ will
also follow a similar form so that ∂

∂v
∂L
∂v
≥ 0 and so the Legendre transform is well-defined.92 The

89For this integral, I will use the often looked down upon notation of
´ t
t0

dt f(t) rather than introducing a dummy
variable t′ and writing

´ t
t0

dt′ f(t′) because I think it’s pretty obvious that this won’t cause us any confusion.
90This is always how it is phrased even though what is always shown is simply that we find a stationary point,

i.e., a minimum, maximum, or some sort of saddle point.
91For multiple dimensions, one can look at the whether the shape formed “above” the function’s values is convex.
92Note that the generalization to complex valued functions is not often used, so that one should not count on

this working with complex valued functions.
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152 Hamiltonians and Hamilton-Jacobi Equations

Legendre transform has the Lagrangian L change to the Hamiltonian H via defining conjugate
momenta pi(xi, ẋi, t) = ∂L

∂ẋi
so that93

H =
∑
i

ẋi
∂L
∂ẋi
− L =

∑
i

ẋipi − L (1.9.14)

where one puts in ẋi(p) so that we know the ẋi in terms of the pj. We then would like to know
what equations the Hamiltonian H satisfies (just as the Lagrangian satisfies the Euler-Lagrange
equations). Typically generalized coordinates use the variable q rather than x, so I will now switch
to this notation for Hamiltonian form. Thus we define qi = xi and q̇i = ẋi. We write the differential
of L to determine this via

dL =
∑
i

[
∂L
∂qi

dqi +
∂L
∂q̇i

dq̇i

]
+
∂L
∂t

dt (1.9.15)

and we use the definition pi = ∂L
∂q̇i

so this becomes

dL =
∑
i

[
∂L
∂qi

dqi + pi dq̇i

]
+
∂L
∂t

dt

=
∑
i

[
∂L
∂qi

dqi + d (piqi)− q̇i dpi

]
+
∂L
∂t

dt

(1.9.16)

where if we take the full differentials to the left hand side we see

d

(
L −

∑
i

piqi

)
=
∑
i

[
∂L
∂qi

dqi − q̇i dpi

]
+
∂L
∂t

dt (1.9.17)

− dH =
∑
i

[
∂L
∂qi

dqi − q̇i dpi

]
+
∂L
∂t

dt (1.9.18)

dH =
∑
i

[
q̇i dpi −

∂L
∂qi

dqi

]
− ∂L
∂t

dt (1.9.19)

And we can find the differential of H directly as

dH =
∑
i

[
∂H
∂qi

dqi +
∂H
∂pi

dpi +
∂H
∂t

dt

]
(1.9.20)

we can subtract these two expressions and since we are assuming the independence of qi, q̇i and t,
their differential coefficients must vanish and we have

0 =

[∑
i

(
−∂L
∂qi
− ∂H
∂qi

)]
dqi +

[∑
i

(
q̇i −

∂H
∂q̇i

)]
dpi +

(
−∂L
∂t
− ∂H

∂t

)
dt (1.9.21)

And so
∂H
∂qi

= −∂L
∂qi

(1.9.22)

∂H
∂pi

= q̇i (1.9.23)

∂H
∂t

= −∂L
∂t

(1.9.24)

93We use the same notation p means all of the pi.
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If we have a solution to the Euler-Lagrange equations then we have

d

dt

∂L
∂q̇i

=
∂L
∂qi

(1.9.25)

d

dt
pi = ṗi =

∂L
∂qi

(1.9.26)

and so we have

∂H
∂qi

= −ṗi (1.9.27)

∂H
∂pi

= q̇i (1.9.28)

∂H
∂t

= −∂L
∂t

(1.9.29)

Which are Hamilton’s equations. If we have n generalized coordinates then this is a 2n+ 1 system
(if time is included).

Here pi is the canonically conjugate momentum to the generalized coordinate qi. It is possible to
transform both qi and pi such that the new coordinates Qi and Pi are also canonically conjugate
and satisfy Hamilton’s equations.

There are four generating functions for this. We start by writing the Lagrangian action in two
separate ways and making their variation zero. Thus we have have (H, qi, pi) as one Hamiltonian
system and (K, Qi, Pi) as the second Hamiltonian system corresponding to the same Lagrangian
and physical situation.

We have

δ

ˆ t

t0

dt [piq̇i −H(q, p, t)] = δ

ˆ t

t0

dt
[
PiQ̇i −K(Q, P, t)

]
= 0 (1.9.30)

We can clearly add a total time derivative and could have a scale factor difference between the two
integrands and still have zero. That is

δ

ˆ t

t0

dt

[
λpq (piq̇i −H(q, p, t)) +

dgpq
dt

]
− δ
ˆ t

t0

dt

[
λPQ

(
PiQ̇i −K(Q, P, t)

)
+

dgPQ
dt

]
= 0 (1.9.31)

λpq (piq̇i −H(q, p, t)) +
dgpq
dt
−
{
λPQ

(
PiQ̇i −K(Q, P, t)

)
+

dgPQ
dt

}
= 0 (1.9.32)

which can be rewritten as

λ (piq̇i −H(q, p, t)) = PiQ̇i −K(Q, P, t) +
dG

dt
(1.9.33)

where

λ = λpq/λPQ (1.9.34)
dG

dt
=

1

λPQ

(
dgPQ

dt
− dgpq

dt

)
(1.9.35)
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Generally people choose λ = 1 and put all of the transformations into dG
dt
. We can then choose

G such that it is a variable of two of the q, Q, p, or P so that we can transform one of the two
sides into the other. Thus there are four generating functions. The type 1 generating function
G = G1(q, Q, t) so that our above transformation states

piq̇i −H(q, p, t) = PiQ̇i −K(Q, P, t) +
∂G1

∂t
+
∂G1

∂qi
q̇i +

∂G1

∂Qi
Q̇i (1.9.36)

which we rewrite as(
pi −

∂G1

∂qi

)
q̇i −H(q, p, t) +K(Q, P, t)− ∂G1

∂t
=

(
Pi +

∂G1

∂Qi

)
Q̇i (1.9.37)

Since all the canonical coordinates, their conjugate momenta, and the Hamiltonians are inde-
pendent of each other, then each term in front of a time derivative of a conjugate momenta or
coordinate or for the Hamiltonians themselves must vanish separately. Thus

∂G1

∂qi
= pi (1.9.38)

∂G1

∂Qi
= −Pi (1.9.39)

K = H +
∂G1

∂t
(1.9.40)

This allows us to write H and ∂G1

∂t
in terms of Q and P.

The type 2 generating function is G = −QiPi +G2(q, P, t) and so we get

piq̇i −H(q, p, t) = PiQ̇i −K(Q, P, t) +
∂G2

∂t
+
∂G2

∂qi
q̇i +

∂G2

∂Pi
Ṗi − Pi

dQi
dt
− Qi

dPi
dt

(1.9.41)

which we rewrite as (
pi −

∂G2

∂qi

)
q̇i −H +K − ∂G2

∂t
=

(
∂G2

∂Pi
− Qi

)
Ṗi (1.9.42)

and so by independence of the full time derivative terms we get

∂G2

∂qi
= pi (1.9.43)

∂G2

∂Pi
= Qi (1.9.44)

K = H +
∂G2

∂t
(1.9.45)

The type 3 generating function is G = qipi +G3(Q, P, t) yielding

piq̇i −H(q, p, t) = PiQ̇i −K(Q, P, t) +
∂G3

∂t
+
∂G3

∂Qi
Q̇i +

∂G3

∂pi
ṗi + pi

dqi
dt

+ qi
dpi
dt

(1.9.46)

which we rewrite as

−H(q, p, t) +K − ∂G3

∂t
=

(
Pi +

∂G

∂Qi

)
Q̇i +

(
∂G3

∂pi
+ qi

)
ṗi (1.9.47)
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and so by independence of the full time derivative terms we get

∂G3

∂Qi
= −Pi (1.9.48)

∂G3

∂pi
= −qi (1.9.49)

K = H +
∂G3

∂t
(1.9.50)

The type 4 generating function is G = qipi − QiPi +G4(p, P, t) yielding

piq̇i −H(q, p, t) = PiQ̇i −K(Q, P, t) +
∂G4

∂t
+
∂G4

∂pi
ṗi +

∂G4

∂Pi
Ṗi + pi

dqi
dt

+ qi
dpi
dt
− Pi

dQi
dt
− Qi

dPi
dt

(1.9.51)

which we rewrite as

−H(q, p, t) +K − ∂G4

∂t
=

(
∂G4

∂pi
+ qi

)
ṗi +

(
∂G4

∂Pi
− Qi

)
Ṗi (1.9.52)

and so by independence of the full time derivative terms we get

∂G4

∂Pi
= Qi (1.9.53)

∂G4

∂pi
= −qi (1.9.54)

K = H +
∂G4

∂t
(1.9.55)

Finally, we can form the Hamilton-Jacobi equation via a type 2 generating function given by
choosing a G2(q, P, t) so that

p =
∂G2

∂q
(1.9.56)

P =
∂G2

∂Q
(1.9.57)

K(Q, P, t) = H(q, p, t) +
∂G2

∂t
(1.9.58)

We want to choose a K such that K = 0. Thus ∂G2

∂t
= −H and so

∂K

∂Q
= Ṗ = 0 (1.9.59)

∂K

∂P
= −Q̇ = 0 (1.9.60)

because K = 0. This means P and Q are constants and so traditionally it is written P = α and
Q = β.94 We can then write

G2(q,α, t) = S(q, t) + C (1.9.61)

94Here α and β are not geometric vectors, but vector arrays.

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



156 Hamiltonians and Hamilton-Jacobi Equations

for some constant C. This implies

∂G2

∂q
=
∂S

∂q
= p (1.9.62)

and we then have

H(q, p, t) +
∂G2

∂t
= 0 (1.9.63)

H(q,
∂S

∂q
, t) +

∂S

∂t
= 0 (1.9.64)

We can then find the

β = Q =
∂S(q,α, t)

∂α
(1.9.65)

S(q, t) (remember α are constant) is called Hamilton’s principal function. It satisfies

dS

dt
=
∂S

∂q
· dq

dt
+
∂S

∂t
= p · q̇−H(q, p) = L(q, p) (1.9.66)

and so

S =

ˆ
dt L (1.9.67)

is indeed the action (at least up to a constant, which is the best we can do with an action).

We can also find S in a more direct manner. Most of the “proofs” I have seen with this method
usually involve a surprisingly non-rigorous (and, I daresay, incomprehensible) step. Here we start
with a definition of the action, and perform the usual variational calculus on it where we can
deform the path/trajectory but don’t allow the endpoints to change (so the total time cannot
change, but the path can)

S =

ˆ t

t0

dt L (1.9.68)

δS |δt=0 =

ˆ t

t0

dt δL =

ˆ
dt

(
δL
δqi

δ qi +
δL
δq̇i

δq̇i

)
(1.9.69)

We put in the Euler-Lagrange equations d
dt
∂L
∂q̇i

= ∂L
∂qi

with the variational derivatives being inter-
preted as partial derivatives, as usual, and so

δS =

ˆ
dt

(
d

dt

[
∂L
∂q̇i

]
qi +

δL
δq̇i

d

dt
[δqi ]

)
=

ˆ
dt

d

dt

[
∂L
∂q̇i

δqi

]
=
∂L
∂q̇i

δqi = pδqi (1.9.70)

which we then rewrite as

δS

δqi
=
∂S

∂qi
= pi (1.9.71)

Remember we defined

S(q, t) =

ˆ t

t0

dt L (1.9.72)
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We can note that if we take d
dt

of both sides, the right side is the antiderivative and so we must
get

dS

dt
=
∂S

∂q
· dq

dt
+
∂S

∂t
= L (1.9.73)

if we use ∂S
∂q

= p then we have found

∂S

∂t
= L − p · q̇ = −H (1.9.74)

Thus, we have shown that we indeed recover the Hamilton-Jacobi equation using S as the action.

I must now explain what I think is a mistake in many of the proofs I have seen using this more
direct method. Instead of using the definition of S and a full time derivative, they try to use the
calculus of variations to calculate ∂S

∂t
. They say something like “we now do a variation but allowing

the time endpoint to change while not allowing the trajectory endpoint to change”; this should
immediately sound some alarms for you. The entire calculus of variations is predicated on not
moving the endpoints in time (or whatever we are integrating over). How can we use variational
calculus in a case where one of its assumptions is false? The reasoning then given is usually along
these lines. If we allow only t to vary, this means qi will vary implicitly with t. However, if we
still desire an extremal or “minimal” solution then if we want the same spatial trajectory, we need
to move the endpoint q backwards a bit to compensate for the extra time δt that we are allowing
and so δqi = −q̇iδt . In addition we must just get an extra factor of Lδt from the extra time we
are allowing and so

δS = Lδt − piq̇iδt = −Hδt (1.9.75)

leading to the claim

∂S

∂t
= −H (1.9.76)

The process that leads to this reasoning has never been properly explained to me. We seem to be
working with an idea like

δS =

ˆ t,q−q̇δt

t0,q0

dt L+

ˆ t+δt ,q

t,q−q̇iδt
dt L −

ˆ t,q

t0,q0

dt L (1.9.77)

but getting the desired result from this is not only not at all obvious, it is not even clear it makes
sense to call this a variation. If you come across such a proof, I would recommend ignoring it. It
probably is not true, and we have the simpler method available that is outlined above using a full
time derivative.

1.10 Hamiltonian Form of Magnetic Field Lines
To discover to the world something which deeply concerns it, and of which it was previ-
ously ignorant; to prove to it that it had been mistaken on some vital point of temporal
or spiritual interest, is as important a service as a human being can render to his
fellow-creatures.

— John Stuart Mill[24]
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158 Hamiltonian Form of Magnetic Field Lines

The quotation by Mills may be a bit dramatic for this section, but the discovery that magnetic
field lines are a Hamiltonian system does not seem to have penetrated into the physics community
outside of plasma physics. I think it is one of those things which deeply concerns the world, and
think the story should be better known. Let’s now explore how this connection is made.

There is an unfortunate tendency in electromagnetic textbooks to emphasize that the divergence
of B constraint, namely ∇ · B = 0, implies that magnetic field lines are closed or that the lines
end at “infinity”.95 This is often explained with the evocative wording “a magnetic field line bites
its own tail”. This statement is quite false. Magnetic field lines often bite their tails, but it is
not required. In magnetic confinement devices magnetic field lines often form irrational surfaces
where the magnetic field lines never connect back on themselves. In addition, a magnetic field
line can ergodically fill a volume such that the magnetic field line, again, does not meet back up
with itself. One could actually say that most forms of magnetic field lines do not bite their own
tails, as we will show that magnetic field lines are directly analogous to classical trajectories. We
will show this by showing that magnetic field lines can be calculated via a Hamiltonian. The
magnetic field lines then bite their own tails when there are extra symmetries in the problem96

(and so in the Hamiltonian) and so the textbook cases can present an unbalanced picture. These
extra symmetries allow the Hamiltonian of the magnetic fields to have ignorable coordinates which
simplify the magnetic field line structure.

If you have studied Hamiltonian dynamics, you can simply remember that trajectories do not
necessarily close on themselves or extend out to infinity. So after we show that magnetic field
lines satisfy a Hamiltonian relation, we have proved that they do not necessarily close. Indeed,
since most Hamiltonian systems exhibit chaotic trajectories that wander without ever closing on
themselves, one could say that the majority of magnetic field lines physically possible do not close
on themselves.

We begin with the magnetic vector potential A. We use that

B =∇× (A + ∇f) =∇×A (1.10.1)

for some arbitrary function f . Let’s choose curvilinear coordinates with a radial-like r, poloidal-
like θ, and toroidal-like ζ. Then f = f(r, θ, ζ) is the gauge and so we can choose it to be defined
such that f(0, θ, ζ) = 0 and

∂f

∂r
= Ar (1.10.2)

∂f

∂θ
= Aθ − ψt (1.10.3)

∂f

∂ζ
= Aζ − ψp (1.10.4)

We will later show that ψt(r, θ, ζ) is directly related to the toroidal flux and ψp(r, θ, ζ) is directly
related to the poloidal flux, properly defined and single-valued.97 We can write A and ∇f in a

95A simple google search with “divergence B closed field lines” will present you with many sources saying this.
Indeed, even Griffiths’ Introduction to Electrodynamics[17, p. 279] says “magnetic field lines do not begin or end
anywhere—to do so would require nonzero divergence. They either form closed loops or extend out to infinity”.
The existence of irrational magnetic flux surfaces disproves this.

96The class of problems generally covered in textbooks.
97When r is a flux label, then ψt = ψt(r) and ψp = ψp(r) and so the toroidal and poloidal fluxes are related and

can be written ψt = ψt(ψp) or ψp = ψp(ψt).
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covariant representation so that

A = Ar∇r + Aθ∇θ + Aζ ∇ζ (1.10.5)

∇f =
∂f

∂r
∇r +

∂f

∂θ
∇θ +

∂f

∂ζ
∇ζ = Ar∇r + (Aθ − ψt)∇θ + (Aζ + ψp)∇ζ (1.10.6)

Thus we can write

A = ψt∇θ + ψp∇ζ + ∇f (1.10.7)

and so the curl is simply given by

B =∇×A = ∇ψt × ∇θ + ∇ψp × ∇ζ (1.10.8)

This form of B is called the canonical form. This is because it makes us remember that Hamiltonian
dynamics uses canonical variables, and this form of B has the canonical variables for our magnetic
field Hamiltonian. It is important to note that this form is entirely general. It does not require the
existence of magnetic flux surfaces. In fact it does not require anything of the magnetic field beyond
it being divergence free (by construction) even though it has a superficially similar appearance to
the conventional forms given to magnetic fields that have nested flux surfaces. This form assumes
much less, and so tells us much less about the structure of B.

We now prove that ψt is indeed a toroidal flux. We thus do an integral over a constant ζ surface.98
This implies a relationship between r, θ and ζ over the surface. We can replace r with ψt since
ψt has an r dependence and so it can be used to measure distance in a direction independent
of θ and ζ. This means our coordinate system becomes (ψt, θ, ζ). The only real worries would
be whether r increases when ψt increases and that ψt monotonically increases or decreases. The
answer is to simply choose ψt such that it increases as r increases (if a function f(r) decreases
as r increases define g(r) = f(−r) so that g(r) increases when r increases) and realize that if ψt
does not simply increase or decrease, then we will have to solve in separate regions or have some
separate way of associating ψt with distinct r locations. This can be difficult, but the problem is not
insurmountable if we divide ψt into regions with unique r and make sure they connect continuously
onto each other. We will choose a constant ζ surface such that it is a “disk”99 centered around
the magnetic axis. We then use J = 1/(∇ψt · ∇θ × ∇ζ) and the form of the surface integral via
(1.2.310)

¨
dSζ ·B =

ˆ
dψt

ˆ
dθ J ∇ζ · [∇ψt × ∇θ +���

���∇ψp × ∇ζ]

=

ˆ
dψt

ˆ
dθ J ∇ζ · ∇ψt × ∇θ =

ˆ
dψt

ˆ
dθ J ∇ψt · ∇θ × ∇ζ

=

ˆ
dψt

ˆ
dθ
J
J

= 2πψt

(1.10.9)

Thus we see that ψt is in fact the normalized toroidal flux. It measures the flux through a constant
toroidal angle θ, with the actual toroidal flux through that surface given by 2πψt.

98This is essentially saying that a toroidal flux is the flux through a constant toroidal angle. This should be
regarded as a definition.

99This is simply to say it follows a flux surface if it exists, or to some prescribed radius from the magnetic axis.
It need not be an actual disk.
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160 Hamiltonian Form of Magnetic Field Lines

Similarly, we could consider ψp(r, θ, ζ) to be the radial coordinate instead of ψt. We again will
have to consider the sign of ψp. The sign turns out to be a little more complicated than for the
toroidal case, but otherwise the exact same manipulations can be used.

There are two traditional definitions of poloidal flux, the ribbon flux and the disk flux. A disk
flux100 counts the flux along a constant θ surface from the geometric axis outward to some other
radial position. The ribbon flux instead privileges the magnetic axis and so is along a constant θ
surface from the magnetic axis out to some radial distance. We can then call P d

R the disk flux from
the geometric axis out to radial distance R, and P r

r the ribbon flux. Indeed, we can write P d
r if we

understand that r just represents some radial variable. We can then note that for typical geometric
coordinates we choose θ and r so that dP d = − dP r or ∇P d = −∇P r and so depending on whether
we use the ribbon or the disk flux we can take either sign. This follows from the fact that if r = r′

and R = R′ are referring to the same position then we choose P d
R(R′) +P r

r (r′) = P d(R0) where R0

is major radius pointing from the geometric axis to the magnetic axis. This implies that the θ = π
surface is used for the ribbon flux. We will consider the disk flux for our calculation below. Then¨

dSθ ·B =

ˆ
dψp

ˆ
dζ J ∇θ ·

[
��

���
�∇ψt × ∇θ + ∇ψp × ∇ζ

]
=

ˆ
dψp

ˆ
dζ J ∇θ · ∇ψp × ∇ζ =

ˆ
dψp

ˆ
dζ − J ∇ψp · ∇θ × ∇ζ

= −
ˆ

dψp

ˆ
dθ
J
J

= −2πψp

(1.10.10)

Thus we have a normalized poloidal flux again with ψp corresponding to a poloidal disk flux of
−2πψp for a content θ surface. We can make this explicit via using ψdp . If instead we designate ψrp
the ribbon flux then we would have found the above integral to be +2πψrp because ∇ψrp ∝ −∇r.
This can be summarized as

B = ∇ψt × ∇θ + ∇ψdp × ∇ζ (1.10.11)
B = ∇ψt × ∇θ + ∇ζ × ∇ψrp = ∇ψt × ∇θ − ∇ψrp × ∇ζ (1.10.12)

Now that we have proven how to choose our gauge explicitly we can return to showing that there
is a Hamiltonian form from the canonical form of the magnetic field (1.10.8). We will choose to
use the coordinate system (ψt, θ, ζ) with ψdp(r, θ, ζ) = ψdp(ψt, θ, ζ). We find the magnetic field lines
via the equation

B
dx

d`
= B (1.10.13)

where ` is a parameter that measures the distance along the magnetic field line and so points to
a location along the magnetic field line, the position x(`).101 We could also give positions via
x(ψt, θ, ζ). Then the chain rule implies

B

B
=

dx

d`
=

∂x

∂ψt

∂ψt
∂`

+
∂x

∂θ

∂θ

∂`
+
∂x

∂ζ

∂ζ

∂`
= eψt

∂ψt
∂`

+ eθ
∂θ

∂`
+ eζ

∂ζ

∂`
(1.10.14)

100Again, not necessarily an actual disk.
101Note that one could usedx

d` = B. This way d
d` can be identified with B · ∇, and ` has units of ’length per

magnetic field’ rather than just ’length’. Were we to adopt this convention here we would not need to keep putting
in factors of B that eventually just cancel.
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If we then take ∇ψt = eψt , ∇θ = eθ or ∇ζ = eζ we can use the reciprocal relation (1.2.61) to find

B · ∇ψt = Beψt ·
(

eψt
∂ψt
∂`

+
�
�
�

eθ
∂θ

∂`
+
@
@
@

eζ
∂ζ

∂`

)
= B

∂ψt
∂`

(1.10.15)

B · ∇θ = Beθ ·
(
��eψt

∂ψt
∂`

+ eθ
∂θ

∂`
+
@
@
@

eζ
∂ζ

∂`

)
= B

∂θ

∂`
(1.10.16)

B · ∇ζ = Beζ ·
(
�
�
�
�

eψt
∂ψt
∂`

+
@
@
@

eθ
∂θ

∂`
+ eζ

∂ζ

∂`

)
= B

∂ζ

∂`
(1.10.17)

So long as these are non-singular (there are no magnetic nulls) we can then use the chain rule
again to write

df

dg
=

df
d`
dg
d`

=
B df

d`

B dg
d`

(1.10.18)

Finally we can use

∇ψt ·B =((((
((((

((
B∇ψt · ∇ψt × ∇θ +B∇ψt · ∇ψdp × ∇ζ

= ∇ψt ·
[(
�
�
�
��Z

Z
Z
ZZ

∂ψdp
∂ψt
∇ψt +

∂ψdp
∂θ
∇θ +

�
�
�
��Z

Z
Z
ZZ

∂ψdp
∂ζ
∇ζ

)
× ∇ζ

]

= B
∂ψdp
∂θ
∇ψt · ∇θ × ∇ζ =

∂ψdp
∂θ

B

J

(1.10.19)

∇θ ·B =((((
((((

(
B∇θ · ∇ψt × ∇θ +B∇θ · ∇ψdp × ∇ζ

= B∇θ ·
[(

∂ψdp
∂ψt
∇ψt +

�
�
�
��Z

Z
Z
ZZ

∂ψdp
∂θ
∇θ +

�
�
�
��Z

Z
Z
ZZ

∂ψdp
∂ζ
∇ζ

)
× ∇ζ

]

= B
∂ψdp
∂ψt
∇θ · ∇ψt × ∇ζ = −

∂ψdp
∂ψt

B

J

(1.10.20)

∇ζ ·B = B∇ζ · ∇ψt × ∇θ +B∇ζ ·����
��∇ψdp × ∇ζ

= B∇ψt · ∇θ × ∇ζ =
B

J
(1.10.21)

Note that this then also gives the magnetic field line equations

dψt
d`

=
B · ∇ψt

B
=
Bψt

B
(1.10.22)

dθ

d`
=

B · ∇θ
B

=
Bθ

B
(1.10.23)

dζ

d`
=

B · ∇ζ
B

=
Bζ

B
(1.10.24)

dψt
dθ

=
B · ∇ψt
B · ∇θ =

Bψ
t

Bθ
(1.10.25)

dψt
dζ

=
B · ∇ψt
B · ∇ζ =

Bψ
t

Bζ
(1.10.26)

dθ

dζ
=

B · ∇θ
B · ∇ζ =

Bζ

Bθ
(1.10.27)
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and all other possible forms (assuming no singular components) which can be summarized by

d`

B
=

dψt
Bψt

=
dθ

Bθ
=

dζ

Bζ
(1.10.28)

Make sure to note that Bi = ∇ξi ·B, the contravariant components of B.

In any case, we can then write

B dψt
d`

B dζ
d`

=
dψt
dζ

=
B · ∇ψt
B · ∇ζ =

∂ψdp
∂θ

B
J

B
J

=
∂ψdp
∂θ

(1.10.29)

B dθ
d`

B dζ
d`

=
dθ

dζ
=

B · ∇θ
B · ∇ζ =

−∂ψdp
∂ψt

B
J

B
J

= −
∂ψdp
∂ψt

(1.10.30)

or more cleanly in a more suggestive form

∂ψdp
∂θ

=
dψt
dζ

(1.10.31)

∂ψdp
∂ψt

= −dθ

dζ
(1.10.32)

If we then identify ψdp → −H, θ → q, ψt → p and ζ → t we see that the (1.10.31)-(1.10.32) would
be written as

∂H

∂q
= −dp

dt
(1.10.33)

∂H

∂p
=

dq

dt
(1.10.34)

the conventional form of the Hamiltonian for canonical coordinates (q, p) with q generalized posi-
tions and p generalized momentum.

If we had used ψrp instead then the identifications would be simpler as ψrp → H, θ → q, ψt → p
and ζ → t and

∂ψrp
∂θ

= −dψt
dζ

(1.10.35)

∂ψrp
∂ψt

=
dθ

dζ
(1.10.36)

which is often used as well.

In any case, we recognize that ψt and θ are canonical variables with ψt canonically conjugate to θ
(and vice versa). One final comment is that we have a 1D “time dependent” (because ζ is playing
the role of time) Hamiltonian above, and we could “eliminate” the time dependence by considering
ψdp and ζ as coordinates with ψdp the canonically conjugate momentum to canonical coordinate ζ.
We then have the identification Q = [θ, ζ] and P = [ψt, ψ

d
p ] (for convenience we can write q = [θ, 0]

and p = [ψt, 0]). We can say we are now parameterized by a new time τ with ψp independent of
this τ . We can use the generating function

G2(q, P, ζ) = P · q + ψdpζ = ψtθ + ψdpζ (1.10.37)
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and so the new Hamiltonian H (the old one is −ψp) is given by

H(Q, P) = H(θ, ζ, ψt, ψ
d
p) = −ψdp(ψt, θ, ζ) +

(
∂G2

∂ζ

)
θ,ψt,ψdp

= −ψdp(ψt, θ, ζ) + ψdp (1.10.38)

This equation should be read as −ψdp(ψt, θ, ζ) is the written out form of the previous Hamiltonian
−ψdp in terms of the variables ψt, θ, ζ, with the last ψdp not written out in those variables because
it now stands as a separate coordinate. The new equations are then

∂H

∂Q
= −dP

dτ
(1.10.39)

∂H

∂P
=

dQ

dτ
(1.10.40)

with H independent of the time τ . Written out component wise, this says

∂H

∂θ
= −dψt

dτ
(1.10.41)

∂H

∂ψdp
= −dζ

dτ
(1.10.42)

∂H

∂ψt
=

dθ

dτ
(1.10.43)

∂H

∂ζ
=

dψdp
dτ

(1.10.44)

and we have a 2D τ -independent (“time” independent) Hamiltonian system. Such systems are
known to produce stochastic behavior.

We have thus shown how to construct a “time” (really ζ) independent Hamiltonian ψdp (or in ψrp)
given toroidal and poloidal fluxes defined by toroidal ζ and poloidal θ angles for generic magnetic
fields (without nulls).

The final consideration is the actual time evolution of B. All the above analysis is for actual time
held constant. In fact, it is still valid for time dependence. Instead of ψ(r, θ, ζ) use ψ(r, θ, ζ, t) and
x(r, θ, ζ) is now x(r, θ, ζ, t). So long as r, θ, ζ are time independent coordinates, then essentially
nothing changes other than x will now point at different places at different times t.

1.11 Frenet-Serret Formulas
In the previous Hamiltonian section, Section 1.10, we saw that magnetic field lines are analogues
of trajectories. We can then apply a similar analysis to directions along magnetic field lines as that
done for particle trajectories. This leads to a powerful description of the geometry of the magnetic
field lines.

1.11.1 Particle Trajectories

The Frenet-Serret formulas are a complete description of a particle trajectory. They are tradition-
ally given by three unit vectors: the tangent vector T̂, normal vector N̂, and binormal vector B̂,
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164 Frenet-Serret Formulas

along with two scalars the curvature κ and torsion τ . Given a specific trajectory, we can param-
eterize that specific trajectory by time t. That is we write the trajectory as x(t). We need the
trajectory to be nondegenerate, so that the path doesn’t cross itself unambiguously (this is easily
fixed below, though, through the arclength). We also need the curvature κ to be nonzero. This
restriction on κ means given x(t), that dx

dt
and d2x

dt2
are not proportional to each other. To make

sure we have a monotonically increasing parameterization we define a new parameter based on
time given by s. This s will be the arclength along the trajectory from a specified initial point. If
it is nondegenerate, then we do not need to worry about a non-deterministic trajectory. We can
write s in terms of time via

s =

ˆ t

0

dσ

∣∣∣∣dx(σ)

dσ

∣∣∣∣ (1.11.1)

ds

dt
=

∣∣∣∣dx(σ)

dσ

∣∣∣∣
σ=t

=

∣∣∣∣dx(t)

dt

∣∣∣∣ (1.11.2)

With this arclength s as the parameterization, we have x(s) = x(t(s)). We can easily write the
tangent vector for the curve. It is simply dx

ds
, because s goes along the curve, then this points in

that direction. While it is not immediately obvious, this is also a unit vector. This is because

dx

ds
=

dx

dt

dt

ds
=

dx

dt

1
ds
dt

=
dx

dt

1

|dx
dt
|

(1.11.3)

which is clearly a unit vector. We call it T̂ = dx
ds
. We then take another s derivative of this vector

normalize it via the curvature and call this the normal vector N̂

N̂ =
dT̂
ds∣∣∣dT̂ds ∣∣∣ =

1

κ

dT̂

ds
(1.11.4)

Finally, we define the binormal vector via B̂ = T̂× N̂.

Because T̂ is a unit vector, then dT̂
ds

never points along T̂, and so it is perpendicular to T̂. If you
find this verbal argument insufficient, we write

dT̂

ds
· T̂ =

1

2

dT̂ · T̂
ds

=
1

2

d1

ds
= 0 (1.11.5)

Thus N̂ is indeed orthogonal to T̂. Finally, B̂ is by construction orthogonal to N̂ and T̂. All that
remains is to find relations between all of these vectors.

We have a right-handed coordinate system (T̂, N̂, B̂). Because N̂ is a unit vector, we again have
that its derivative is perpendicular to it

dN̂

ds
· N̂ =

1

2

dN̂ · N̂
ds

=
1

2

d1

ds
= 0 (1.11.6)

This means in our coordinate system we must have

dN̂

ds
= aT̂ + bB̂ (1.11.7)
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We then have for B̂ that

dB̂

ds
=

dT̂× N̂

ds
=

dT̂

ds
× N̂ + T̂× dN̂

ds
=
�
�
�
��N̂

κ
× N̂ = T̂×

[
Z
ZaT̂ + bB̂

]
= −bN̂ (1.11.8)

We define b = τ to be the torsion (which we will investigate in a moment). We can then use
N̂ = B̂× T̂ to rewrite

dN̂

ds
=

dB̂× T̂

ds
=

dB̂

ds
× T̂ + B̂× dT̂

ds
= −τN̂× T̂ + B̂× κN̂ = τB̂− κT̂ (1.11.9)

Thus, we can write out all of our equations as

dT̂

ds
= κN̂ (1.11.10)

dN̂

ds
= −κT̂ + τB̂ (1.11.11)

dB̂

ds
= −τN̂ (1.11.12)

which defines the Frenet-Serret frame. Remember that we could use the time directly as a param-
eterization so long as we do not have a degenerate trajectory. In that case we have

dT̂

dt
=

∣∣∣∣dr

dt

∣∣∣∣κN̂ (1.11.13)

dN̂

dt
= −

∣∣∣∣dr

dt

∣∣∣∣κT̂ +

∣∣∣∣dr

dt

∣∣∣∣ τB̂ (1.11.14)

dB̂

dt
= −

∣∣∣∣dr

dt

∣∣∣∣ τN̂ (1.11.15)

Now we can investigate curvature κ and torsion τ in terms of s and t. For s it is especially simple
with

κ =

∣∣∣∣∣dT̂

ds

∣∣∣∣∣ (1.11.16)

τ =

∣∣∣∣∣dB̂

ds

∣∣∣∣∣ (1.11.17)

We would like to remove our parameterization s explicitly from the picture. We first note

dr

dt
=

dr

ds

ds

dt
= T̂

ds

dt
(1.11.18)

Thus

d2r

dt2
=

dT̂

dt

ds

dt
+ T̂

d2s

dt2
=

dT̂

ds

(
ds

dt

)2

+ T̂
d2s

dt2

=

(
ds

dt

)2

κN̂ +
d2s

dt2
T̂

(1.11.19)
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Finally, we can find

d3r

dt3
= 2

ds

dt

d2s

dt2
κN̂ +

(
ds

dt

)2
dκ

dt
N̂ +

(
ds

dt

)2

κ
dN̂

dt
+

d3s

dt3
T̂ +

d2s

dt2
dT̂

dt

=

[
2

ds

dt

d2s

dt2
κ+

(
ds

dt

)2
dκ

dt

]
N̂ +

(
ds

dt

)3

κ
dN̂

ds
+

d3s

dt3
T̂ +

d2s

dt2
ds

dt

dT̂

ds

=

[
2

ds

dt

d2s

dt2
κ+

(
ds

dt

)2
dκ

dt

]
N̂ +

(
ds

dt

)3

κ
[
−κT̂ + τB̂

]
+

d3s

dt3
T̂ +

d2s

dt2
ds

dt
κN̂

=

[
−
(

ds

dt

)3

κ2 +
d3s

dt3

]
T̂ +

[
2

ds

dt

d2s

dt2
κ+

(
ds

dt

)2
dκ

dt
+

d2s

dt2
ds

dt

]
N̂ + τκ

(
ds

dt

)3

B̂

=

[
d3s

dt3
−
(

ds

dt

)3

κ2

]
T̂ +

[
3

ds

dt

d2s

dt2
κ+

(
ds

dt

)2
dκ

dt

]
N̂ + τκ

(
ds

dt

)3

B̂

(1.11.20)

Then this means

dr

dt
× d2r

dt2
= T̂

ds

dt
×

[(
ds

dt

)2

κN̂ +
d2s

dt2
T̂

]
(1.11.21)

=

(
ds

dt

)3

κT̂× N̂ =

(
ds

dt

)3

κB̂ (1.11.22)

So with ds
dt

=
∣∣∣drdt
× d2r

dt2

∣∣∣ and |B̂| = 1 we find

κ =

∣∣∣drdt
× d2r

dt2

∣∣∣(
ds
dt

)3 |B̂|
=

∣∣∣drdt
× d2r

dt2

∣∣∣∣∣dr
dt

∣∣3 (1.11.23)

We can then find

d3r

dt3
· d2r

dt2
× dr

dt

=

[
��
���

���
���

�XXXXXXXXXXXX

[
d3s

dt3
−
(

ds

dt

)3

κ2

]
T̂ +

��
���

��
���

���
��[

3
ds

dt

d2s

dt2
κ+

(
ds

dt

)2
dκ

dt

]
N̂ + τκ

(
ds

dt

)3

B̂

]
·
[(

ds

dt

)3

κB̂

]

= τκ3

(
ds

dt

)6

(1.11.24)

Thus we will find that τ is

τ =

∣∣∣d3r
dt3
· d2r

dt2
× dr

dt

∣∣∣∣∣dr
dt

∣∣6 κ2
=

∣∣∣d3r
dt3
· d2r

dt2
× dr

dt

∣∣∣∣∣dr
dt

∣∣6 ∣∣∣drdt
×d2r

dt2

∣∣∣2
|drdt |

6

=

∣∣∣d3r
dt3
· d2r

dt2
× dr

dt

∣∣∣∣∣dr
dt
× d2r

dt2

∣∣2 (1.11.25)
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1.11.1.1 Particle Trajectories Summary

To summarize, when using arclength parameter s we have

dT̂

ds
= κN̂ (1.11.26)

dN̂

ds
= −κT̂ + τB̂ (1.11.27)

dB̂

ds
= −τN̂ (1.11.28)

with

κ =

∣∣∣∣∣dT̂

ds

∣∣∣∣∣ (1.11.29)

τ =

∣∣∣∣∣dB̂

ds

∣∣∣∣∣ (1.11.30)

and then using time as the parameter

1∣∣dr
dt

∣∣ dT̂

dt
= κN̂ (1.11.31)

1∣∣dr
dt

∣∣ dN̂

dt
= −κT̂ + τB̂ (1.11.32)

1∣∣dr
dt

∣∣ dB̂

dt
= −τN̂ (1.11.33)

with

τ =

∣∣∣d3r
dt3
· d2r

dt2
× dr

dt

∣∣∣∣∣dr
dt

∣∣6 κ2
=

∣∣∣d3r
dt3
· d2r

dt2
× dr

dt

∣∣∣∣∣dr
dt

∣∣6 ∣∣∣drdt
×d2r

dt2

∣∣∣2
|drdt |

6

=

∣∣∣d3r
dt3
· d2r

dt2
× dr

dt

∣∣∣∣∣dr
dt
× d2r

dt2

∣∣2 (1.11.34)

1.11.2 Darboux Frames

There is yet another twist to this story. In the above, we assumed that the curve can wander
wherever it would like in 3D space. This is completely general, but there are situations where we
might prefer to enforce something more on our curve. Suppose we have a surface in space that our
trajectory is constrained to lie on. That is, the curve is completely on a surface in 3D space (for
example, one could consider a trajectory lying only on the surface of a sphere). There is a sense
in which we would then like to say that the curvature is zero if we are simply following the surface
of the sphere on our trajectory. That is, if we are told to go from one location on the equator
to another location on the equator and we take the great circle (that is, we stay on the equator)
between these locations, we’d like to say that there is no curvature. We took the geodesic, the
shortest path given our constraints.

This is as if we were near a geyser and wished to go across to the other side. The straightest
distance is simply to go over the geyser to the other side. But, in reality, there is a fence and a
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168 Frenet-Serret Formulas

sidewalk that restricts our choices to going around the geyser. Thus, the fastest way is to simply
follow the sidewalk around to the other side (staying on the edge of the sidewalk closest to the
geyser). The curvature on this path is nonzero, but this is because of our constraint. We will define
the geodesic curvature to be zero because we are taking the fastest path given our constraints.

So, mathematically, how do we deal with this? Well, consider a surface given by the surface unit
normal n̂. Note that this n̂ need not be in the same direction as the normal vector N̂ defined
above because n̂ is completely determined by the surface itself, rather than the path we are
parametrizing. We still have the tangent vector T̂ as above, because this still goes along the path.
So, we can construct the right-handed system (T̂, n̂, T̂× n̂) as our Frenet-Serret-like coordinates,
with D̂ ≡ T̂× n̂ the binormal vector. There does not appear to be any actual standard basis set,
as I have seen the order (T̂, n̂× T̂, n̂) as well. This formulation is then called the Darboux frame
instead of a Frenet-Serret frame. Let’s use the arclength parameterization. Our vectors are all
unit vectors so we know that the arclength derivative of a unit vector will be zero along that same
unit vector. We can then write

dT̂

ds
= aTnn̂ + aTDD̂ (1.11.35)

dn̂

ds
= anT T̂ + anDD̂ (1.11.36)

dD̂

ds
= aDT T̂ + aDnn̂ (1.11.37)

Now, there are relationships between these coefficients given by

dD̂

ds
=

d(T̂× n̂)

ds
=

dT̂

ds
× n̂ + T̂× dn̂

ds
(1.11.38)

=
(
aTnn̂ + aTDD̂

)
× n̂ + T̂×

(
anT T̂ + anDD̂

)
(1.11.39)

= aTDD̂× n̂ + T̂× D̂anD (1.11.40)

= −aTDT̂− anDn̂
(1.11.37)

= aDT T̂ + aDnn̂ (1.11.41)

The last equality comes from our definition (1.11.37) above. Then we see that the actual equations
are

dT̂

ds
= 0T̂ + aTnn̂ + aTDD̂ (1.11.42)

dn̂

ds
= anT T̂ + 0n̂ + anDD̂ (1.11.43)

dD̂

ds
= −aTDT̂− anDn̂ + 0D̂ (1.11.44)

We can also use

d(T̂ · n̂)

ds
= 0 =

dT̂

ds
· n̂ +

dn̂

ds
· T̂ = aTn + anT (1.11.45)

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



Mathematical Beginnings 169

and so finally

dT̂

ds
= 0T̂ + aTnn̂ + aTDD̂ (1.11.46)

dn̂

ds
= −aTnT̂ + 0n̂ + anDD̂ (1.11.47)

dD̂

ds
= −aTDT̂− anDn̂ + 0D̂ (1.11.48)

Now, the curvature component in the direction of the surface normal is usually called normal
curvature, κn = aTn while the curvature not along the surface normal is called geodesic curvature
aTD = κg. Geodesic curvature is a measure of how close the curve is to a geometric geodesic (the
shortest path given a constraint through space). The closer to zero it is, the closer the path is
to a geodesic (with a geodesic having zero geodesic curvature). That is, we want any change in
the tangent vector as we move along the surface to be due to surface changes only. These are
sometimes called the intrinsic curvature κn and the extrinsic curvature κg because the intrinsic
curvature is due to the surface’s intrinsic properties. One could also call normal curvature the
natural curvature (natural given the constraint), and it may serve as a useful mnemonic. The
final coefficient is called the geodesic torsion or relative torsion, often denoted as τr or τg. As you
might expect, there are relationships between the normal and geodesic curvature and the Frenet-
Serret curvature, and a relationship between the geodesic torsion and the Frenet-Serret torsion.
The easiest way to determine this relationship is to consider our Darboux coordinates (T̂, n̂, D̂)
and the Frenet-Serret coordinates (T̂, N̂, B̂). We have T̂ in common, and both are orthogonal
right-handed coordinates so n̂ and D̂ can be rotated around T̂ at any particular position by an
angle α to get N̂ and B̂. That is,

n̂ = cosαN̂ + sinαB̂ (1.11.49)

D̂ = − sinαN̂ + cosαB̂ (1.11.50)

We can then take the arclength derivative via

dn̂

ds
= − sinα

dα

ds
N̂ + cosα

dN̂

ds
+ cosα

dα

ds
B̂ + sinα

dB̂

ds
(1.11.51)

dD̂

ds
= − cosα

dα

ds
N̂− sinα

dN̂

ds
− sinα

dα

ds
B̂ + cosα

dB̂

ds
(1.11.52)

and using the definitions for the Frenet-Serret formula yields

dn̂

ds
= − sinα

dα

ds
N̂ + cosα

[
−κT̂ + τB̂

]
+ cosα

dα

ds
B̂ + sinα

[
−τN̂

]
(1.11.53)

dD̂

ds
= − cosα

dα

ds
N̂− sinα

[
−κT̂ + τB̂

]
− sinα

dα

ds
B̂ + cosα

[
−τN̂

]
(1.11.54)

which is more simply written as

dn̂

ds
= −κ cosαT̂− sinα

[
τ +

dα

ds

]
N̂ + cosα

[
τ +

dα

ds

]
B̂ (1.11.55)

dD̂

ds
= κ sinαT̂− cosα

[
τ +

dα

ds

]
N̂− sinα

[
τ +

dα

ds

]
B̂ (1.11.56)
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and using both (1.11.49) and (1.11.50) we then find

dn̂

ds
= −κ cosαT̂−

(
τ +

dα

ds

)
D̂ (1.11.57)

dD̂

ds
= κ sinαT̂−

(
τ +

dα

ds

)
n̂ (1.11.58)

This allows us to identify

κn ≡ aTn = κ cosα (1.11.59)
κg ≡ aTD = κ sinα (1.11.60)

−τg ≡ anD = −τ − dα

ds
(1.11.61)

which completes the Darboux description. We could have chosen a different sign convention, if we
had desired. That is, the signs of κn and κg could be reversed and we would have an equivalent
description with a different definition of what κn and κg are.102

To summarize, we now use the right-handed coordinate system (T̂, n̂, D̂) with D̂ = T̂ × n̂ given
by

dT̂

ds
= κnn̂ + κgD̂ (1.11.62)

dn̂

ds
= −κnT̂− τgD̂ (1.11.63)

dD̂

ds
= −κgT̂ + τgn̂ (1.11.64)

with

κn = κ cosα = −dn̂

ds
· T̂ =

dT̂

ds
· n̂ (1.11.65)

κg = κ sinα =
dT̂

ds
· D̂ = −dD̂

ds
· T̂ (1.11.66)

κ =
√
κ2
g + κ2

n (1.11.67)

τg = τ +
dα

ds
= −dn̂

ds
· D̂ =

dD̂

ds
· n̂ (1.11.68)

where α is the angle between n̂ and N̂ (or D̂ and B̂).

1.11.3 Magnetic Field Line Trajectories

Then entire machinery completely translates when we make the identification t → `, where ` is
the length along a field line label defined by

B
dx

d`
= B (1.11.69)

102Check the convention of whatever source you are using. I have used the usual mathematical convention here,
but as we will see in the magnetic field case, other conventions for the signs of κg, κn, and τg are sometimes applied.
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where B (B = |B|) represents the magnetic field line and not the binormal vector. We note that
we can rewrite this as

B · ∇x = Bb̂ · ∇x = B (1.11.70)

b̂ · ∇x = b̂ (1.11.71)

by our definition of `. It is then unfortunate that the binormal vector is usually also represented
by a capital B̂ (Often the hat is left off, so that it is indistinguishable from our magnetic field B.
However, even if lower case letters are used we come into conflict with notation. Thus I will refer
to the binormal direction with a new variable.). We will instead define our binormal as τ̂ .

Thus, we associate (s, T̂, N̂, B̂) with (`, b̂, κ̂, β̂) to write

db̂

d`
= b̂ · ∇b̂ = κκ̂ (1.11.72)

dκ̂

d`
= b̂ · ∇κ̂ = −κb̂ + τ β̂ (1.11.73)

dβ̂

d`
= b̂ · ∇β̂ = −τ κ̂ (1.11.74)

The choice of normal vector is informed by the magnetic curvature vector being defined as

κ = b̂ · ∇b̂ (1.11.75)

so that the normal vector κ̂ is given by

κ = κκ̂ (1.11.76)

with κ meaning the magnetic curvature and κ the magnitude of the magnetic curvature. We can
define another vector based on the torsion. We use that the scalar torsion is given by τ = [b̂·∇β̂]·κ̂.
Therefore we define a torsion vector via

τ = −τ κ̂ (1.11.77)

Note that it is not directly related to β̂, the binormal but to dβ̂
d`

= b̂ · ∇β̂.

One should be on guard against all sorts of notations used for magnetic field line Frenet-Serret
formula. The use of B for the binormal causes all sorts of headaches since B universally stands for
magnetic fields. My notation is simple, but hardly universal. Whatever you can say about Frenet-
Serret for particle trajectories can be said for my notation with the translation (s, T̂, N̂, B̂, κ, τ)→
(`, b̂, κ̂, β̂, κ, τ). In one way, our equations are even simpler. There is no reason to parameterize
with a time-like variable t for magnetic field lines.

To summarize, we have
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db̂

d`
= b̂ · ∇b̂ = κκ̂ (1.11.78)

dκ̂

d`
= b̂ · ∇κ̂ = −κb̂ + τ β̂ (1.11.79)

dβ̂

d`
= b̂ · ∇τ̂ = −τ κ̂ (1.11.80)

κ =

∣∣∣∣∣db̂

d`

∣∣∣∣∣ =
∣∣∣b̂ · ∇b̂

∣∣∣ (1.11.81)

τ =

∣∣∣∣∣dβ̂d`
∣∣∣∣∣ =

∣∣∣b̂ · ∇β̂∣∣∣ =
∣∣∣b̂ · ∇(b̂× κ̂

)∣∣∣ =
∣∣∣b̂× [b̂ · ∇κ̂]

∣∣∣ (1.11.82)

κ = κκ̂ (1.11.83)

τ = −τ κ̂ = b̂× [b̂ · ∇κ̂] = b̂× τ β̂ = τ b̂× β̂ (1.11.84)

with unit tangent vector b̂, unit normal vector κ̂, unit binormal vector β̂, magnetic curvature
vector κ = κκ̂, torsion vector τ = −τ κ̂, curvature κ, and torsion τ . Our magnetic field arclength
(usually just called length along the field) ` has d

d`
↔ b̂ · ∇.

1.11.4 Magnetic Darboux Frames

Magnetic Darboux frame notation suffers from the same problems as Frenet-Serret notation and is
not completely standardized. In magnetic confinement, the surface that is of interest is a magnetic
flux surface. The normal is usually given by ∇ψ. We define the unit normal as n̂ ≡ ψ̂ = ∇ψ/| ∇ψ|,
and form the right-handed coordinate system (n̂, b̂, η̂) where η̂ = n̂ × b̂ and b̂ is the magnetic
field tangent vector.

In an ideal world, the magnetic standard would follow the Darboux standard, but, alas, we do
not live in such a world. In Section 1.11.2 our order (T̂, n̂, D̂) would correspond to (b̂, n̂, b̂× n̂),
which is different than the typical order used in magnetic coordinates (n̂, b̂, n̂× b̂). In particular,
the binormal vector direction is opposite that of our mathematical Darboux frame from before.
Thus when doing any identifications we must use η̂ = −D̂. The one other difference is that what
is usually called the geodesic torsion τg is now called the normal torsion and has τn = −τg. This
is simply because we find the normal torsion via b̂ · ∇η · n̂, or dotting n̂ into the derivative of the
binormal vector η̂ = n̂×b. We’d prefer it to be this rather than having another minus sign, and so
it is simply defined this way. This is simply the way Darboux frames and Frenet-Serret trajectories
work; there are arbitrary sign conventions and you should try to use what is most common.

This means our equations become

dn̂

d`
= b̂ · ∇n̂ = −κnb̂− τnη̂ (1.11.85)

db̂

d`
= b̂ · ∇b̂ = κnn̂− κgη̂ (1.11.86)

dη̂

d`
= b̂ · ∇η̂ = τnn̂ + κgb̂ (1.11.87)
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with the same angle relations, though this time α is the angle between n̂ and κ̂ (or −η̂ and β̂)

κn = −κ cosα = κ · n̂ = b̂ · ∇b̂ · n̂ (1.11.88)

κg = −κ sinα = −κ · η̂ = b̂ · ∇b̂ · (b̂× n̂) (1.11.89)

κ =
√
κ2
g + κ2

n (1.11.90)

τn = τ +
dα

ds
= −b̂ · ∇n̂ · η̂ = b̂ · ∇η̂ · n̂ (1.11.91)

Remember that with this notation the geodesic curvature is the curvature along the magnetic
surface while the normal curvature is the curvature perpendicular to magnetic surface. It can also
have our geometric geodesic interpretation from the mathematical convention.

You might worry that τn is difficult to calculate via the angle definition as we need α all over the
surface, but remember we can use that τn is given by

τn = b̂ · ∇η̂ · n̂ = ∇(
�
��b̂ · η̂
2

) · n̂ + (∇× b̂) · (η̂ × n̂) + (∇× η̂) · (b̂× n̂)

= (∇× b̂) · (η̂ × n̂) + (∇× η̂) · (b̂× n̂)

(1.11.92)

If we used the right-handed coordinate system (∇ψ,B,η) (note it is orthogonal but not orthonor-
mal) for B the magnetic field with a defined quantity η = ∇ψ ×B/| ∇ψ|2 so that η = η̂ B

|∇ψ| we
can then write

b̂ · ∇η̂ · n̂ =
B · η · ∇ψ
B| ∇ψ||η|

+
B · ∇( 1

|η|)��
��η · ∇ψ

B| ∇ψ|
(1.11.93)

=
B · ∇η · ∇ψ

B2
(1.11.94)

which then implies

B2τn = (∇×B) · (η × ∇ψ) + (∇× η) · (B× ∇ψ)

= µ0J · (| ∇ψ|
B

| ∇ψ|
B

B
)− (∇× η) · | ∇ψ|2η

(1.11.95)

or

τn =
µ0B · J
B2

− 1

|η|2
η · (∇× η) (1.11.96)

The last term is defined to be the magnetic shear and is equivalent to η̂ · (∇ × η̂) because
η̂ · ∇|η| = 0. The first term is proportional to the parallel current (that is, the current parallel to
the magnetic field).

1.11.5 Interpretation of Frenet-Serret Quantities

It is worth delving into the interpretations of quantities in the Frenet-Serret description. First,
T̂ ↔ b̂ is simply the tangent vector to the particle trajectory or magnetic field line, respectively.
The normal vector N̂ ↔ κ̂ is related to the curvature vector of the trajectory or field line. It
points toward the center of the circle that could be fitted to that point along the trajectory. Then
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174 Frenet-Serret Formulas

κ, the curvature, itself, tells us the radius of that fitted circle via κ = 1/R. Finally, the binormal
is simply the direction perpendicular to the tangent and normal directions. The torsion measures
the rotation of the binormal vector, and so it is usually described as saying how “spring-like” the
trajectory is. A curve with zero torsion is a planar curve (that is the curve is completely in a
plane). Thus the smaller the torsion, the more slowly the trajectory departs from a plane. If
the trajectory is helical-like then the trajectory can be pictured as being in a highly compressed
spring.103 For a large torsion with a near helical trajectory, the curve quickly departs from a plane
and so the trajectory can be pictured as a more stretched out spring.

A helical trajectory shows this most easily, for it is a curve with constant curvature and constant
torsion (both nonzero) and so is easy to picture. We can see some examples in Figures 1.10 and
1.11. Here t = 0 is at (x, y, z) = (0, 1, 0).

The existence of a Darboux frame has the same limitations as the Frenet-Serret restrictions. The
curve or trajectory cannot be degenerate. You will sometimes read that the Darboux frame is
undefined at umbilical points,104 but this is a different Darboux frame. This is a Darboux frame
for a surface rather than for a curve. The curve allows us to uniquely pick out directions, even at
umbilical points.

103The trajectory does not actually have to look like a spring, but for magnetic field lines we often care about
situations like this. We care about nearly helical trajectories and so this is a viable interpretation.

104A delightful name that simply means in a small region near the point the surface is equivalent to a sphere, and
so the curvature is the same along all directions.
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Figure 1.10: Helices with varying pitch.
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Figure 1.11: Helix with a given pitch against a curve that changes more rapidly in z.
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1.11.6 Multiple Dimension Generalizations

You might wonder how one generalizes to higher dimensional analogues. For Euclidean spaces of
n dimensions, we can still use the arclength parameterization. Thus, we have the unit tangent and
unit normal defined the exact same way

ê1 ≡ T̂ =
dx

ds
(1.11.97)

ê2 ≡ N̂ =
1

κ

dT̂

ds
=

1

κ

d2x

ds2
(1.11.98)

with κ =
∣∣∣dT̂ds ∣∣∣. We then form normals in a manner similar to Gram-Schmidt orthogonalization. We

simply take another derivative with s and subtract off any portions along our previous directions.
Thus the binormal, trinormal, quaternormal, quinquenormal, etc. can be formed.105 Let ê3 be the
binormal and ên+1 the n-normal. The n can then also stand for the number of derivatives. Then
the j-normal (j > 2) is formed by

ej =
djx

dsj
−

j−1∑
i=1

djx

dsj
· êiêi (1.11.99)

êj =
ej
|ej|

(1.11.100)

Note how this may produce a different formula in three dimensions based on the definition of the
cross product, but only by changing the sign on the torsion and the direction of the binormal. Now
we know that dêj

ds
can have no component along êj, but the other coefficients have to be calculated

explicitly
dê1

ds
= κê2 (1.11.101)

dê2

ds
= a21ê1 +

n∑
i=3

a2iêi (1.11.102)

dêj
ds

=

j−1∑
i=1

ajiêi +
n∑

i=j+1

ajiêi (1.11.103)

dên
ds

=
n∑
i=2

aniêi (1.11.104)

We can also explicitly calculate dêj
ds

using

dej
ds

=
d|ej|
ds

êj + |ej|
dêj
ds

(1.11.105)

dej
ds

=
ej
|ej|
· dej

ds
êj + |ej|

dêj
ds

(1.11.106)

dej
ds

= êj ·
dej
ds

êj + |ej|
dêj
ds

(1.11.107)

dej
ds

= |ej|
dêj
ds

(1.11.108)

(1.11.109)
105As you can see, these use Latin number terms before normal.
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178 Frenet-Serret Formulas

where the last line comes from using dêj
ds
· êj = 0 via

êj ·
dej
ds

=

=0︷ ︸︸ ︷
d(êj · ej)

ds
−ej ·

dêj
ds

= −|ej|

=0︷ ︸︸ ︷
êj ·

dêj
ds

= 0 (1.11.110)

We then have

dej
ds

=
d

ds

djx

dsj
−

j−1∑
i=1

d

ds

[
djx

dsj
· êiêi

]
(1.11.111)

=
dj+1x

dsj+1
−

j−1∑
i=1

[
dj+1x

dsj+1
· êiêi +

djx

dsj
· dêi

ds
êi +

djx

dsj
· êi

dêi
ds

]
(1.11.112)

= ej+1 +
dj+1x

dsj+1
· ejej −

j−1∑
i=1

[
djx

dsj
· dêi

ds
êi +

djx

dsj
· êi

dêi
ds

]
(1.11.113)

The last line comes from the definition of ej+1 but seeing that we are missing one term i = j in
the summation. Now take ·êk to see what the kth component would be

dej
ds
· êk = |ej+1|δj+1,k +

dj+1x

dsj+1
· ejδj,k +

j−1∑
i=1

[
δi,k

djx

dsj
· dêi

ds
+

djx

dsj
· êi

dêi
ds
· êk
]

(1.11.114)

which implies for k > j the only contribution is from k = j + 1 and so

dej
ds
· êj+1 = |ej+1| (1.11.115)

which means that

dêj
ds
· êj+1 =

|ej+1|
|ej|

(1.11.116)

Remember that the contribution for k = j must be zero, because we already know that êj · ∂ej∂s = 0

and so dj+1x
dsj+1 · ej = 0 must be true.

For k < j we can use the identity

dêj
ds
· êk = −dêk

ds
· êj (1.11.117)

via êj · êk = 0 for j 6= k.

The only restrictions will then be that 1 ≤ k ≤ n for these. This implies that aij = 0 unless
i − j = ±1 in which case it is given by aij = (j − i)χmin(i,j). We can make a simplification by
defining

χj =
dêj
ds
· êj+1 (1.11.118)
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and find

dê1

ds
= χ1ê2

dê2

ds
= −χ1ê1 + χ2ê3

... =
...

dêj
ds

= −χj−1êj−1 + χj êj+1

... =
...

dên
ds

= −χn−1ên−1

(1.11.119)

which in a mnemonic matrix form would read

d

ds



ê1

ê2
...
êj
...

ên−1

ên


=



0 χ1 0 . . . 0 0 . . .
−χ1 0 χ2 . . . 0 0 . . .
... . . . . . . . . . 0 0 . . .
0 0 −χj−1 0 χj 0 . . .
... . . . . . .

. . . . . . . . . . . .
0 . . . . . . . . . −χn−1 . . . χn−1

0 . . . . . . . . . . . . −χn−1 0





ê1

ê2
...
êj
...

ên−1

ên


(1.11.120)

One final consideration is for relativistic calculations. The first problem we have is that the
“arclength” in relativity can be negative. Thus, we must restrict ourselves to either purely timelike
or purely spacelike curves, so that we can parameterize the surface easily by the “arclength”. We
will call the new arclength τ because the logical choice will turn out to be the proper time along the
curve. We can use the spacetime difference s = X·X for X the position four-vector. Then we simply
apply the exact same methods as above. For purely timelike curves106 (the curves we’d expect of
objects in our universe) we even now have the advantage of not worrying about degenerate curves
because we are including the time coordinate in our description rather than using it directly as a
parameterization. There are other subtleties when calculating, though. Derivatives must always be
done with the proper total derivative (that is, covariant derivative) and never just take derivatives
of the components, of course. Now, given a position vector, the s < 0 for a timelike curve with
our metric and a spacelike curve has s > 0. The extra − sign on the time direction (ê0) in dot
products introduces an extra minus sign in the formulation

d

dτ


ê0

ê1

ê2

ê3

 =


0 χ0 0 0
χ0 0 χ1 0
0 −χ1 0 χ2

0 0 −χ2 0




ê0

ê1

ê2

ê3

 (1.11.121)

where the usual curvature χ1 = κ and torsion χ2 = τ (this τ is torsion, not proper time; all other
τ ’s from now on are proper times) in three dimensions reappear.

106Technically, we can handle null curves, as well. Thus as long as a curve is purely non-spacelike or purely
non-timelike we can handle it.
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180 Frenet-Serret Formulas

The reason for the change in sign on χ0 is that we have to be careful of doing dot products correctly
now. Suppose we denote our standard tangent basis as eµ. The tangent-reciprocal basis will then
be eµ (remember this has e0 = x̂0 and e0 = −x̂0) with e0 · e0 = x̂0 ·−x̂0 = 1 with our special dot
product and so x̂0 · x̂0 = e0 · e0 = −1. That is, remember that the standard tangent basis and
reciprocal-tangent basis have ei = ei (the Latin i means only 1, 2, 3) and only e0 6= e0. To prevent
confusion I will use eµ below for the new basis set used by Frenet-Serret formulas and êµ for the
new unit vectors (I will make an exception for ê0 which isn’t strictly a unit vector for the sake of
uniform notation, the same as x̂0). These are not the standard tangent basis vectors eµ so don’t
confuse eµ with êµ.

e0 =
dX
dτ

(1.11.122)

e1 =
d2X
dτ 2
−
�
�
�
��d2X

dτ 2
· e0e0 (1.11.123)

e2 =
d3X
dτ 3
− d3X

dτ 3
· [e0e0 + e1e1] (1.11.124)

e3 =
d4X
dτ 4
− d4X

dτ 4
· [e0e0 + e1e1 + e2e2] (1.11.125)

(1.11.126)

Now we have to find out if e0 is a unit vector (or something similar) to justify the cancellation in
e1. We will use the proper time τ as a parameterization, where σ is simply any time coordinate
(one could choose the proper time for ease of calculation) and 0 to t parameterizes the curves
endpoints

cτ =

ˆ t

0

dσ

√
−dX

dσ
· dX

dσ
≡
ˆ t

0

dσ

∣∣∣∣dXdσ

∣∣∣∣ (1.11.127)

(generically I will set c = 1) where we must remember that the dot product is now the relativistic
one and so we need the extra minus sign when considering timelike curves.107 Thus, we have for
proper time τ that

dX
dτ
· dX

dτ
=

dX
dt
· dX

dt

∣∣∣∣ dtdτ

∣∣∣∣2 =
dX
dt
· dX

dt∣∣dX
dt

∣∣2 (1.11.128)

Now because this is a timelike curve then dX
dt
· dX

dt
< 0, as we will show later. Then it is not a unit

vector as the vector dotted into itself yields a −1. To see this explicitly, let’s say we are measuring
X in the proper time frame where the particle is simply stationary, then X = τ x̂0 (setting c = 1
for convenience) and we have dX/dτ · dX/dτ = x̂0 · x̂0 = −1 hence the extra minus sign. It turns
out that dX

dτ
· dX

dτ
is invariant for τ the proper time, and negative with our sign convention so that

timelike really does guarantee an overall minus sign (in fact it guarantees a minus sign for any
generic time coordinate and for spacelike curves, as well). We must be conscious of this sign, as we
will see, to account for the different signs for the Frenet-Serret formulas. Note that we just found
ê0 · ê0 = −1 in general where I put a hat on e0 even though it is not a unit vector because it is
close enough for us, and it simplifies our notation.

107If we were considering spacelike curves we would still need a positive sign. If we used the other metric signature
(+,−,−,−), we would have a positive sign.
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Let’s prove what I just asserted. We have X = ctx̂0 + x1x̂1 + x2x̂2 + x3x̂3 ≡ ctx̂0 + x and defining
Vτ = dx/dτ so

V ≡ dX
dτ

= c
dt

dτ
x̂0 +

dx1

dτ
x̂1 +

dx2

dτ
x̂2 +

dx3

dτ
x̂3

= c
dt

dτ
x̂0 + Vτ

(1.11.129)

V · V =

(
c

dt

dτ
x̂0 + Vτ

)
·
(
c

dt

dτ
x̂0 + Vτ

)
= −c2

(
dt

dτ

)2

+ V 2
τ

(1.11.130)

Now we need to remember that in General Relativity it is convention to assign the proper time
the relation dt

dτ
= γ with γ = (1− β2)

−1/2 and β = V/c where V is the velocity associated with
the time t and V 2 = V ·V.108 We then use Vτ = dt

dτ
V = γV where V ≡ dx

dt
so that V 2

τ = γ2V 2.
We have then found

V · V = −γ2c2 + γ2V 2 = c2γ2
(
β2 − 1

)
= c2β

2 − 1

1− β2
= −c2 (1.11.131)

so that dX/dt ·dX/dt = −c2|dτ/dt|2 < 0 always, as advertised. I will switch back to c = 1 units so
that we get −1 instead, for convenience. Note that this offers us a new way of writing our integral
for the proper time (with στ the proper time and σt some other frame’s time)

cτ =

ˆ t

0

dστ c =

ˆ t

0

dσtc

γ(σt)
(1.11.132)

Being a constant is also good enough for the cancellation above because we still have

∂(ê0 · ê0)

∂τ
=
∂(−1)

∂τ
= 0

ê0 ·
∂2X
∂τ 2

= ê0 ·
∂ê0

∂τ
=

1

2

∂(ê0 · ê0)

∂τ
= 0

We can now multiply by ·e1 to find

dê0

dτ
· e1 =

d2X
dτ 2
· e1 = e1 · e1 (1.11.133)

dê0

dτ
· ê1 =

e1 · e1

|e1|
= |e1| ≡ χ0 (1.11.134)

By this we define ê1 = χ0e1 and so ê1 · ê1 = 1 explicitly by our definition. We don’t have to worry
about an extra minus sign because our norm |e1| simply makes it a unit normal. Now we might
ask ourselves what is the derivative of this previous quantity. So

dê0 · ê1

dτ
=

dê0

dτ
· ê1 +

dê1

dτ
· ê0 (1.11.135)

108This could be considered a definition of the parameterization τ . Note that if we are in a special relativistic
situation then γ(t) = γ with no time dependence so we get the time dilation given by t = τγ as we should hope.
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The above is by construction equal to zero since ê0 · ê1 = 0 by construction. This means that we
must have

dê1

dτ
· ê0 = −dê0

dτ
· ê1 = −χ0 (1.11.136)

But remember that if we have

dê1

dτ
= a10ê0 +

3∑
i=1

a1iêi (1.11.137)

then we have
dê1

dτ
· ê0 = −a10 = −χ0 (1.11.138)

which means that a10 = χ0, accounting for the extra sign change due to ê0 · ê0 = −1. For all other
vectors we have no ê0 contribution and so we do not need to worry about sign changes due to our
metric because we actually enforce unit normals via dividing by the norms (only with the first
derivative of s for ê0 could we not enforce this unit normality because we needed the extra minus
sign to ensure a positive real arclength when taking the derivative). So then everything else follows
our multiple Euclidean dimension cases, and we find (1.11.121) is indeed the correct formula.

1.12 JWKB Approximation
How to organize the chaos that lies beyond the smallest numbers is therefore a problem
that confronts the entire human race.

— W. W. Sawyer[29, p. 8]

This is a common approximation in physics, normally called the WKB approximation, neglecting
the important J because physicists didn’t look at what the mathematicians had already done.
JWKB stands for Jeffreys-Wentzel-Kramers-Brillouin and is sometimes written WKBJ because
WKB is the most known.109 The method is rarely called a Liouville-Green method or LG method.

The method is a special case of multiple scale analysis, a general method of solving equations using
a specially constructed perturbation series that allows one to easily remove unphysical solutions
or terms.

The idea is simple. We have an equation for a function f(x) of the form

ε
∂nf

∂xn
+ F

(
x,
∂f

∂x
, . . . ,

∂n−1f

∂xn−1

)
= 0 (1.12.1)

where ε is a small parameter and F is some nth order tensor function of x and lower order derivatives
of f (also 0 is the nth order zero tensor). We then assume a solution with a perturbation term δ
such that the solution is of the form

f(x) ≈ exp

[
1

δ

∞∑
i=0

δiSi(x)

]
(1.12.2)

109I will call it JWKB to give credit where it is due to Jeffreys, who actually came up with a general method for
linear second-order differential equations. WKB independently discovered the approximation for the Schrödinger
equation and so also deserve credit.
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as δ → 0. We determine what δ must be in terms of ε by solving the resulting equations in the
asymptotic limit and then can refine our answer by solving higher order equations in δ or ε.

Thus, we put the solution into our equation and find

ε
∂n

∂xn

(
exp

[
1

δ

∞∑
i=0

δiSi

])
+ F

(
x,
∂Si
∂x

, . . . ,
∂nSi
∂xn

)
= 0 (1.12.3)

where we simply have to write out the ∂jf
∂xj

in terms of ∂kSi
∂xk

. The notation is ugly and so I simply
rewrote the function as a function of the Si,110 so let’s just look at a simple linear second order
differential equation to get the idea. For example, we could write it as

ε
∂2f

∂x
+ a1(x)

∂f

∂x
+
↔
a 0 =

↔
0 (1.12.4)

We then have

∂

∂x
exp

[
1

δ

∞∑
i=0

δiSi

]
=

∑∞
i=0 δ

i ∂Si
∂x

δ
exp

[
1

δ

∞∑
i=0

δiSi

]
(1.12.5)

∂2

∂x2
exp

[
1

δ

∞∑
i=0

δiSi

]
=
δ
∑∞

i=0 δ
i ∂2Si
∂x2 +

(∑∞
i=0 δ

i ∂Si
∂x

) (∑∞
i=0 δ

i ∂Si
∂x

)
δ2

exp

[
1

δ

∞∑
i=0

δiSi

]
(1.12.6)

and so if we divide out the exp
[

1
δ

∑∞
i=0 δ

iSi
]
we find

ε
δ
∑∞

i=0 δ
i ∂2Si
∂x2 +

(∑∞
i=0 δ

i ∂Si
∂x

) (∑∞
i=0 δ

i ∂Si
∂x

)
δ2

+ a1

∑∞
i=0 δ

i ∂Si
∂x

δ
+
↔
a 0 =

↔
0 (1.12.7)

If we now consider only terms of O(1/δ) and O(1/δ2) only, we find

ε

δ

∂2S0

∂x2
+

ε

δ2

∂S0

∂x

∂S0

∂x
+
ε

δ

∂S0

∂x

∂S1

∂x
+
ε

δ

∂S1

∂x

∂S0

∂x
+

a1

δ

∂S0

∂x
+
↔
a 0 =

↔
0 (1.12.8)

As δ → 0 a dominant balance argument implies that we must have either

ε

δ2

∂S0

∂x

∂S0

∂x
+
↔
a 0 ∼

↔
0 (1.12.9)

with δ ∼
√
ε, or

a1

δ

∂S0

∂x
+
↔
a 0 ∼ 0 (1.12.10)

which would imply δ ∼ 1.

In the first case with δ ∼
√
ε we would have

ε1/2∂
2S0

∂x2
+
∂S0

∂x

∂S0

∂x
+ ε1/2∂S0

∂x

∂S1

∂x
+ ε1/2∂S1

∂x

∂S0

∂x
+ ε−1/2a1

∂S0

∂x
+
↔
a 0 =

↔
0 (1.12.11)

110Faà di Bruno’s formula would give us the correct answer, but writing it out is a pain. Usually we are not dealing
with a large n so we can just do the calculation manually.
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which would then mean the a1 term is dominant, a contradiction, and so it must not be correct.

In the case of δ ∼ 1, we simply have ε terms which are small, but note we do not have a useful
power series for Si, as we have to consider the infinite series. In this case the JWKB approximation
is not very useful, and so we can see there are limitations to the approximation’s usefulness. We
could proceed by defining S =

∑
i Si and then we simply have the equation

ε

(
∂2S

∂x2
+
∂S

∂x

∂S

∂x

)
+ a1

∂S

∂x
+
↔
a 0 =

↔
0 (1.12.12)

which actually looks more complicated than the original equation. There is a chance that this may
be simpler to solve, however.

In any case, let’s look more at our situation with δ ∼
√
ε where we try a1 = 0 and then we would

have
∂S0

∂x

∂S0

∂x
= −↔a 0 (1.12.13)

and the next order, O(ε1/2) then yields

∂2S0

∂x2
+
∂S0

∂x

∂S1

∂x
+
∂S1

∂x

∂S0

∂x
=
↔
0 (1.12.14)

We then simply solve the equations. If we were instead dealing with 1 : of the original equation
(this is more common) we would find

∂

∂x
· ∂f
∂x

+

≡a0︷ ︸︸ ︷
1 :
↔
a 0 = 0 (1.12.15)

and so we get for our two equations that

∂S0

∂x
· ∂S0

∂x
= a0 (1.12.16)

∂

∂x
· ∂S0

∂x
+ 2

∂S0

∂x
· ∂S1

∂x
= 0 (1.12.17)

We can continue to more accurate approximations by going to O(δ2), the same as O(ε) and solving
the next set of equations. The JWKB approximation is simply this process. Whether you can solve
the resulting equations is a completely separate issue. You will notice that we changed a linear
equation into sets of nonlinear equations which would usually be considered a step backwards.
Therefore, you can already see the limitations from this simple demonstration. We see that the
eikonal equation showed up in our case above with a1 = 0, and so it is worth seeing how we could
solve such an equation.

1.12.1 Eikonal Equation

The eikonal equation comes (ultimately, through German Eikonal) from the Greek word for image.
It is a non-linear partial differential equation that shows up in wave propagation. The traditional
eikonal equation is written in the form∣∣∣∣∂u∂x

∣∣∣∣ ≡ |∇u(x)| = 1

f(x)
(1.12.18)
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for f(x) a given function with u = 0 on the boundary of the region we are looking at.

Sometimes you will see people call the slight generalization of (1.12.18) the eikonal equation as
∂S

∂t
+
∂S

∂x
· ∂S
∂x

= g(x) (1.12.19)

where S is like u and g is like f in (1.12.18) (though we would require S(x, t) = S(x) and
g(x) = [1/f(x)]2 to have them be the same) and we have S defined on a boundary. This is because
the Hamilton-Jacobi equation and the eikonal equation can coincide with this interpretation.

Let’s consider the case S is not a function of t first. One way of approaching this is to define
p = ∂S

∂x
. We can then write

p · p = g(x) (1.12.20)

as our equation. We can then introduce a new parameter s, such that p = p(s) and x = x(s).
Now we can form a Hamiltonian for our S. This Hamiltonian H(x(s),p(s)) = p · p − g(x) = 0
must then satisfy

∂H

∂x
= −dp

ds
(1.12.21)

∂H

∂p
=

dx

ds
(1.12.22)

We define s = 0 so that x(0) and p(0) are our initial conditions, that is the data on our boundary.
We then can solve these as an ODE for s. We clearly have

dH

ds
=
∂H

∂x
· dx

ds
+
∂H

∂p
· dp

ds
= −dp

ds
· dx

ds
+

dx

ds
· dp

ds
= 0 (1.12.23)

so that H = 0 is carried along these trajectories of s. Now if we want to find S we use
dS

ds
=
∂S

∂x
· dx

ds
= p · ∂H

∂p
(1.12.24)

If we then integrate this along s′ to s we seeˆ s

0

ds′
dS

ds′
= S(s)− S(0) =

ˆ s

0

ds′ p · dx

ds′
=

ˆ x

x0

dx′ · p =

ˆ x

x0

dx′ · ∂S
∂x′

(1.12.25)

By the same reasoning on p we can show that our p is indeed ∂S
∂x

and so consistent byˆ s

0

ds′
dp

ds′
= p(s)− p(0) = −

ˆ s

0

ds′
∂H

∂x
(1.12.26)

Clearly p(0) =
[
∂S
∂x

]
s=0

by construction. If we take the curl of this equation we see that the integral
must be zero because

∂2H

∂xj∂xk
=

∂2H

∂xk∂xj
(1.12.27)

or equivalently that the curl of the gradient of H is clearly zero and so ∂
∂x
× p(s) = 0 and so p(s)

is indeed a gradient generally. We have then solved our problem of finding S(x) given g(x) via

S(x(s))− S(x0) =

ˆ x

x0

dx′ · p =

ˆ x

x0

dx′ · k̂
√
g(x) (1.12.28)

where p = k̂
√
g(x). We have to determine the direction of p as k̂ with either a good guess or

using symmetries of the problem to determine the directions ∂S/∂x could point. Otherwise, one
must write k̂ as a generic unit vector and hope you can integrate it.
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186 JWKB Approximation

1.12.1.1 Time Dependent Eikonal Equation

Now if we have S a function of t so that S = S(x′(t′), t′) where x′(0) is the initial x that is given.
We could consider t′ = s from before and we would have

dS

dt′
=
∂S

∂x′
· dx′

dt′
+
∂S

∂t′
(1.12.29)

If we use the identification ∂S
∂x′

= p′ again, and just plug in ∂S
∂t′

we can define H(x′(t′),p′(t′), t′) =
−∂S
∂t′

and try the same as before with

∂H

∂x′
= −dp′

dt′
(1.12.30)

∂H

∂p′
=

dx′

dt′
(1.12.31)

dH

dt′
=
∂H

∂t′
(1.12.32)

and so we have

dS

dt′
=
∂S

∂x′
· dx′

dt′
+
∂S

∂t′
= p′ · ∂H

∂p′
−H = p′ · ∂H

∂p′
−

=− ∂S
∂t′︷ ︸︸ ︷

[p′ · p′ − g(x′)] (1.12.33)

So with the identify H = p′ · p′ − g(x′) (now the g and p′ could be time dependent), we find

S(x′(t), t)− S(x′(0), 0) =

ˆ t

0

dt′ p′ · dx

dt′
−
ˆ t

0

dt′ H(x′,p′, t′) (1.12.34)

S(x′(t), t)− S(x′(0), 0) =

ˆ x′(t)

x′(0)

dx · ∂S
∂x
−
ˆ t

0

dt′
[
∂S

∂x′
· ∂S
∂x′
− g(x′)

]
(1.12.35)

with

p′(t)− p′(0) = −
ˆ t

0

dt′
∂H

∂x′
(1.12.36)

again for the exact same reasons as in the time-independent case, which means our H actually
does exist. The reason for using the primes, is that we want S(x, t), but our method assumes
that x is related to t because of the form of the partial differential equation. That is, we are just
moving parts of the original solution around as time progresses.

1.12.2 Schrödinger Equation

An example of solving an eikonal equation should be useful. If we assume we have

H =
~2

2m
p · p + U(x) (1.12.37)

The Hamilton-Jacobi equation is simply given by

∂S

∂x
= p (1.12.38)

−∂S
∂t

= H (1.12.39)
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where we must determine S. We can also translate H into S rather than ψ once we know the
relationship between S and ψ. If we write ψ = ψ0 exp

(
i
~S(x, t)

)
for S and we see that

∂ψ

∂t
=
i

~
∂S

∂t
ψ (1.12.40)

and so we find

− ~
iψ

∂ψ

∂t
=

1

2m
p · p + U(x) (1.12.41)

−~
i

∂ψ

∂t
=

1

2m
p · pψ + U(x)ψ (1.12.42)

where we simply have to confront that p should be interpreted via

p =
∂S

∂x
=

~
iψ

∂ψ

∂x
(1.12.43)

which means that we can recognize that

pψ =
~
i

∂ψ

∂x
(1.12.44)

and so if we regard pψ as p operating on ψ we can consider p = ~
i
∂
∂x

which allows

p · pψ =
~2

i2
∂

∂x
· ∂ψ
∂x

= −~2 ∂

∂x
· ∂ψ
∂x

= −~2∇2ψ (1.12.45)

If you are uneasy about this identification, you should be. It is not rigorous. However, if we did
the logical thing we would find

p · p =
~2

i2
1

ψ2

∂ψ

∂x
(1.12.46)

which then yields

−~
i

∂ψ

∂t
=

1

2m

~2

i2ψ2

∂ψ

∂x
· ∂ψ
∂x

ψ + U(x)ψ (1.12.47)

i~
∂ψ

∂t
= − ~2

2m

1

ψ

∂ψ

∂x
· ∂ψ
∂x

+ Uψ (1.12.48)

This appears to be something a little different from the Schrödinger equation.

One other thing that should be bothering you at this point is that ψ is complex, and so is S. Is what
we are doing sensible? Remember that x remains real. This means, that we just can’t assume the
squares of things are real, but our derivatives with respect to x are fine, with no worries about the
Cauchy-Riemann equations. However, you might further worry that with S complex that H, which
now may be complex could have problems. Especially, ∂H

∂p
, though we have ∂H/∂p∗ = 0 and so we

know that it is analytic. We can explicitly calculate this using p = pr + ipi =
∑3

j=1

(
prj + ipij

)
x̂j
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188 JWKB Approximation

with the Einstein summation convention enforced (here superscript i means imaginary and is not
an index; we use ∂prj

∂prk
=

∂pij
∂pik

= δjk with ∂pij
∂prk

=
∂prj
∂pik

= 0)

∂H

∂p∗
=
∂H

∂p∗j
=

1

2

(
∂

∂prj
+ i

∂

∂pij

)
1

2m

(
[prk]

2 − [pik]
2 + 2ipikp

r
k

)
=

1

4m

(
2prj + 2ipij + i

[
−2pij + 2iprj

])
=

1

4m

(
2prj + 2ipij − 2ipij − 2p4

j

)
= 0

(1.12.49)

and so we have ∂H
∂p∗

= 0 and H is an analytic function.

Second, the above may not look like the Schrödinger equation, but we need to remember that p
and x are considered independent functions in the Hamiltonian formulation.111 Thus, we must
have ∂p

∂x
=
↔
0 . This means that ∂

∂x
· p = 0, as well. Thus

∂

∂x
· p =

∂

∂x
·
[
~
iψ

∂ψ

∂x

]
= 0 (1.12.50)

∂

∂x
·
[
~
iψ

∂ψ

∂x

]
=

~
i

[
−1

ψ2

∂ψ

∂x
· ∂ψ
∂x

+
1

ψ

∂

∂x
· ∂ψ
∂x

]
(1.12.51)

1

ψ2

∂ψ

∂x
· ∂ψ
∂x

=
1

ψ

∂

∂x
· ∂ψ
∂x

1

ψ

∂ψ

∂x
· ∂ψ
∂x

=
∂

∂x
· ∂ψ
∂x

= ∇2ψ

(1.12.52)

Thus, we can replace 1
ψ
∂ψ
∂x
· ∂ψ
∂x

= ∇2ψ and we indeed get the Schrödinger equation

i~
∂ψ

∂t
= − ~2

2m

1

ψ

∂ψ

∂x
· ∂ψ
∂x

+ Uψ

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + Uψ

(1.12.53)

These preliminaries all just show that there is a strong connection between the classical Hamilton-
Jacobi treatment and the Schrödinger equation with just a little bit of insight. It is strictly speaking
tangential to the JWKB approximation, but it is good to see that there is a connection beyond
the approximation itself.

So if we start with the Schrödinger equation112 we can designate ε = ~2/(2m) and try out our
solution of ψ = ψ0 exp

(
1
δ

∑∞
j=0 δ

jSj

)
allowing S to be complex and having ψ0 give the correct

111This is a very non-trivial fact. We have S(x) and so you might expect ∂2S
∂x2 to be nonzero. This is not true,

because we consider p = ∂S
∂x to be an independent variable in the Hamilton-Jacobi equations, and in Hamiltonian

mechanics in general. It may seem weird at first, but if we consider p(t) and x(t) to actually be functions of t, then
p has no explicit x dependence anymore. This is simply a way of stating that in the space of all trajectories x and
p are independent and only when we choose a specific trajectory is there a relationship between p and x.

112I’ll leave the “fun” of the time-dependent equation for you. We’ll look at the time-independent case ψ ∝
exp(−iEt/~). So we replace i~∂ψ∂t with Eψ. Technically, I told you how to handle the time-dependent case above,
but in generic language.
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units for ψ. We have (note that we are not assuming ∂S
∂x

= p here so we cannot say ∂2S
∂x2 =

↔
0 )

∂ψ

∂x
=

∑
j=0 δ

j ∂Sj
∂x

δ
ψ (1.12.54)

∇2ψ =
∂

∂x
· ∂ψ
∂x

=

∑
j=0 δ

j+1∇2Sj +
(∑

j=0 δ
j ∂S
∂x

)
·
(∑

j=0 δ
j ∂S
∂x

)
δ2

ψ (1.12.55)

as before and so if we take O(δ−1) terms we find (let’s just define U − E = Û for simplicity)

ε

δ
∇2S0 +

ε

δ2

∂S0

∂x
· ∂S0

∂x
+

2ε

δ

∂S0

∂x
· ∂S1

∂x
− Û(x) = 0 (1.12.56)

This means we need to choose δ to balance Û(x) and ε
δ2
∂S0

∂x
· ∂S0

∂x
under dominant balance and

be dimensionally consistent. We know S0 has the same unit as δ, which means we need ε/δ =

~2/(2mδ) to have units of energy. If we give the unit of ε/δ the symbol d̂ then we can define
Û(x)/d̂ = u(x) as a dimensionless parameter corresponding to the potential energy minus the
total energy U − E. We divide our equation through by d̂ and we have ε

δ2d̂
∼ 1 and we choose

δ =

√
ε/d̂ =

√
~2/(2md̂) = ~/(

√
2md̂) = ~/(

√
2md̂). This is slightly different than the traditional

ordering as I include 2m and d̂ in our ordering parameter.

∂S0

∂x
· ∂S0

∂x
= u(x) (1.12.57)

∇2S0 + 2
∂S0

∂x
· ∂S1

∂x
= 0 (1.12.58)

for S0 and S1. The first is simply an eikonal equation, so we can use that we previously found the
solution as

S0(x) = S0(x0) +

ˆ x

x0

dx′ · ∂S0

∂x′
(1.12.59)

where x0 is an initial location (where the initial data is) and we then just calculate the line integral.
We note that in fact we can use ∂S0

∂x
=
√
uk̂ where k̂ is the unit vector pointing in the ∂S0

∂x
direction.

If u > 0 (U > E) then S0 = ±s(x) are both valid solutions for some s. If u < 0 (E > U) then
because ∂S

∂x
is complex we know that S0 = ±is(x) for some s will satisfy the eikonal relation

perfectly well, so there are two solutions. This can be viewed as simply changing the direction of
k̂ and so our two solutions are

S0(x) = S0(x0)±
ˆ x

x0

dx′ · k̂(x′)
√
u(x′) (1.12.60)

Then we can solve our second equation via (I’ll just assume u > 0 for simplicity, otherwise we can
define v = −u and use v > 0 with

√
u = i

√
v)

∂S0

∂x
= ±k̂

√
u (1.12.61)

∇2S0 = ±
√
u
∂

∂x
· k̂±mk̂ ·

∂u
∂x

2
√
u

(1.12.62)
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and so

∂S1

∂x
·±k̂
√
u = ∓

√
u(x)

∂

∂x
· k̂∓mk̂ ·

∂u
∂x

2
√
u

(1.12.63)

If ∂
∂x
· k̂ = 0 so that our unit vector has no divergence then the above equation simply states113

∂S1

∂x
·±k̂ =

∂u
∂x

4u
·±k̂ (1.12.64)

∂S1

∂x
=

1

4u

∂u

∂x
=

1

4

∂ lnu

∂x
(1.12.65)

S1 = lnu1/4 + C1 (1.12.66)

for some constant C1. We can make this a general result by using S1 = ln |u|1/4. Note the crucial
step is ∂

∂x
· k̂ = 0 for this derivation which is not generically true and depends on the properties of

∂S0

∂x
. In any case, assuming this to be the case and taking S0(0) = 0 would then give our solution

as

ψ ≈ ψ0+ exp

[(√
2md̂

~

ˆ x

x0

dx′ · k̂
√
u

)
− (ln |u|1/4 + C1)

]

+ ψ0− exp

[(
−
√

2md̂

~

ˆ x

x0

dx′ · k̂
√
u

)
+ (ln |u|1/4 + C1)

]

≈
C+ exp

[
1
~

´ x
x0

dx′ · k̂
√

2m(U − E)
]

+ C− exp
[
−1

~

´ x
x0

dx′ · k̂
√

2m(U − E)
]

(2m|U − E|)1/4

(1.12.67)

where C+ and C− have absorbed the necessary constants to give the (2m|U − E|)1/4 in the de-
nominator. That is C± = exp(C1)(2md̂)1/4ψ0. If we look to dimensional analysis, then we see the
denominator has units of the square root of momentum, kg1/2 m1/2 s−1/2, and so C± must have
units of square root of momentum per volume for ψ for a three-dimensional wavefunction. In any
case, so long as you give the correct units to C± or ψ0±, this is the correct approximation.

We can then note that if (U −E) < 0 (U > E so classically allowed) then we have oscillatory wave
solutions and if we have (U − E) > 0 (E < U so classically forbidden) we get exponential decay
and growth as we would expect. This is easily adapted to the usual one-dimensional form where
we do not need to worry about ∂

∂x
· k̂ = 0 since we have k̂ = x̂1 = x̂ and so it is always divergence

free.114 We also note that U − E = 0 and its neighborhood lead to our solution blowing up, and
so near classical turning points this solution method will fail.

The way to handle the U − E ≈ 0 points is to perform asymptotic matching. While this is often
considered part of the JWKB approximation, it is treated in Section 1.4.3.

1.13 Complex Contour Integration
The shortest path between two truths in the real domain passes through the complex
domain.

113You can run through the case where u < 0 and see that you get the exact same formula for v as the i’s cancel
out. That is, you just get S1 = ln v1/4 + C1.

114Many useful cases have k̂ divergence-free.
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— Jacques Hadamard

I feel as if complex contour integration is taught quite well online and in textbooks. Thus, I will
only go over the concepts quickly and without rigorously grounding the ideas mathematically.
Instead, I will lay the groundwork and instead of formally showing the limits make sense, I will
simply use words and intuition to explain why some things disappear and we can write out our
contour integrals in a nice, simple way.

We will want to make use of the Cauchy integral formula which is valid for any analytic function
f(z) of the complex variable z. Most books introduce this via constructing simple curves and
talking about the interior and exterior of the contour. However, as a joke points out, interior and
exterior are only a point of view.115 It is better to introduce the concept of a winding number,
and then we simply don’t have to worry about defining the interior as the “bounded” part and the
exterior as the “unbounded” part, though it is very convenient. That is, the Jordan curve theorem
does not need to be invoked (though we will use it). A winding number is very easy to explain
in words. Draw a closed curve in the plane γ parameterized by s with s0 < s < se where the
position given by se is the same as the position given by s0. Then place a point at a anywhere in
the plane. Then if you imagine standing on that point in the plane staring at s = s0, you consider
the angle of your line of sight (projected into the plane) to s0 to be 0.116 Then as you traverse
the curve (stare at s as it goes around the curve turning your head with your line of sight), your
line of sight with s will form an angle with the original line of sight. Consider counterclockwise
(for example, your head turning left if you are “inside” the curve, but just be consistent) to be
the positive direction. If you fully revolve around, you keep that angle (so you can have angles
greater than 2π in radians). Then the winding number of a closed curve γ at a point a is 1/2π
times the angle (in radians) your head rotated as you traversed all the way around the curve once,
or the number of full revolutions made by your head with turning left positive and turning right
negative. We denote the winding number for the closed curve γ and point a as I(γ, a).

If you think about this in the complex plane, you will realize that we can easily find it thanks
to properties of complex numbers. Imagine a is at the origin and we parameterize the curve by
some complex number z. We can write z = r exp(iθ) so that dz = exp(iθ) dr + ir exp(iθ) dθ. If
we divide by this by z for a logarithmic differential we get

dz

z
=

exp(iθ) dr

r exp(iθ)
+
ir exp(iθ) dθ

r exp(iθ)
(1.13.1)

dz

z
= d(ln z) = d(ln r) + i dθ (1.13.2)

As we have a closed curve, this means that d ln r must be zero because we end up back at exactly
where we came from. So any increase in r is balanced by a decrease in r to return to where we
were. Notice that θ is not necessarily constrained by this, though, because a complex number can
have θ + 2π equally represent it in exponential form. If a is not at the origin, we can remedy this
by using ζ = z − a instead of z and find the same formula (since da = 0). So long as a is not

115There was an engineer, a physicist, and a mathematician. They were given a length of fence and told to enclose
the greatest area. The engineer builds a square fence. The physicist reasons that a circle maximizes area for a
given a perimeter and builds a circular fence. The mathematician makes a tiny circle of fence around himself and
declares himself to be on the outside. (Hence, the rest of the earth is “enclosed” by his or her fence.)

116All I am saying is that when you stare at the point s0 you consider yourself to have not revolved at all initially.
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along the closed path we can define

I(γ, a) =
1

2πi

˛
γ

dz

z − a
(1.13.3)

as the winding number of a for γ (sometimes called the index of a with respect to γ).117

Then we write for the points aj (the aj are singularities) which the function g(z) are not defined
for as

ˆ
γ

dz g(z) = 2πi
∑
j

I(γ, aj) Res(g, aj) (1.13.4)

where the Res is the residue of f at aj. Note this is for all the singularities, even those “outside”
of γ, and so its proof does not require defining the inside and outside of a curve. The residue is
defined by thinking about the singularity. It is the unique value R such that g(z)−R/(z− a) has
an analytic derivative near a. Alternatively, construct the Laurent series

g(z) =
∞∑

k=−∞

ak(z − a)k (1.13.5)

at the point a. Then the residue is simply the coefficient a−1.

With this, we use that for a simple closed curve C and point a, that I(C, a) = 1 if a is in the
bounded region of the curve and I(C, a) = 0 if it is in the unbounded region. This follows from
the definition, but is easy to check visually. We can then use that we can change the contours into
a sum of other contour integrals so long as the sum of the paths equals the original path. For f(z)
an analytic function for the bounded region the contour encloses (no singularities there) that

˛
C

dz
f(z)

z − a
= ±πi


2f(a) if a is inside C
f(a) if a is on C
0 if a is outside C

(1.13.6)

with C a simple closed curve with a a simple pole (of order one), and + for C being oriented
counterclockwise, and − being for C oriented clockwise. This is then generalized to

˛
C

dz
f(z)

(z − a)n+1
= ±πi

n!


2f (n)(a) if a is inside C
f (n)(a) if a is on C
0 if a is outside C

(1.13.7)

If g(z) = f(z)/(z−a)n+1 we say that g(z) has a pole of order n at a. I will explain how we arrived
at the “on the contour” definition shortly.

The paths for the various pole locations are shown in Figure 1.12.

117The 2πi is to go from radians to revolutions, and to remove the i that comes from ri exp(iθ) dθ.
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Figure 1.12: Referring to (1.13.6) (Cauchy Integral Formula for n = 1), the top case [a pole inside
the contour] is the leftmost curve C1, the + middle case [a pole on the contour] is for curve C2,
and the bottom case [a pole outside the contour] is C3. Curves C1 and C2 show the equivalent
integrations to be done with the dotted curves.

Justifying this is really a job for a mathematician, and they would almost certainly quibble about
a pole being on the contour. In that case, the integral is not really properly defined, though
the reasonable answer is what I gave above. We will give it this value that “makes most sense”
which happens to have the name of the Sokhotski–Plemelj theorem (often just called the Plemelj
formula).

The Plemelj formula along the real line are given via

lim
ε→0+

ˆ b

a

dx
f(x)

x± iε
= ∓iπf(0) +−

ˆ b

a

dx
f(x)

x
(1.13.8)

where −́ means taking a Cauchy Principal Value defined by (with a singularity atm with a < m < b)

−
ˆ b

a

dx f(x) ≡ lim
ε→0+

[ˆ m−ε

a

dx f(x) +

ˆ b

m+ε

dx f(x)

]
(1.13.9)

with a hint of the complexities showing up as we see that how the poles approach the contour
matters.

First, let’s explain how the contours lead to Cauchy’s integral formula above when a pole is not
on the contour. We start with

I =

˛
C1

dz
f(z)

z − a
(1.13.10)

with C1 a simple closed curve enclosing a (a is inside the contour) in the complex plane and f(z) an
analytic function. We know from complex analysis that an entire (that is, analytic or holomorphic)
function has ˛

C

dz f(z) = 0 (1.13.11)

by Cauchy’s integral theorem for any closed curve C. This is easily proved using that f(z) must
satisfy the Cauchy-Riemann equations, so you can do this yourself. For I above we create the
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194 Complex Contour Integration

dotted path in C1 from 1.12. If we make that path close to a perfect circle around a, then the
two straight lines that depart from the original C1 towards a will almost fully cancel and will be
a negligible contribution. This new contour C ′1 has no poles for f(z)/(z− a) because it avoids the
region in C1 that has the pole entirely [Here C ′1 uses the dotted path]. Then if we call the circle
going counterclockwise around a the path Ca, when we add Ca to C ′1 we will have simply created
the original path C1, and so we can evaluate Ca and C ′1 separately to find the original C1 integral.
Thus

I =

˛
C′1

dz
f(z)

z − a
+

˛
Ca

dz
f(z)

z − a
(1.13.12)

Now the C ′1 integral is zero by Cauchy’s integral theorem. We can use z = a + R exp(iθ) so
dz = iR exp(iθ) dθ for the circle Ca with radius R. (Remember that this circle is constructed
around a and is going counterclockwise so that it cancels the clockwise circle around a from C ′1).
So˛
Ca

dz
f(z)

z − a
= lim

R→0

ˆ 2π

0

dθ
f(a+R exp(iθ))iR exp(iθ)

R exp(iθ)
= lim

R→0

ˆ 2π

0

dθ if(a+R exp(iθ)) = 2πif(a)

(1.13.13)

where I didn’t rigorously prove that f(z) → f(a) but I hope that you can see that it is hardly a
stretch when we take the limit. We are left with

I =

˛
C1

dz
f(z)

z − a
=
��

��
�
��

˛
C′1

dz
f(z)

z − a
+

˛
Ca

dz
f(z)

z − a
= 2πif(a) (1.13.14)

We now consider poles on the contour. One way to arrive at this answer is to view f(a) like a
function of a. This is the view of the Sokhotski–Plemelj formula (which is really a definition) that
a contour integral actually creates two new functions (of a, with e for “exterior” and i for “interior”)
that satisfy

ϕe(a) =
1

2πi
−
ˆ
C2

dz
f(z)

z − a
− f(a)

2
(1.13.15)

ϕi(a) =
1

2πi
−
ˆ
C2

dz
f(z)

z − a
+
f(a)

2
(1.13.16)

ϕe(a) + ϕi(a)

2
= −
ˆ
C2

dz
f(z)

z − a
(1.13.17)

ϕi(a)− ϕe(a) = f(a) (1.13.18)

which give us the solutions for a on the contour. We simply have to complete the original f(a)
with one of the limiting values of ϕi or ϕe. The Cauchy principal value here means do the integral
as if there were no pole on the contour. We define exterior to be the region along our curve that
is to the right of the curve when we traverse the curve.118 Here Ce

2 means from the exterior side
and so

ϕe(a) = lim
a→Ce2

1

2πi

ˆ
C2

dz
f(z)

z − a
(1.13.19)

118Note that this immediately restricts this proof to functions where we can actually figure out the orientation of
the curve in this simple manner. There are pathological curves that do not allow us to do this, but they should not
show up in any physical situation.
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and the interior function is defined similarly as to the left of the curve and Ci
2 means from the

interior side

ϕi(a) = lim
a→Ci2

1

2πi

ˆ
C2

dz
f(z)

z − a
(1.13.20)

Note that this usually gives inconsistent values for f(a) when we approach from different sides of
the contour, which is why we get a ± in the Plemelj formula. This means the manner in which the
pole approaches the contour matters, which may make you wonder how we got just a +iπ in our
Cauchy’s integral formula above when considering a counterclockwise curve. The answer is that
we use fi(a) as our answer when we have a closed contour going counterclockwise. If the contour
was closed going clockwise C2c, then we would keep our interior and exterior labels the same, but
we get the opposite sign.

If you don’t like this, we can view this as coming from using an averaged limit of the two cases

a on C︷ ︸︸ ︷ˆ
C2

dz
f(z)

z − a
=

a outside C︷ ︸︸ ︷ˆ
C2

dz
f(z)

z − a
+

a inside C︷ ︸︸ ︷ˆ
C2

dz
f(z)

z − a
2

=
0 + −́

C2
dz f(z)

z−a + 2πif(a) + −́
C2

dz f(z)
z−a

2
= −
ˆ
C2

dz
f(z)

z − a
+ iπf(a)

(1.13.21)

and so we are taking an “average” value of an integral that does not actually limit to a single value.

If the contour were oriented clockwise C2c we’d use

a on C2c︷ ︸︸ ︷ˆ
C2c

dz
f(z)

z − a
=

a outside C2c︷ ︸︸ ︷ˆ
C2c

dz
f(z)

z − a
+

a inside C2c︷ ︸︸ ︷ˆ
C2c

dz
f(z)

z − a
2

=
0 + −́

C2c
dz f(z)

z−a − 2πif(a) + −́
C2c

dz f(z)
z−a

2
= −
ˆ
C2c

dz
f(z)

z − a
− iπf(a)

(1.13.22)

where inside means bounded region. If we took it from the Plemelj formula definitions, this would
be completing the f(a) with the negative/exterior solution, because in those formulas the exterior
is the region to the right of the oriented closed curve!

Figure 1.13: This shows the γ+ contour for going “above” (positive/interior) the pole and the γ−
(negative/exterior) to a pole on the axis. In the limit the half-circle completely encloses the pole
in one of the two curves.

If we use this for an integral along the real line axis (or any curve that is not closed), we simply
have ambiguity in how we would prefer to complete the f(a) function as we get to the curve
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196 Complex Contour Integration

because we are not (usually) privileging either side of the contour. Thus, we are forced to use
the Plemelj formula in their general form. This is often explained via doing an integral with a
half-circle around the singularity, but if we are actually doing a limit, then this does not make
much sense since then the singularity should be able to be fully avoided (indeed, one must wonder
why one has to avoid the singularity in a way that only half encloses it; in the limit it should be
able to fully enclose it). One can consider it again as the average limiting value, however. In this
case, you have half-circles both ways119 and take the average value of the two limits (See Figure
1.13 for the two different ways of deforming the curve around a singularity on the contour). This
means that in the case that the pole comes from below the real axis we get (note that the contour
with the straight line and the half-circle arc becomes a Cauchy principal value integral in the limit
the half-circle arc becomes small)

2 lim
δ→0+

ˆ ∞
−∞

dx
f(x)

x+ iδ
≡ lim

δ→0+

[
−
ˆ ∞
−∞

dx
f(x)

x
+

ˆ
γ+

dz
f(z)

z + iδ
+−
ˆ ∞
−∞

dx
f(x)

x
+

ˆ
γ−

dz
f(z)

z + iδ

]

= lim
δ→0+

2−
ˆ ∞
−∞

dx
f(x)

x
+

��
�
��

�
��ˆ

γ+

dz
f(z)

z + iδ
+

=−2πif(−iδ)︷ ︸︸ ︷ˆ
γ−

dz
f(z)

z + iδ


= 2−
ˆ ∞
−∞

dx
f(x)

x
− 2πif(0)

(1.13.23)

lim
δ→0+

ˆ ∞
−∞

dx
f(x)

x+ iδ
= −
ˆ ∞
−∞

dx
f(x)

x
− πif(0) (1.13.24)

where the γ− sign gives a −2πi because it goes clockwise round the pole and we can apply Cauchy’s
integral theorem for both γ− and γ+ because the pole is not on the contour. On the other hand,
if we have the iδ come from above then

2 lim
δ→0+

ˆ ∞
−∞

dx
f(x)

x− iδ
≡ lim

δ→0+

[
−
ˆ ∞
−∞

dx
f(x)

x
+

ˆ
γ+

dz
f(z)

z − iδ
+−
ˆ ∞
−∞

dx
f(x)

x
+

ˆ
γ−

dz
f(z)

z − iδ

]

= lim
δ→0+

2−
ˆ ∞
−∞

dx
f(x)

x
+

2πif(iδ)︷ ︸︸ ︷ˆ
γ+

dz
f(z)

z + iδ
+

�
��

�
��

��ˆ
γ−

dz
f(z)

z + iδ


= 2−
ˆ ∞
−∞

dx
f(x)

x
+ 2πif(0)

(1.13.25)

lim
δ→0+

ˆ ∞
−∞

dx
f(x)

x− iδ
= −
ˆ ∞
−∞

dx
f(x)

x
+ πif(0) (1.13.26)

which then gets us the Plemelj formula we saw earlier of

lim
δ→0+

ˆ ∞
−∞

dx
f(x)

x± iδ
= ∓iπf(0) +−

ˆ ∞
−∞

dx
f(x)

x
(1.13.27)

119Only one of which will enclose the pole.
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For a singularity at x0 on the real line, we can write for a < m < b that

lim
δ→x+

0

ˆ b

a

dx
f(x)

x− x0 ± iδ
= ∓iπf(x0) +−

ˆ b

a

dx
f(x)

x− x0

(1.13.28)

the most general Plemelj formula on the real line. This of course works the exact same way if we
are not on the real axis, but I will let you see how that works out. You do the exact same averaging
of two ways, but you have to decide which region is the positive/interior and negative/exterior.

The crux of the matter is that you really need to think about how you can add different curves to
get back your original integral. The nature of the pole is important for this.120

I will do one example where we extend the real line upwards into the complex plane and give you
a flavor of how that arc is considered to go to zero.

We’ll just use

I =

ˆ ∞
−∞

dx
1

x4 + 1
(1.13.29)

First we extend the contour to a semicircle. We see that the denominator can be written z4 + 1 =
(z2 + i)(z2− i) = (z+ i

√
i)(z− i

√
i)(z−

√
i)(z+

√
i) [I am using the principal branch of the square

root, so
√
i = exp(iπ/2)1/2 = exp(iπ/4) =

√
2 +
√

2i]. The contour is made up of
ˆ
C

dz
1

z4 + 1
= I + lim

R→∞

ˆ π

0

dθ
Ri exp(iθ)

R4 exp(iθ) + 1
(1.13.30)

We use Cauchy’s integral theorem with f(z) = (z +
√
i)−1(z + i

√
i)−1 so that

1

2πi

ˆ
C

dz
1

z4 + 1
=

1

2πi

ˆ
C

dz
f(z)

(z − i
√
i)(z −

√
i)

=

[
f(
√
i)√

i− i
√
i

+
f(i
√
i)

i
√
i−
√
i

]
(1.13.31)

=
(
√
i+
√
i)−1(

√
i+ i
√
i)−1

√
i− i
√
i

+
(i
√
i+
√
i)−1(i

√
i+ i
√
i)−1

i
√
i−
√
i

(1.13.32)

=
1√

i(1− i)2i(1 + i)
+

1√
i(i− 1)2i

√
i
√
i(i+ 1)

(1.13.33)

=
1√
i4i

+
1

4
√
i

=
−i+ 1

4
√

2(1 + i)
=

1− 2i+ 1

4
√

2
=

1

2
√

2i
(1.13.34)

and so
ˆ
C

dz
1

z4 + 1
= 2πi

[
1

2
√

2i

]
=

π√
2

(1.13.35)

120In Landau damping, for example, remember that you start with functions with poles in frequency space satis-
fying =(ω) > 0 and analytically continue the functions downward. This might make you think we have the poles
coming from the negative/exterior in. However, the contour for the Laplace transform is oriented clockwise, so the
poles are actually viewed as coming from the positive/interior in the Plemelj formula. For Cauchy’s integral formula
we get quite lucky and can ignore these subtleties in general if we think of ourselves as dealing with the “bounded”
interior, as we saw above. We can just add ±iπ (depending on counterclockwise or clockwise orientation) times the
regular residue when a pole is on the contour curve.
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198 Analytic Continuation

And∣∣∣∣ lim
R→∞

ˆ π

0

dθ
Ri exp(iθ)

R4 exp(iθ) + 1

∣∣∣∣ ≤ lim
R→∞

∣∣∣∣ˆ π

0

dθ
Ri exp(iθ)

R4 exp(iθ)

∣∣∣∣ (1.13.36)

≤ lim
R→∞

ˆ π

0

dθ

∣∣∣∣Ri exp(iθ)

R4 exp(iθ)

∣∣∣∣ = lim
R→∞

ˆ π

0

dθ
∣∣R−3i

∣∣ = 0 (1.13.37)

because 1/R3 → 0 as R→∞. And so

I =

ˆ ∞
−∞

dx
1

x4 + 1
=

π√
2

(1.13.38)

Essentially every way of contour integrating uses these tricks of finding arcs that go to zero or
finding contours that cancel each other to rewrite integrals. You should always check that the
extra arc is going to zero, however, for whatever function you are considering.

1.14 Analytic Continuation
Analytic continuation tends to be invoked as an incantation in physics. When you do contour
integration and you want to integrate a function outside of its convergent region, you will hear
someone say “we analytically continue the function, and perform the integration”. I hope to
demystify this concept. The basic idea is easy to understand. Suppose we have a function defined
by

f(s) =
∞∑
k=1

ks (1.14.1)

It is well-known that s < −1 is necessary for this series to converge. At s = −1, we have
the infamous harmonic series. The above function is called the Riemann zeta function when it
converges.121 However, the Riemann zeta function is not f(s), for the Riemann zeta function is
defined for s < −1. In fact, it is defined for complex s. The Riemann zeta function is defined by

ζ(s) =
1

Γ(s)

ˆ ∞
0

dx
xs−1

exp(x)− 1
(1.14.2)

Γ(s) =

ˆ ∞
0

dx xs−1 exp(x) (1.14.3)

with Γ(s) related to the factorial function via x! = Γ(x+ 1) for integer x.

Analytic continuation says that if we are dealing with a function that has

∞∑
k=1

ks (1.14.4)

we can replace the divergent sum by the Riemann zeta definition which does converge. Thus, we
were actually dealing with the Riemann zeta function when we were tackling our problem, but
using a specific form for it.

121Sometimes it’s called the Euler-Riemann zeta function.
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There should be many questions about this tactic. The first should be whether it is unique. Are
there multiple more complicated functions that could match on to the sum? Or is the Riemann
zeta function the only one?

In fact, if we are dealing with complex numbers we can answer this problem. Suppose we are
dealing with some open and connected subset122 of the complex plane, call it S. Then we want
to know given two functions f(z) (which is only defined in S) and g(z) (defined over a larger set
than S but that matches f(z) everywhere in S) whether g(z) is the only function on this larger
region that can match f(z) on the smaller region. Because complex analytic functions have severe
restrictions, it turns out that this is true. Consider a second g2(z) that also matches f(z) in
S. Then consider g(z) − g2(z). It is zero everywhere in S. But if two holomorphic (remember,
these are complex functions that have derivatives to all orders) functions subtract to zero in some
connected region S, then they must agree over their entire shared domains by the identity theorem
of complex analysis. Thus g2 = g, and there is a unique way of analytically continuing a complex
function. Note that real-variable functions do not satisfy this. It only works in complex analysis.

As an example of how to do this in practice, suppose we do have a function defined by a power
series. Say we start with g(z) = 1/(z− 1). We then define a new function f(z) by the power series
of g(z) at z = 0 finding

f(z) =
∞∑
k=0

ckz
k = −

∞∑
k=0

zk (1.14.5)

We see this does diverge at z = 1. Via the Cauchy-Hadamard theorem we know that 1/RC =
lim supk→∞ |ak|1/k where RC is the radius of convergence. Here RC = 1. So a disk of radius one
around the origin is our region of convergence. If we didn’t know that f(z) came from g(z), we
could expand the domain it is defined over by analytically continuing it. Let’s then expand it at
some other point within the region of convergence and find new coefficients for it. Our new power
series will be centered at point z0. Thus we have our new function

f1(z) =
∞∑
k=0

bk(z − z0)k =
∞∑
k=0

f
(k)
1 (z0)

k!
(z − z0)k (1.14.6)

We use the Cauchy-integral theorem to find the values of bk

f
(n)
1 (z0) =

n!

2πi

˛
C

dz
f1(z)

(z − z0)n+1
(1.14.7)

And so

bn =
1

2πi

˛
C

dz
f1(z)

(z − z0)n+1
(1.14.8)

Our closed curve C will be a circle about z = z0 with radius r. Here z0 is any point in our original
radius of convergence. We will then later check if this gives a larger region of convergence, or
convergence over a different region of the complex plane. We will try f1(z) = f(z) over the new

122There is no avoiding mathematical terminology here. Open means that the boundary is not included. For real
numbers, think of an open interval like (0, 1) which does not contain 0 or 1.
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region to see if our analytic continuation works. We calculate

bn =
1

2πi

˛
C

dz
f(z)

(z − z0)n+1

=
−1

2πi

˛
C

dz

∑∞
k=0 z

k

(z − z0)n+1

=
−1

2πi

∞∑
k=0

˛
C

dz
zk

(z − z0)n+1

(1.14.9)

we write z − z0 = r exp(iθ) so dz = ir exp(iθ) dθ for our curve with constant r. Then we find

bn =
−1

2π

∞∑
k=0

ˆ 2π

0

dθ r exp(iθ)
(r exp(iθ) + z0)k

(r exp(iθ))n+1

=
−1

2π

∞∑
k=0

ˆ 2π

0

dθ
(r exp(iθ) + z0)k

(r exp(iθ))n

=
−1

2π

∞∑
k=0

ˆ 2π

0

dθ

∑k
j=0 C

k
j z

k−j
0 (r exp(iθ))j

(r exp(iθ))n

(1.14.10)

with Cn
j meaning n choose j from combinatorics. The integrand will clearly be zero for all but the

j = n case, when there is no θ dependence because it cancels out. Then

bn =
−1

2π

∞∑
k=0

Ck
nz

k−n
0

ˆ 2π

0

dθ = −
∞∑
k=0

Ck
nz

k−n
0 = −z−n0

∞∑
k=0

Ck
nz

k
0 (1.14.11)

It can be shown that
∞∑
k=0

Ck
nz

k
0 =

zn0
(1− z0)n+1

(1.14.12)

and so

bn = −z−n0

zn0
(1− z0)n+1

= −(1− z0)−n−1 (1.14.13)

So

f1(z) =
∞∑
k=0

− 1

1− z0

(
z − z0

1− z0

)k
=
−1

1− z0

∞∑
k=0

(
z − z0

1− z0

)k
(1.14.14)

The radius of convergence of the final sum can then be found to be |1 − z0|. Remember we can
choose any |z0| < 1. So we can clearly chose z0 such that

|1− z0| > 1 (1.14.15)

by choosing <(z0) ≤ 0. Thus, we have a larger radius of convergence and we have indeed continued
the analytic function to a larger region. This is fairly obvious when we have chosen originally
g(z) = 1/(z − 1). By choosing a different point we simply get the series at a different location
which is farther from the singularity z = 1 and so has a larger radius of convergence.
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Mathematical Beginnings 201

You might think this is unimpressive, but if we only knew f(z) and were asked what f(−1) is, we
would say

f(−1) = −
∞∑
k=0

(−1)k = ? (1.14.16)

has no ultimate limit and so does not converge. However, if we chose z0 = −0.5, we’d now be able
to say

f1(−1) =
−1

1− (−0.5)

∞∑
k=0

(
−1− (−0.5)

1− (−0.5)

)k
=
−1

1.5

∞∑
k=0

(
−0.5

1.5

)k
=
−2

3

∞∑
k=0

(−3)−k =
−2

3

1

1 + 1
3

=
−2

�3

�3

4
=
−1

2

(1.14.17)

Via this analytic continuation (because we’re actually dealing with g(−1) = 1/[(−1)− 1] = −1/2)
it looks like we have given a divergent series a value! This is in fact the negative of Grandi’s
series, and we have explained why it can said to “sum” to −1/2. Note that via further analytic
continuation we could find f(2) = g(2) = 1/(2 − 1) = 1 [the first equals sign means analytically
continued] which would be the analytically continued value of f(z) = −

∑∞
k=0 z

k. In which case,
we see that a series that contains only negative terms somehow “sums” to a positive value. Of
course, it does not sum, the new value is simply associated with our original series via the analytic
continuation. For the general case, we can simply repeat the process of choosing new points and
calculating the new coefficients until we have a domain as large as we desire, so long as we can
actually calculate the new coefficients.

We can see an example with a red dot representing a singularity that is a simple pole of order one
in Figure 1.14.

But nothing is ever quite so simple. Suppose we had analytically continued ln z. This function123
is multi-valued for complex values. So our analytic continuation of it would also be multi-valued
depending on which branch of ln z we choose. Then we must be careful to analytically continue the
function so that it is on the branch we desire. If as we analytically continue we choose a path that
goes all the way around the singularity (that is the path goes 2π radians around the singularity)
we get a different branch and will have added a factor of 2πi. So we are no longer on the principal
branch. Thus, analytic continuation works, but we must remember to think about whether the
analytic continuation of a function is multi-valued and how to stay on the branch we desire.

123Technically it is not a function, but a multi-valued function. The important thing to realize is that by restricting
ourselves to branches of a multi-valued function we can get a true function.
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202 Analytic Continuation

Figure 1.14: A simple example of analytic continuation. We start at z0 and have a radius of
convergence determined by the red dot singularity. We then continue to z1 within our convergence
radius, and recalculate. We can repeat this process with z2 within our new radius of convergence
from z1, etc.
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1.15 Special Functions

I do not wish to imply that the hypergeometric function is the only function about which
mathematicians know anything. That is far from being true. There are other fertile
valleys with which the wooden ploughs of the twentieth century can cope; but the valley
inhabited by schoolboys, by engineers, by physicists, and by students of elementary
mathematics, is the valley of the Hypergeometric Function, and its boundaries are (but
for one or two small clefts explored by pioneers) virgin rock.

— W. W. Sawyer[29, p. 64]

This will simply explain some interesting features of some special functions that show up in plasma
physics or in physics in general. They are worth knowing a little bit about so that you can
understand how they behave when they show up. I will go into a depth that I think is reasonable
for a book of this kind. There are often books entirely dedicated to the properties of a single
special function, so know that I am giving only a superficial treatment compared to the depth of
knowledge available.

1.15.1 Hypergeometric Series

Truly, there are no series and functions as little taught as the hypergeometric series in physics, yet
so ubiquitous in physics examples. The name seems to form a barrier to understanding, but the
name really comes from the fact that the geometric series is a special case. A hypergeometric series
is a natural generalization. So given a series in terms of a complex/real variable z, a hypergeometric
series is written as

∞∑
n=0

βnz
n (1.15.1)

where

βn+1

βn
=
A(n)

B(n)
(1.15.2)

with A(n) and B(n) polynomials in n. This is often said in words as βn+1/βn is a rational function
of n. When defining a hypergeometric series, it is conventional to assign β0 = 1, and to factor the
polynomials into linear terms (thus introducing complex coefficients) so that we write

A(n)

B(n)
=

∏N
i=1(ai + n)∏M
j=1(bj + n)

(1.15.3)

where N is the highest power of n in A(n) and M is the highest power of n in B(n). For some
reason, it is also traditional to assume that one of the factors of B(n) is (1 + n) so the above is
actually written

A(n)

B(n)
=

c
∏N

i=1(ai + n)

d(1 + n)
∏M−1

j=1 (bj + n)
(1.15.4)
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204 Special Functions

where c and d are chosen so that we actually get back A(n)/B(n). They can be viewed as the
correct leading order coefficients. Then we can write the series as

1 +

∏N
i=1 ai

(1 + 0)
∏M−1

j=1 bj

cz

d
+

∏N
i=1 ai

(1 + 0)
∏M−1

j=1 bj

∏N
i=1(ai + 1)

(1 + 1)
∏M−1

j=1 (bj + 1)

(cz
d

)2

+ · · · (1.15.5)

We can introduce ẑ = cz/d and then ignore the hat to rewrite the series in the form

1 +

∏N
i=1 ai∏M−1
j=1 bj

z

1
+

∏N
i=1 ai∏M−1
j=1 bj

∏N
i=1(ai + 1)∏M−1
j=1 (bj + 1)

z2

2!
+ · · · (1.15.6)

We then write this series as

NFM−1(a1, . . . , aN ; b1, . . . , bM−1; z) =
∞∑
n=0

βnz
n (1.15.7)

with the appropriately defined βn. Traditionally, we set N = p and M − 1 = q and use the
definition of Pochhammer’s symbol given by

(a)n ≡

{
1 n = 0

a(a+ 1)(a+ 2) · · · (a+ n− 1) n > 0
=

Γ(a+ n)

Γ(a)
(1.15.8)

and then we write

pF q(a1, . . . , ap; b1, . . . , bq; z) =
∞∑
n=0

βnz
n =

∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!
(1.15.9)

Sometimes the symbolism is modified so that there is less chance of error by writing

pF q(a1, . . . , ap; b1, . . . , bq; z) = pF q

(
a1, . . . , ap
b1 . . . , bq

∣∣∣∣z) (1.15.10)

or something similar. Note that if this is well-defined, the series defines a hypergeometric function.
To be well-defined, then the radius of convergence in z must be nonzero, and the series must
converge. The derivative is given via

d

dz pF q(a1, . . . , ap; b1, . . . , bq; z) =

∏p
i=1 ai∏q
j=1 bj

pF q(a1 + 1, . . . , ap + 1; b1 + 1, . . . , bq + 1; z) (1.15.11)

To simply notation I will write

pF q(a1, . . . , ap; b1, . . . , bq; z) ≡ wpq(a; b, z) (1.15.12)

Then the above relation follows from the definition as

d

dz
wpq(a; b, z) =

d

dz

∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!
=
∞∑
n=1

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn−1

(n− 1)!

=
∞∑
n=1

∏p
i=1(ai + n− 1)∏q
j=1(bi + n− 1)

(a1)n−1 · · · (ap)n−1

(b1)n−1 · · · (bq)n−1

zn−1

(n− 1)!

(1.15.13)
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we can then use m = n− 1 or n = m+ 1 and this becomes

d

dz
wpq(a; b; z) =

∞∑
m=0

∏p
i=1(ai +m)∏q
j=1(bi +m)

(a1)m · · · (ap)m
(b1)m · · · (bq)m

zm

(m)!
(1.15.14)

We can then use from the definition124 that

(aj)m(aj +m) = (aj)m+1 = aj(aj + 1)m (1.15.15)

so that

d

dz
wpq(a; b, z) =

∞∑
m=0

∏p
i=1 ai∏q
j=1 bi

(a1 + 1)m · · · (ap + 1)m
(b1 + 1)m · · · (bq + 1)m

zm

(m)!
=

∏p
i=1 ai∏q
j=1 bi

∞∑
n=0

(a1 + 1)n · · · (ap + 1)n
(b1 + 1)n · · · (bq + 1)n

zn

n!

=

∏p
i=1 ai∏q
j=1 bj

wpq(a + 1; b + 1, z)

(1.15.16)

where a + 1 means add 1 to each element of a [i.e., a + 1 = (a1 + 1, a2 + 1, . . . , ap + 1)].

One can also find

z
d

dz
wpq(a; b; z) = z

d

dz

∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!
=
∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

(n− 1)!
(1.15.17)

We can then add aiwpq(a; b; z) to the previous result to find(
z

d

dz
+ ai

)
wpq(a; b; z) =

∞∑
n=0

(
(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

(n− 1)!
+ ai

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!

)
=
∞∑
n=0

n+ ai
n

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

(n− 1)!

=
∞∑
n=0

ai
(a1)n · · · (ai−1)n(ai + 1)n(ai+1)n · · · (ap)n

(b1)n · · · (bq)n
zn

n!

= ai

∞∑
n=0

(a1)n · · · (ai−1)n(ai + 1)n(ai+1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!

= aiwpq(a
′
i; b; z)

(1.15.18)

where we used the relationship from (1.15.15) with a′i the same as a except in the ith entry where
a′i = ai + 1.

Exactly analogously we find(
z

d

dz
+ bk − 1

)
wpq(a; b; z) =

∞∑
n=0

(
(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

(n− 1)!
+ (bk − 1)

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!

)
=
∞∑
n=0

n+ (bk − 1)

n

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

(n− 1)!

(1.15.19)

124This Pochhammer symbol notation is sometimes called the rising factorial.
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206 Special Functions

We now use

(bj)n
(bj + n+ 1)

= (bj)n−1 =
(bj − 1)n
bj − 1

(1.15.20)

and the above becomes(
z

d

dz
+ bk − 1

)
wpq(a; b; z) =

∞∑
n=0

(bj − 1)
(a1)n · · · (ap)n

(b1)n · · · (bj−1)n(bj − 1)n(bj+1)n · · · (bq)n
zn

n!

= (bj − 1)wpq(a; b′k; z)

(1.15.21)

where b′k is the same as b except the kth entry has b′k = bk − 1.

This means
p∏

n=1

(
z

d

dz
+ an

)
wpq(a; b; z) =

d

dz

(
q∏

n=1

(
z

d

dz
+ bn − 1

)
wpq(a; b; z)

)
p∏

n=1

anwpq(a + 1; b; z) =
d

dz

q∏
n=1

(bn − 1)wpq(a; b− 1; z)

p∏
n=1

anwpq(a + 1; b; z) =

∏p
i=1 ai∏q

j=1(bj − 1)

q∏
n=1

(bn − 1)wpq(a + 1; b; z)

p∏
n=1

anwpq(a + 1; b; z) =

p∏
n=1

anwpq(a + 1; b; z)

(1.15.22)

We can also look at specific cases

0F 0(; ; z) = exp(z) (1.15.23)

1F 0(a; ; z) = (1− z)−a (1.15.24)

Then 0F 1(; b; z) is related to the Bessel functions by

Jα(x) =

(
x
2

)α
Γ(α + 1) 0F 1(: α + 1;−1

4
x2) (1.15.25)

Iα(x) =

(
x
2

)α
Γ(α + 1) 0F 1(: α + 1;

1

4
x2) (1.15.26)

If we use our formula above, we find

w01(; b; z) =
d

dz

(
z

d

dz
+ b− 1

)
w01(; b; z) (1.15.27)

w01(; b; z) =

(
d

dz
+ z

d2

dz2
+ (b− 1)

d

dz

)
w01(; b; z) (1.15.28)

or abbreviating w = w01(; b; z) we find the governing differential equation to be

z
d2w

dz2
+ b

dw

dz
− w = 0 (1.15.29)
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Then we have the confluent hypergeometric functions of the first kind, often written w11(a; b; z) =
M(a; b; z) They satisfy

z
dw

dz
+ aw =

(
z

d2

dz2
+ b

d

dz

)
w (1.15.30)

z
d2w

dz2
+ (b− z)

dw

dz
− aw = 0 (1.15.31)

For w11(−n : b; z) with n > 0 then w11(−n; b; z) are related to the Laguerre polynomials, and so
to Hermite polynomials.

We can also calculate the differential equations whose solutions are w20(a1, a2; ; z) .(
z

d

dz
+ a1

)(
z

d

dz
+ a2

)
w =

d

dz
w (1.15.32)(

z
d

dz
+ a1

)(
z

dw

dz
+ a2w

)
=

dw

dz
(1.15.33)

z
dw

dz
+ z2 d2w

dz2
+ za2

dw

dz
+ za1

dw

dz
+ a1a2w =

dw

dz
(1.15.34)

z2 d2w

dz2
+ z[1 + a1 + a2]

dw

dz
+ a1a2w =

dw

dz
(1.15.35)

z2 d2w

dz2
+ (z[1 + a1 + a2]− 1)

dw

dz
+ a1a2w = 0 (1.15.36)

The final hypergeometric series we will consider are for w21(a1, a2; b; z). The differential equation
will be

z2 d2w

dz2
+ z[1 + a1 + a2]

dw

dz
+ a1a2w = z

d2w

dz2
+ b

dw

dz
(1.15.37)

z(z − 1)
d2w

dz2
+ (z[1 + a1 + a2]− b)dw

dz
+ a1a2w = 0 (1.15.38)

These series w21 have the confusing name of hypergeometric functions. It is often called Gauss’s
hypergeometric functions or classical hypergeometric functions. The confusion is that these hy-
pergeometric series are often called generalized hypergeometric series so that we do not confuse
them with basic hypergeometric series (sometimes called q-hypergeometric series).

This means that there are at least five uses of hypergeometric series or functions. First, the gen-
eralized hypergeometric series (i.e., “just” a hypergeometric series), the basic or q-hypergeometric
series, the confluent hypergeometric function, and the hypergeometric function. You will have to
confront this needless mess of terms by remembering that each one is precisely defined and you
must precisely say what you mean.

Finally, I should summarize when the hypergeometric series converge.

When p ≤ q then the summation converges and we have an analytic function defined for all z.

When p = q + 1 the case is more complicated.125 If there is an ai < 0, then clearly at some point
(ai)n = 0 and the series terminates leaving us a polynomial. If all the ai > 0 then the radius

125It seems mathematical functions, like life, does not enjoy making simple statements.
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of convergence is 1 and we only have convergence in |z| < 1. One can then proceed to define
an analytic continuation outside of |z| < 1 and define that to be the generalized hypergeometric
function corresponding to the series. There is a principal branch associated with this, and so one
must consult a reference126 to see which integral defines this analytic continuation. For p > q + 1,
unless ai < 0 the series is undefined everywhere except z = 0. When ai < 0 for some i, then we
are left with a polynomial again.

Finally, I should mention some alternate notation. The generalized hypergeometric series are
sometimes represented as

pF q(a; b; z) = pF q

(
a

b
; z

)
= pF q

(
a1, . . . , ap
b1, . . . , bq

; z

)
= pF q

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣z) (1.15.39)

and that there is a generalization of these generalized hypergeometric series when they are functions
called the Meijer G-function which is denoted with the notation

Gm,n
p,q

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣z) ≡ 1

2πi

ˆ
L

ds

[
m∏
j=1

Γ(bj − s)

][
n∏
j=1

Γ(1− aj + s)

]
[

q∏
j=m+1

Γ(1− bj + s)

][
p∏

j=n+1

Γ(aj − s)

]zs (1.15.40)

Gm,n
p,q

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣z) = Gm,n
p,q

(
a

b

∣∣∣∣z) = Gm,n
p,q

(
a

b
; z

)
(1.15.41)

where L is the path of the integral which is rather complicated to describe and so I will simply
point you to the relevant section of the DLMF[10]. The advantage of the Meijer G-function is
that because of the path choice of L you actually create an analytic function with a couple of
restrictions on the a, b, and using integer m, n, p, and q. See the definition in the DLMF for
what the restrictions are. I won’t talk anymore of this, as there are even further generalizations
beyond this, but I have never encountered the Meijer G-functions in practice (except in the sense
that generalized hypergeometric series are Meijer G-functions), and the generalized hypergeometric
series are enough work to understand.

1.15.2 Confluent Hypergeometric Series

The confluent in confluent hypergeometric series refers to a confluence of solutions. This follows
from an identity for the p ≤ q case. We have

lim
|α|→∞ p+1F q(a, α; b; z/α) = pF q(a; b; z) (1.15.42)

This is easy to show because

lim
|α|→∞ p+1F q(a, α; b; z/α) =

∞∑
n=0

(a1)n · · · (ap+1)n(α)n
(b1)n · · · (bq)n(n!)

( z
α

)n
(1.15.43)

and so looking only at the α parts we see

lim
|α|→∞

(α)n
αn

= lim
|α|→∞

αn +O(αn−1)

αn
= lim
|α|→∞

(
1 +O(α−1)

)
= 1 (1.15.44)

126The DLMF[10] is your friend.
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which means

lim
|α|→∞ p+1F q(a, α; b; z/α) =

∞∑
n=0

(a1)n · · · (ap+1)n
(b1)n · · · (bq)n

zn

n!
= pF q(a; b; z) (1.15.45)

Note that if we have p = q, then on the left hand side of (1.15.42) we have “regular” singularities
at α and∞ whereas on the right, these two singularities have to have combined into an “irregular”
singularity at ∞. Thus, a confluence of solutions has occurred. Given a differential equation of
the form

dnf

dzn
+

n−1∑
i=1

gi(z)
dif

dzi
+ g0(z)f = 0 (1.15.46)

then a regular singularity at z0 satisfies (z − z0)n−igi(z0) is analytic for all i. If not (that is the
previous expression is not analytic for all i), then z0 is an irregular singularity. For z0 = ∞ you
can test the regularity by taking z → 1/ẑ and trying ẑ = 0.

What this means in non-mathematics speak is that a regular singularity can be treated as we do in
complex analysis with poles. That is, we can work with regular singularities to find the solutions
of the entire equation rather easily by containing the singularity, so to speak. When we have an
irregular singularity, there is no containing it in a simple manner, and so we have to construct a
solution in a different way.

Thus, when we look at the above equation on the left hand side of (1.15.42), we can find the
regular singularities by looking at the governing differential equation. By considering (1.15.22)
to find the generic differential equation for a hypergeometric series solution with p = q, we write
out the differential equation for q+1F q(a, α; b; z/α). We can then use ẑ = z/α and see that the
coefficient of the highest order derivative dq+1

dẑq+1 is given by

ẑq+1 − ẑq =
zq

αq
(
z

α
− 1) (1.15.47)

if we then switch to d
dz

we use d
dẑ

= dz
dẑ

d
dz

= α d
dz
. Then the coefficient of the highest order derivative

dq+1

dzq+1 is given by

zq(z − α) (1.15.48)

If we divide through by this factor to get our differential equation in the form of (1.15.46), we see
that there will be singularities at z =∞ and z = α for the gi(z), if the gi(z) do not equal zero at
∞ and α.

On the other hand, the right hand side of (1.15.42) with p = q will only have zq+1 as a coefficient
for the highest order derivative, and so only has a singularity at z =∞. The so-called confluence
has occurred and since these two differential equations are equivalent, an irregular singularity must
occur at ∞. Remember that irregular singularities basically say that near these singularities that
some terms in your differential equation completely dominate and so you are essentially solving a
different differential equation.

The confluent hypergeometric function is given by 1F 1(a; b; z). There is a confluence for other p
and q, but those functions generally have a different name. The confluent hypergeometric function
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is often called Kummer’s function (of the first kind) and denoted M(a, b, z). It is a limiting case
of the hypergeometric function, so that

M(a, b, z) = lim
b→∞ 2F 1(a, b; c; z/b) (1.15.49)

Our governing differential equation must have two solutions, so the second solution is called the
Tricomi confluent hypergeometric function U(a, b, z), or sometimes simply the confluent hyperge-
ometric function of the second kind. It is determined by what a and b are similarly to M(a, b, z),
but has the property that

U(a, b, z)
z→∞−→ z−a (1.15.50)

Finally, there are other forms of the confluent generalized hypergeometric functions that are used.
The above are called the Kummer functions, while one can reparameterize the equations to get
the Whittaker functions. Here we take a solution to Kummer’s differential equation w and switch
to W = exp(−z/2)z

1
2

+µw, κ = b/2− a, and µ = (b− 1)/2 and get

Mκ,µ(z) = exp (−z/2) z
1
2

+µM

(
1

2
+ µ− κ, 1 + 2µ, z

)
(1.15.51)

Wκ,µ(z) = exp (−z/2) z
1
2

+µU

(
1

2
+ µ− κ, 1 + 2µ, z

)
(1.15.52)

The confluent hypergeometric functions are related to a surprising number of useful functions. We
have

M (a, a+ 1,−z) = exp(−z)M(1, a+ 1, z) = az−aγ(a, z) (1.15.53)
U (a, a, z) = z1−aU(1, 2− a, z) = z1−a exp(z)Ea(z) = exp(z)Γ(1− a, z)

(1.15.54)

M

(
1

2
,
3

2
,−z2

)
=

√
π

2z
erf(z) (1.15.55)

U

(
1

2
,
3

2
, z2

)
=
√
π exp(z2) erfc(z) (1.15.56)

M

(
ν +

1

2
, 2ν + 1, 2z

)
= Γ(1 + ν) exp(z)

(z
2

)−ν
Iν(z) (1.15.57)

U

(
ν +

1

2
, 2ν + 1, 2z

)
=

exp(z)√
π

(2z)−ν Kν(z) (1.15.58)

U

(
5

6
,
5

3
,
4

3
z3/2

)
=
√
π

35/6

22/3

exp
(

2
3
z3/2

)
z

Ai(z) (1.15.59)

M

(
a

2
+

1

4
,
1

2
,
1

2
z2

)
=

2
a
2
− 3

4 Γ
(
a
2

+ 1
4

)
exp

(
z2

4

)
√
π

[U(a, z) + U(a,−z)] (1.15.60)

U

(
a

2
+

1

4
,
1

2
,
1

2
z2

)
=

2
a
2
− 5

4 Γ
(
a
2

+ 1
4

)
exp

(
z2

4

)
z
√
π

[U(a,−z)− U(a, z)] (1.15.61)

M

(
−n, 1

2
, z2

)
= (−1)n

n!

(2n)!
H2n(z) (1.15.62)
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M

(
−n, 3

2
, z2

)
= (−1)n

n!

(2n+ 1)!(2z)
H2n+1(z) (1.15.63)

U

(
1− n

2
,
3

2
, z2

)
=
Hn(z)

z(2n)
(1.15.64)

U(−n, α + 1, z) = (−1)α(α + 1)nM(−n, α + 1, z) = (−1)α(n!)L(α)
n (z) (1.15.65)

U(−n, z − n+ 1, a) = (−z)nM(−n, z − n+ 1, a) = anCn(z; a) (1.15.66)
U(a, b, z) = z−a 2F 0(a, a− b+ 1, ; ;−z−1) (1.15.67)

M(`+ 1∓ iη, 2`+ 2,±2iρ) =
(2`+ 1)!

2` exp
(−πη

2

)ρ−`−1 exp(±iρ)F`(η, ρ) (1.15.68)

U(`+ 1∓ iη, 2`+ 2,±2iρ) =
exp

(
∓i
[
ρ− η ln(2ρ)− `π

2
+ arg(Γ(`+ 1 + iη))

])
(∓2iρ)`+1±iη H±l (η, ρ)

(1.15.69)

Here γ(a, z) and Γ(a, z) are the incomplete gamma functions, Ea(z) is a generalized exponential
integral, erf is the error function, erfc is the complementary error function, Iν(z) and Kν(z)
are the modified Bessel functions, Ai(z) is the Airy function, U(a, z) is the parabolic cylinder
function, Γ(z) is the gamma function, Hn(z) is a Hermite polynomial of order n, L(α)

n (z) are the
generalized Laguerre polynomials (sometimes associated Laguerre polynomials), Cn(z; a) are the
Charlier polynomials, and F`(η, ρ) and H±l (η, ρ) are the Coulomb functions.

The Coulomb functions are those that solve

d2w

dρ2
+

(
1− 2η

η
− `(`+ 1)

ρ2

)
w = 0 (1.15.70)

and the choice of ± in F`(η, ρ) makes no difference so long as you always choose the top or the
bottom consistently.

Unfortunately, you may see the Coulomb functions in a different guise as a solution to the equation

d2w

dr2
+

(
ε+

2

r
− `(`+ 1)

r2

)
w = 0 (1.15.71)

where r = −ηρ and ε = 1/η2. The solutions are then written as

f(ε; `; r) =
κ`+1Mε,`+ 1

2
(2r/κ)

(2`+ 1)!
(1.15.72)

f(ε; `; r) = (2r)`+1 exp (−r/κ)
M(`+ 1− κ, 2`+ 2, 2r/κ)

(2`+ 1)!
(1.15.73)

κ =


(−ε)−1/2 ε < 0, r > 0

−(−ε)−1/2 ε < 0, r < 0

±iε−1/2 ε > 0

(1.15.74)

for the regular solution (the choice of ± makes no difference to the solution, as it leads to the same
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solution). The intensely ugly

h(ε; `; r) =
Γ(`+ 1− κ)

πκ`

[
Wκ,`+ 1

2
(2r/κ) + (−1)`S(ε, r)

Γ(`+ 1 + κ)

2(2`+ 1)!
Mκ,`+ 1

2
(2r/κ)

]
(1.15.75)

S(ε, r) =


2 cos

(
π|ε|−1/2

)
ε < 0, r > 0

0 ε < 0, r < 0

exp
(
πε−1/2

)
ε > 0, r > 0

exp
(
−πε−1/2

)
ε > 0, r < 0

(1.15.76)

is the corresponding irregular solution.

As you can see, you can go a long way with the right confluent hypergeometric series.

1.15.3 Error Functions

The error function is fondly called erf,127 and is related to integrals of Gaussians. Therefore, it
shows up in a variety of circumstances, because Gaussians show up all over the place thanks to
the Central Limit Theorem in probability. It is defined by

erf(z) =
1√
π

ˆ z

−z
dt exp(−t2) =

2√
π

ˆ z

0

dt exp(−t2) (1.15.77)

erf(z) =
2√
π

∞∑
n=0

(−1)nz2n+1

n!(2n+ 1)
(1.15.78)

erf(z) = erf(z) (1.15.79)
d erf(z)

dz
=

2 exp(−z2)√
π

(1.15.80)

dn erf(z)

dzn
=

2(−1)n−1

√
π

Hn−1(z) exp(−z2) =
2√
π

dn−1

dzn−1

[
exp(−z2)

]
(1.15.81)

ˆ
dz erf(z) = z erf(z) +

exp(−z2)√
π

(1.15.82)

The integral relationship comes from integration by parts. We can write a differential equation for
erf by

d2 erf(x)

dx2
= −2x

d erf(x)

dx
(1.15.83)

The error function’s cousin, the complementary error function erfc is defined by

erfc(z) =
2√
π

ˆ ∞
z

dt exp(−t2) = 1− erf(z) (1.15.84)

with similar properties. You may also see erfi(z), the imaginary error function defined via erfi(z) =
−i erf(ix). This means that

d2 erfi(x)

dx2
= 2x

d erfi(x)

dx
(1.15.85)

127Pronounced like Nerf without the “N”.
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A useful asymptotic expansion of erfc(z) as z → ∞ yields a good approximation for erf(z) =
1− erfc(z). This expansion is given as

erfc(z) ∼ exp(−z2)

z
√
π

∞∑
m=0

(−1)m
(2m− 1)!!

(2z2)m
=

exp(−z2)√
π

∞∑
m=0

(−1)m
(

1
2

)
m

z2m+1
(1.15.86)

erfc(−z) ∼ 2− exp(−z2)√
π

∞∑
m=0

(−1)m
(

1
2

)
m

z2m+1
(1.15.87)

where double factorial means every other so

n!! =


n(n− 2)(n− 4) · · · (4)(2) n even
n(n− 2)(n− 4) · · · (3)(1) n odd
1 n = 0

(1.15.88)

1.15.4 Plasma Dispersion Function

The plasma dispersion function is essentially an error function, but in a form more often seen in
plasma physics. It is defined as

Z(ζ) =
1√
π

ˆ ∞
−∞

dx
exp(−x2)

x− ζ
(1.15.89)

for =(ζ) > 0. For =(ζ) < 0, use the analytic continuation of the function. This leads to the
generally true expression

Z(ζ) =
1√
π

ˆ
C

dx
exp(−x2)

x− ζ
(1.15.90)

where you have to figure out what the correct integration path C is given your ζ. You might be
saying to yourself, “Wait, that doesn’t quite look like an error function. There’s that denominator
in there. How do you get there?” This is not an obvious road. First we note

Z ′(ζ) =
1√
π

∂

∂ζ

ˆ ∞
−∞

dx
exp(−x)2

x− ζ
=

1√
2π

ˆ ∞
−∞

dx
− exp(−x2)

(x− ζ)2
(1.15.91)

We can integrate such a thing by parts with u = exp(−x2) and dv = dx/(x − ζ)2 so du =
−2x exp(−x2) dx and v = −1/(x− ζ) to find

√
πZ ′(ζ) =

���
���

���−exp(−x2)

x− ζ

∣∣∣∣∞
−∞
−
ˆ ∞
−∞

dx
−2x exp(−x2)

−(x− ζ)
(1.15.92)

= −
ˆ ∞
−∞

dx
2x exp(−x2)

x− ζ
(1.15.93)

We can then recognize that if we add and subtract ζ in the numerator we have

Z ′(ζ) = − 2√
π

ˆ ∞
−∞

dx
(x+ ζ − ζ) exp(−x2)

x− ζ
= − 2√

π
dx exp(−x2) +

2ζ√
π

ˆ ∞
−∞

dx
exp(−x2)

x− ζ
(1.15.94)

Z ′(ζ) = 2[−1− ζZ(ζ)] = −2[1 + ζZ(ζ)] (1.15.95)
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214 Special Functions

which is the governing differential equation.

If we took another derivative we find

Z ′′(ζ) = −2Z(ζ)− 2ζZ ′(ζ) (1.15.96)

This looks suspiciously like the error function’s differential equation. The difference is we have
an extra −2Z(ζ) term. By trying a new function G(ζ) exp(−ζ2) = Z(ζ) we see that the above
becomes

Z ′(ζ) = G′(ζ) exp(−ζ2)− 2ζ exp(−ζ2)G(ζ) (1.15.97)
Z ′′(ζ) = G′′(ζ) exp(−ζ2)− 4ζ exp(−ζ2)G′(ζ)− 2G(ζ)

[
exp(−ζ2)− 2ζ2 exp(−ζ2)

]
(1.15.98)
(1.15.99)

which means we have

G′′(ζ)− 4ζG′(ζ)− 2G(ζ)
[
�1−ZZ2ζ2

]
=���

��−2G(ζ)− 2ζ [G′(ζ)−XXXX2ζG(ζ)] (1.15.100)
G′′(ζ) = [4ζ − 2ζ]G′(ζ) = 2ζG′(ζ) (1.15.101)

which is simply the differential equation for erfi(x) as stated in (1.15.85). Thus G(ζ) is erfi(ζ) =
−i erf(iζ) up to a constant. Thus, we see that

Z(ζ) = C0 exp(−ζ2)(−i erf(iζ) + C1) (1.15.102)

for constants C0 and C1. We can then use the original differential equation Z ′ = −2[1 + ζZ] to
write

Z ′ = −iC0

(
exp(−ζ2)

d erf(iζ)

dζ
+−2ζ exp(−ζ2) erf(iζ)

)
(1.15.103)

= −iC0

(
i exp(−ζ2)

2 exp(ζ2)√
π

− 2ζ exp(−ζ2) erf(iζ)

)
(1.15.104)

= −iC0

(
i

2√
π
− 2ζ exp(−ζ2) erf(iζ)

)
=

2C0√
π
− 2ζZ (1.15.105)

which implies C0 = −
√
π. Then we use that we want Z(0) = i

√
π (as we will show below) to

determine C1. This means

Z(0) =
√
π exp(−02) (i erf(i0)− C1) = −

√
πC1 = i

√
π (1.15.106)

so C1 = −i and we get

Z(ζ) = i
√
π exp(−ζ2)(erf(iζ) + 1) (1.15.107)

Alternatively, we can go about this the hard way, which does not require an inspired guess. We
use that (1.15.95) is a simple ODE and so using an integrating factor method, we see the solution
is

ν(ζ) =

ˆ ζ

0

dζ ′ 2ζ ′ = ζ2 (1.15.108)

Z(ζ) exp (ν(ζ)) = C +

ˆ ζ

0

dζ ′ exp(ν(ζ ′))(−2) = C − 2

ˆ ζ

0

dζ ′ exp((ζ ′)2) (1.15.109)
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for some constant C. Define t = iζ ′ and we see that

ˆ ζ

0

dζ ′ exp
(
(ζ ′)2

)
= −i

ˆ iζ

0

dt exp(−t2) = −i
√
π

2
erf(iζ) (1.15.110)

yielding

Z(ζ) = exp(−ζ2)
(
C + i

√
π erf(iζ)

)
(1.15.111)

We have

Z(0) =
1√
π

ˆ ∞
−∞

dt exp(−t2)/t (1.15.112)

using the Plemelj formula with the pole at t = 0 will yield128

Z(0) =
πi exp(−02)√

π
=
√
πi (1.15.113)

and so C =
√
πi

Z(ζ) = exp(−ζ2)
√
π (i+ i erf(iζ)) (1.15.114)

There is yet one more twist. We use
ˆ 0

−∞
dt exp(−t2) =

√
π/2 (1.15.115)

so that

Z(ζ) = exp(−ζ2)

(
2i

ˆ 0

−∞
dt exp(−t2) + 2i

ˆ iζ

0

dt exp(−t2)

)
(1.15.116)

Z(ζ) = 2i exp(−ζ2)

ˆ iζ

−∞
dt exp(−t2) = i

√
π exp

(
−ζ2

)
[1 + erf(iζ)] (1.15.117)

We then have the following properties

Z(ζ) = −Z(−ζ) (1.15.118)

Z(ζ) = Z(ζ) + 2i
√
π exp(−ζ2

) =(ζ) > 0 (1.15.119)

with power series around ζ = 0 of

Z(ζ) = i
√
π exp(−ζ2)−

√
πζ

∞∑
n=0

(−ζ2)n

Γ(n+ 3
2
)

(1.15.120)

128Since the pole is on our contour, and the denominator is of the form t − ζ, we consider our answer as ζ → 0
from above the real axis, so the denominator is of the form t− iδ with δ > 0. Then we get a + sign from the Plemelj
formula.
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and for |ζ| → ∞ we have the asymptotic series

Z(ζ) ∼ iσ
√
π exp(−ζ2)−

∞∑
n=0

Γ(n+ 1
2
)

√
πζ2n+1

(1.15.121)

σ ≡


0 =(ζ) > 1

|<(ζ)|

1 |=(ζ)| < 1
|<(ζ)|

2 =(ζ) < − 1
|<(ζ)|

(1.15.122)

You will sometimes see people using the Faddeeva function w(ζ) = Z(ζ)/(i
√
π) which is just

normalizing the plasma dispersion function. Thus

w(ζ) = exp(−ζ2)

(
1 +

2i√
π

ˆ ζ

0

dt exp(t2)

)
= exp(−ζ2) (1 + erf(iζ)) (1.15.123)

1.15.5 Gaussians

Integrals with Gaussians are ubiquitous. Sometimes called the normal distribution, a Gaussian
distribution is defined by

exp(−αx2) (1.15.124)

for some α. Statisticians prefer α = 1/2 while physicists generally prefer α = 1 for x in a normalized
variable. I will stick to the physicists prescription because this is a physics text, and I do not mind
if our physicists’ variance σ2

p is one half of the statistician’s variance σ2 (That is σ2
p = σ2

2
).

Usually we want to integrate the above over some interval. When that interval is all real values,
we have for α > 0 ˆ ∞

−∞
dx exp(−αx2) (1.15.125)

which has a tidy trick to get the answer. We first assume that the answer is finite.129 First we
square the entire expression and call it A2

A2 =

(ˆ ∞
−∞

dx exp(−αx2)

)2

=

(ˆ ∞
−∞

dx exp(−αx2)

)(ˆ ∞
−∞

dx exp(−αx2)

)
(1.15.126)

then we take the second expression and change x→ y

A2 =

(ˆ ∞
−∞

dx exp(−αx2)

)(ˆ ∞
−∞

dy exp(−αy2)

)
(1.15.127)

Because these are finite, we can then take the y integral inside of the x integral

A2 =

(ˆ ∞
−∞

dx exp(−αx2)

(ˆ ∞
−∞

dy exp(−αy2)

))
(1.15.128)

129This is an important first step or else everything we do will be nonsense like squaring infinity and adding and
subtracting infinity. It is also fairly easy to show that this must be a finite value. For x > 1 clearly x exp(−αx2)
will be larger than exp(−αx2) and for the 1 > x > 0 we can just replace exp(−αx2) with 1. If we do these we see
that the answer must be less than 2(1 + exp(−a)/a).
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We can then use that exp(−αx2) is constant with respect to the y integral and so can place it
inside of the y integral

A2 =

ˆ ∞
−∞

dx

ˆ ∞
−∞

dy exp(−αx2) exp(−αy2) (1.15.129)

and use exp(−αx2) exp(−αy2) = exp(−α[x2 + y2]). Now we can change to polar coordinates with
dx dy = J dr dθ with r2 = x2 + y2 and J = r so that we find

A2 =

ˆ ∞
0

dr

ˆ 2π

0

dθ r exp(−αr2) = 2π

ˆ ∞
0

dr r exp(−αr2) (1.15.130)

Try t = αr2 so dt = 2αr dr and we have

A2 =
π

α

ˆ ∞
0

dt exp(−t) =
π

α

exp(−∞)− exp(0)

−1
=
π

α
(1.15.131)

and so

ˆ ∞
−∞

dx exp(−αx2) =

√
π

α
(1.15.132)

Because the integrand is even we then also know that

ˆ ∞
0

dx exp(−αx2) =
1

2

√
π

α
(1.15.133)

We can find the answer to
ˆ ∞

0

dx x2n exp(−αx2) (1.15.134)

by noticing

∂n

∂αn

ˆ ∞
0

dx exp(−αx2) =

ˆ ∞
0

dx (−1)nx2n exp(−αx2) (1.15.135)

so that
ˆ ∞

0

dx x2n exp(−αx2) =

√
π(−1)n

2

∂n

∂αn
α−1/2 =

√
πn!!

2nα(2n+1)/2
(1.15.136)

That, or we can recognize that the above is a gamma function integral and find

ˆ ∞
0

dx xβ exp(−αt2) =
Γ
(
β+1

2

)
2α

β+1
2

(1.15.137)
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1.15.6 Gamma Functions

The gamma functions come in two kinds: complete and incomplete. Traditionally they are denoted
with the Greek symbol gamma. The complete being Γ(z) and the incomplete being one of either
Γ(s, z) for the upper incomplete and γ(s, z) for the lower incomplete, yielding a logical naming
system.130 We then have the definitions

Γ(a, z) =

ˆ ∞
z

dt ta−1 exp(−t) (1.15.138)

γ(a, z) =

ˆ z

0

dt ta−1 exp(−t) (1.15.139)

with the relationship to the complete gamma function given by

Γ(a) = γ(a, z) + Γ(a, Z) (1.15.140)

We have that

Γ(n+ 1) = n! (1.15.141)

for n an integer. For z →∞ we find

ln(Γ(z)) ∼
(
z − 1

2

)
ln z − z +

1

2
ln(2π) +

∞∑
k=1

B2k

2k(2k − 1)z2k−1
(1.15.142)

with Bk the Bernoulli numbers131 defined by x = 0 for the Bernoulli polynomials given by Bk(x).
These polynomials (and hence the numbers) are given by

t exp(xt)

exp(t)− 1
=
∞∑
n=0

Bn(x)
tn

n!
(1.15.143)

m−1∑
k=0

(
m
k

)
Bk(x) = nxn−1 (1.15.144)

with B0(x) = 1.

You will sometimes see ψ(z) = Γ′(z)/Γ(z) used, as well. Its properties clearly follow from Γ(z),
but it is named the polygamma function.

The Beta function B(a, b) is also related to the gamma function via

B(a, b) =

ˆ 1

0

dt ta−1(1− t)b−1 =

ˆ ∞
0

dt
ta−1

(1 + t)a+b
=

Γ(a)Γ(b)

Γ(a+ b)
(1.15.145)

The other important properties of the gamma function are

Γ(1− z)Γ(z) =
π

sin(πz)
(1.15.146)

130It feels as if this is one of the few examples of fairly logical naming system having widespread use, but we do
not notice the logical systems as much, either.

131There are fascinating connections between Bernoulli numbers and Pascal’s triangle. You should definitely look
them up.
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when z is not an integer, called Euler’s reflection formula. Thus

Γ(α− n) = (−1)n−1 Γ(−α)Γ(1 + α)

Γ(n+ 1− α)
(1.15.147)

One other useful property is the Legendre duplication formula

Γ(z)Γ(z +
1

2
) = 21−2z

√
πΓ(2z) (1.15.148)

These last two identities are often of great use in simplifying expressions when gamma functions
do show up. Finally, one can generally use

m−1∏
k=0

Γ(z +
k

m
) = (2m)(m−1)/2m

1
2
−mzΓ(mz) (1.15.149)

Γ(z) = Γ(z) (1.15.150)

Finally, I may as well mention Γ(1/2) =
√
π which allows one to find many of the other half-integer

values.

1.15.7 Exponential Integrals

The exponential integrals are a class of functions defined by integrating the exponential. We see the
logic of the naming convention, but it is ruined by having more than one of them. The definition
for general exponential integrals is given by

En(z) = zn−1Γ(1− n, z) = zn−1

ˆ ∞
z

dt
exp(t)

tn
(1.15.151)

In fact, there are other representations that are common, such as

En(z) =

ˆ ∞
1

dt
exp(−zt)

tn
(1.15.152)

which requires | arg(z) < π/2| or

En(z) =
zn−1 exp(−z)

Γ(n)

ˆ ∞
0

dt
tn−1 exp(−zt)

1 + t
(1.15.153)

which requires <(n) > 0 and | arg(z)| < π/2.

However, what you would think would be the exponential integral would be n = 1 given by

E1(z) =

ˆ ∞
z

dt
exp(−t)

t
=

ˆ ∞
1

dt
exp(−tz)

t
(1.15.154)

but for historical reasons, you actually have the exponential integral defined as

Ei(x) = −
ˆ ∞
−x

dt
exp(−t)

t
= −E1(−x) (1.15.155)
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for positive x values. So you have to actually make sure you are talking about the “right” expo-
nential integral whenever you deal with it.

We have the series expansion

En(z) =
(−z)n−1

(n− 1)!
(ψ(n)− ln z)−

∞∑
k=1

k 6=n−1

(−z)k

k!(1− n+ k)
(1.15.156)

and asymptotic series

E1(z) ∼ exp(−z)

z

N−1∑
n=0

n!

(−z)n
+O(N !z−N) (1.15.157)

It is often more useful to use the analytic function Ein(z) rather than E1(z) or Ei(x) with definition

Ein(z) =

ˆ z

0

dt
1− exp(−t)

t
(1.15.158)

leading to

E1(x) = −γ − ln z + Ein(z) | arg(z)| < π (1.15.159)
Ei(x) = γ + lnx− Ein(−x) x > 0 (1.15.160)

with γ = ψ(1) the Euler-Mascheroni constant.

We also have

E ′n(z) = −En−1(z) (1.15.161)

which is a very useful property.

Finally, there is a relationship between the exponential integral and sine [Si(z)] and cosine [Ci(z)]
integrals

E1(ix) = i

[
−π
2

+ Si(x)

]
− Ci(x) x > 0 (1.15.162)

Si(z) =

ˆ z

0

dt
sin(t)

t
(1.15.163)

Ci(z) = −
ˆ ∞
z

dt
cos(t)

t
(1.15.164)

Cin(z) =

ˆ z

0

dt
1− cos(t)

t
(1.15.165)

Ci(z) = −Cin(z) + ln z − γ (1.15.166)

where Cin(z) is an even analytic function of z.

It is sometimes useful to know

lim
z→∞

Si(z) =
π

2
(1.15.167)

lim
z→∞

Ci(z) = 0 (1.15.168)
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1.15.8 Bessel Functions

The various types of Bessel functions all come from solutions to differential equations that are
of a similar form. They also have somewhat analogous properties and forms. They show up in
spherical and cylindrically symmetric systems, and so are of special interest to physicists.

1.15.8.1 Bessel Functions

We can start with the regular Bessel functions which are the solution to the differential equation
for f(z) given by

z2 d2f

dz2
+ z

df

dz
+ (z2 − ν2)f = 0 (1.15.169)

There are two main kinds,132 corresponding to the two solutions. The Bessel function of the first
kind are denoted Jν(z) given by

Jν(z) =
(z

2

)ν ∞∑
k=0

(−1)k

(
z2

4

)k
k!Γ(ν + k + 1)

(1.15.170)

The Bessel function of the second kind Yν(z) (sometimes called Weber’s function) is given by

Yν(z) =
Jν(z) cos(νπ)− J−ν(z)

sin(νπ)
(1.15.171)

If ν is an integer we say

Yn(z) =
1

π

∂Jν(z)

∂ν

∣∣∣∣
ν=n

+
(−1)n

π

∂Jν(z)

∂ν

∣∣∣∣
ν=n

(1.15.172)

Then there are Hankel functions H(1)
ν (z) and H

(2)
ν (z), sometimes called Bessel functions of the

third kind. They are given by

H(1)
ν (z) = Jν(z) + iYν(z) (1.15.173)

H(2)
ν (z) = Jν(z)− iYν(z) (1.15.174)

with the property that as z →∞

H(1)
ν (z) ∼

√
2

πz
exp

(
i
[
z − νπ

2
− π

4

])
(1.15.175)

H(2)
ν (z) ∼

√
2

πz
exp

(
−i
[
z − νπ

2
− π

4

])
(1.15.176)

for −π < arg(z) < 2π. One then chooses among these functions as solutions depending on the
region we are dealing with so that we don’t have to deal with headaches. For example, Jν(z) and
Yν(z) are used when z = x is real and 0 < x <∞. The DLMF[10] lists the suitable pairs.

132In fact, there are three kinds because Hankel functions are disguised Bessel functions.
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Some important properties are

J0(z)
z→0−→ 1 (1.15.177)

Y0(z)
z→0−→ 2

π
ln z (1.15.178)

H
(1)
0 (z)

z→0−→ −H(2)
0 (z)

z→0−→ 2i

π
ln z (1.15.179)

Jν(z)
z→0−→

(
z
2

)ν
Γ(ν + 1)

(1.15.180)

Yν(z)
z→0−→
−
(
z
2

)−ν
π

Γ(ν) (1.15.181)

Y−ν(z)
z→0−→
−
(
z
2

)−ν
π

cos(νπ)Γ(ν) (1.15.182)

H(1)
ν (z)

z→0−→ −H(2)
ν (z)

z→0−→ − i
π

Γ(ν)
(z

2

)−ν
(1.15.183)

with Jν(z) not okay for ν a negative integer, the formula for Yν(z) only valid for <(ν) > 0 or
ν a negative half-integer, and the formula Y−ν(z) only valid for <(ν) > 0 and ν not a positive
half-integer.

We also have for z →∞ that

Jν(z) ∼
√

2

πz
cos
(
z − νπ

2
− π

4

)
(1.15.184)

Yν(z) ∼
√

2

πz
sin
(
z − νπ

2
− π

4

)
(1.15.185)

One important way of representing Bessel functions of the first kind is through an integral form
given by (n is an integer)

Jn(z) =
1

π

ˆ π

0

dθ cos(z sin θ − nθ) =
i−n

π

ˆ π

0

dθ exp(iz cos θ) cos(nθ) (1.15.186)

J0(z) =
1

π

ˆ π

0

dθ cos(z sin θ) =
1

π

ˆ π

0

dθ cos(z cos θ) (1.15.187)

In addition, the generating function for Jν(z) is given by

exp

(
z

2

[
t− 1

t

])
=

∞∑
n=−∞

tnJn(z) (1.15.188)

which immediately implies for t = 1 that

exp

(
z

2

[
1− 1

1

])
= exp (0) = 1 =

∞∑
n=−∞

Jn(z) (1.15.189)

One can also use the generating function to prove

1 =
∞∑

n=−∞

[Jn(z)]2 (1.15.190)
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Sometimes the generating function is written using t = exp(iθ)

exp (iz sin θ) =
∞∑

n=−∞

exp(inθ)Jn(z) (1.15.191)

1.15.8.2 Modified Bessel Functions

Next we consider modified Bessel functions. These are essentially the same as Bessel functions,
but using ẑ = ±iz instead of z. This gives a differential equation

z2 d2f

dz2
+ z

df

dz
− (z2 + ν2)f = 0 (1.15.192)

There are now only two kinds. The first kind, sometimes called the standard solution is denoted
Iν(z) and given by

Iν(z) =
(z

2

)ν ∞∑
k=0

(
z2

4

)k
k!Γ(ν + k + 1)

(1.15.193)

The second kind Kν(z) is defined by

Kν(z) =
π

2

I−ν(z)− Iν(z)

sin(νπ)
(1.15.194)

for non-integer ν and

Kν(z) =
(−1)n−1

2

((
∂Iν
∂ν

)
ν=n

+

(
∂Iν
∂ν

)
ν=−n

)
(1.15.195)

For z →∞ we then have [valid for | arg(z)| < π/2 for Iν(z) and for | arg(z)| < 3π
2

for Kν(z)]

Iν(z) ∼ exp(z)√
2πz

(1.15.196)

Kν(z) ∼
√

π

2z
exp(−z) (1.15.197)

For z with −π < arg(z) < π/2 we have

Jν(iz) = exp

(
iνπ

2

)
Iν(z) (1.15.198)

Yν(iz) = exp

(
i(ν + 1)π

2

)
Iν(z)−

2 exp
(−iνπ

2

)
π

Kν(z) (1.15.199)

We then have

Iν(z)
z→0−→

(
z
2

)ν
Γ(ν + 1)

ν 6= −1,−2, . . . (1.15.200)

Kν(z)
z→0−→ 1

2
Γ(ν)

(z
2

)−ν
(1.15.201)

K0(z)
z→0−→ − ln z (1.15.202)

Iν(z)
z→∞−→ exp(z)√

2πz
(1.15.203)

Kν(z)
z→∞−→ exp(−z)

√
π√

2z
(1.15.204)
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The modified Bessel function of the first kind has generating function

exp

(
z

2

[
t+

1

t

])
=

∞∑
n=−∞

tnIn(t) (1.15.205)

which may be written with t = exp(iθ) as

exp (z cos θ) =
∞∑

n=−∞

exp(inθ)In(t) (1.15.206)

1.15.8.3 Spherical Bessel Functions

Finally, we consider spherical Bessel functions. They are classified as regular Bessel functions with
analogous first, second, and third kinds. The first and second kind solve the differential equation

z2 d2f

dz2
+ 2z

df

dz
+ (z2 − n(n+ 1))f = 0 (1.15.207)

while the third kind solve

z2 d2f

dz2
+ 2z

df

dz
− (z2 + n(n+ 1))f = 0 (1.15.208)

Here we make n a nonnegative integer. This is for convenience because if n is allowed to be
negative then n(n + 1) will be positive unless n = −1, but that case is the same as n = 0. Thus
−2(−2 + 1) = −2(−1) = 2 = 1(1 + 1) or for m = −|n| we have m(m + 1) = −|n|(−|n| + 1) =
|n|(|n| − 1) which simply is the same as the positive case but with |n| a positive integer. The first
and second kind are denoted yn(z) and yn(z), respectively. They satisfy

jn(z) =

√
π

2z
Jn+ 1

2
(z) = (−1)n

√
π

2z
Y−n− 1

2
(z) (1.15.209)

yn(z) =

√
π

2z
Yn+ 1

2
(z) = (−1)n+1

√
π

2z
J−n− 1

2
(z) (1.15.210)

while the third kind are given by h(1)
n (z) and h(2)

n (z) with

h(1)
n (z) = jn(z) + iyn(z) (1.15.211)

h(2)
n (z) = jn(z)− iyn(z) (1.15.212)

h(1)
n (z) =

√
π

2z
H

(1)

n+ 1
2

(z) = (−1)n+1i

√
π

2z
H

(1)

−n− 1
2

(z) (1.15.213)

h(2)
n (z) =

√
π

2z
H

(2)

n+ 1
2

(z) = (−1)ni

√
π

2z
H

(2)

−n− 1
2

(z) (1.15.214)

One can define analogous modified spherical Bessel functions via

i(1)
n =

√
π

2z
In+ 1

2
(z) (1.15.215)

i(2)
n =

√
π

2z
I−n− 1

2
(z) (1.15.216)

k(2)
n =

√
π

2z
In+ 1

2
(z) =

√
π

2z
K−n− 1

2
(z) (1.15.217)
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with the reflection formulas

jn(−z) = (−1)njn(z) (1.15.218)
yn(−z) = (−1)n+1yn(z) (1.15.219)

h(1)
n (−z) = (−1)nh(2)

n (z) (1.15.220)

h(2)
n (−z) = (−1)nh(1)

n (z) (1.15.221)

i(1)
n (−z) = (−1)ni(1)

n (z) (1.15.222)

i(2)
n (−z) = (−1)n+1i(2)

n (z) (1.15.223)

kn(−z) = −π
2

(
i(1)
n (z) + i(2)

n (z)
)

(1.15.224)

And we have

jn(z), i(1)
n (z)

z→0−→ zn

(2n+ 1)!!
(1.15.225)

−yn(z), ih(1)
n (z),−ih(2)

n (z), (−1)ni(2)
n (z),

2

π
kn(z)

z→0−→ (2n− 1)!!

zn+1
(1.15.226)

jn(z)
z→∞−→

sin
(
z − nπ

2

)
z

(1.15.227)

yn(z)
z→∞−→ −

cos
(
z − nπ

2

)
z

(1.15.228)

h(1)
n (z)

z→∞−→ i−n−1 exp(iz)

z
(1.15.229)

h(2)
n (z)

z→∞−→ in+1 exp(−iz)

z
(1.15.230)

i(1)
n (z)

z→∞−→ exp(z)

2z
| arg(z)| < π/2 (1.15.231)

i(2)
n (z)

z→∞−→ exp(z)

2z
| arg(z)| < π/2 (1.15.232)

kn(z)
z→∞−→ π exp(−z)

2z
(1.15.233)

The spherical Bessel function generating functions are given by

1

z
cos
(√

z2 − 2zt
)

=
cos z

z
+
∞∑
n=1

tn

n!
jn−1(z) (1.15.234)

1

z
sin
(√

z2 − 2zt
)

=
sin z

z
+
∞∑
n=1

tn

n!
yn−1(z) (1.15.235)

1

z
cosh

(√
z2 − 2zt

)
=

cosh z

z
+
∞∑
n=1

(it)n

n!
i
(1)
n−1(z) (1.15.236)

1

z
sinh

(√
z2 − 2zt

)
=

sinh z

z
+
∞∑
n=1

(it)n

n!
i
(2)
n−1(z) (1.15.237)

1

z
exp

(
−
√
z2 − 2zt

)
=

exp(−z)

z
+

2

π

∞∑
n=1

(−it)n

n!
kn−1(z) (1.15.238)
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1.16 Probability and Statistics Warnings

Henry Petroski wrote that in engineering, “success is foreseeing failure,” a useful thought
in many contexts.

— Paul Rosenbaum[27, p. 171]

Probability is not an easy subject. Combinatorics, statistics, and probability are easier to do
mathematically than to apply to any real world situations. Part of the problem is that talking
about probability is confusing. If I tell you there is a 50% chance a fair coin will land heads,
that is probability. If I say I think there is a 50% chance person A committed a crime, is that
probability? If I say there’s a 50% chance that it will rain tomorrow, is that probability? It seems
like they are testing different things, doesn’t it? The fair coin is splitting up a configuration space
in a clear way. The crime situation seems to be more related to the evidence I have available than
on any true property about the world. The weather probability is especially galling. Does it mean
that in 50% of days like this, it rained in the past? or 50% of weather simulations rained? or
does it mean something entirely different, like 50% of an area will have rain?133 These different
ideas are all packed up into a single mathematical framework, though. There are no easy answers,
and you really need to think about what someone means when they give a probability. Indeed,
some philosophers and mathematicians would not consider some of those examples above to be
probabilities because they don’t split up a configuration space unambiguously.

The other problem is that assuming that statistics is just Gaussians is wrong. The real world has
uncertainties that are not at all like the rapidly decaying tails of Gaussians. You need to always
be on guard that one of these problematic distributions will show up in your work. Otherwise,
when a problematic distribution (a fat-tailed distribution) shows up, it will destroy your ability to
predict things accurately which can be disastrous if you are counting on only a certain very small
fraction of errors being possible.

I, personally, think that one of the confusing things about probabilities is that they often seem
divorced from physical reality and simply state that something has probability x, without stating
the conditions that are required. For this reason, I am against unconditional probabilities, because
I think they are half of the problem. If you are forced to give what your conditions are for
your probability, it often makes things much clearer. Therefore, I will try to stick to conditional
probabilities, and explain why I think unconditional probabilities simply are not necessary.

The other half of the problem is that humans are better at thinking probabilities in a specific
context. One great tip for understanding statistics and probability problems is, essentially, a
psychological one. Instead of talking about probabilities, think of making the problem into ones
of natural frequencies. That is if a problem says that a person has a 1% chance, think 1 in 100.
It is amazing how presenting the problem with nice whole numbers will make problems easier to
understand.

For example, consider testing for disease X. The test will always give the right answer when a
person has disease X, but is only accurate 98% of the time when the person does not have disease
X [that is, 2% of the time the test will say a healthy person has disease X]. We also know that for

133The answer given by the US NWS is that probability of precipitation means that more than 0.25 mm of
precipitation will fall in a single spot, averaged over forecast area. This means the confidence is based on weather
simulations. So if you had 80% confidence it would rain in 20% of the forecast area, then the probability of
precipitation would be 16%.

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



Mathematical Beginnings 227

the population we are talking about, the prevalence of the disease is 0.01%. Someone from this
population takes the test and gets a positive result. What is the probability they have disease X?
Rather hard, don’t you think? You could use Bayes’ (conditional) Theorem with Xh meaning “has
disease X”, T+ meaning “tests positive”, and P meaning “is a person in the population we have
statistics for”, then we have

P (Xh|T+ andP ) =
P (Xh|P )

P (T+|P )
P (T+|Xh andP )

=
P (Xh|P )P (T+|Xh andP )

P (T+|Xh andP ) + P (T+|[notXh] andP )

=
0.0001

1(0.0001) + .02(0.9999)
1 ≈ 0.00498

(1.16.1)

which is not very intuitive (at least to me).

If we instead write this with nice whole numbers initially,134 it is much easier for me to imagine.
Let’s say we have 10 000 of the given population and have all of them take the test. We know that
(on average) 1 person in this population has disease X. Of the 9999 that do not, 2% or about 199.98
people on average, will falsely test positive. Then the chance that we will pick the person actually
with disease X among these approximately 201 people that test positive is 1/200.98 ≈ 0.004 98 or
about 0.5%, just as before. This way makes the steps much, much clearer. At least for me.

1.16.1 Central Limit Problems

If you have taken any courses on statistics, you will have learned the central limit theorem. In fact,
there are numerous central limit theorems, but the one that most people learn says something like
this.

Given a set of random variables135 X1, X2, . . . , XN , that were independently and identically dis-
tributed136 with expected mean µ and finite variance σ2 [so each random variable has the same
mean µ and variance σ2], then as n approaches infinity, the sample mean Sn given by

Sn ≡
X1 + · · ·+Xn

n
(1.16.2)

can be used to form a random variable
√
n(Sn− µ) which converges to a normal distribution with

mean 0 and variance σ2.

This is usually translated to say that for any distribution, if we sample it long enough we get a
Gaussian or normal distribution when we sum the random variables associated with that distribu-
tion. And so, practically everything converges to a Gaussian. This interpretation is false.

What is usually glossed over is the assumption of finite variance σ2 and finite mean µ. You may
think this is a mild assumption, but it is actually more restrictive than it seems at first glance.
In fact, the more general central limit theorems acknowledge this. They do not require a finite
variance and mean, but then find that the Sn will converge to one of several stable distributions.

134This is called writing it with natural frequencies.
135A random variable is a variable whose outcome depends on a “random” phenomenon. That is, it can be viewed

as the value one gets from sampling a particular distribution associated with that variable.
136That is, they all have the same distribution function associated with them, and each variable was chosen

independently [they do not depend on each other].
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Indeed, let’s examine a case, the Lorentzian, sometimes called the Cauchy distribution.137 It is
given by

f(x;x0, γ) =

(
πγ

[
1 +

(x− x0)2

γ2

])−1

=
1

πγ

γ2

(x− x0)2 + γ2
(1.16.3)

Here x0 gives the peak and 2γ characterizes the size of the full width at half maximum. The γ
also is equal to half of the interquartile range and is called the probable error. Suppose γ = 1 and
x0 = 1 and we get a harmless looking function

f(x; 1, 1) =

(
1

π

)
1

1 + x2
(1.16.4)

You can easily check that
ˆ ∞
−∞

dx f(x; 1, 1) =
1

π

ˆ ∞
−∞

dx
1

1 + x2
= 1 (1.16.5)

This requires finding
ˆ ∞
−∞

dx
1

1 + x2
= arctan (x)∞−∞ =

π

2
− −π

2
= π (1.16.6)

However any moment xα with integer α > 0 is either divergent or undefined. You might expect
that odd moments are zero (which is the Cauchy principal value, of course), but in fact there is
no answer. This is because the first moment, or mean, is proportional to the integral

ˆ ∞
−∞

dx
x

1 + x2
(1.16.7)

This has a defined value only if

lim
a,b→∞

[ˆ a

−b
dx

x

1 + x2

]
(1.16.8)

is well-defined. If we use u = 1 + x2 then

lim
a,b→∞

[ˆ 1+a2

1+b2
du

1

2u

]
= lim

a,b→∞

[
ln(1 + a2)− ln(1 + b2)

2

]
= lim

a,b→∞

[
1

2
ln

(
1 + a2

1 + b2

)]
(1.16.9)

Clearly this depends on how a and b go to infinity, and so the limit is not well-defined.138 For
higher odd moments, this process repeats itself. This integral therefore is not well-defined. For
higher even moments, it is, in a sense, better. They “only” diverge. For the variance we’d see

ˆ ∞
−∞

dx
x2

1 + x2
=

ˆ ∞
−∞

dx

[
1− 1

1 + x2

]
(1.16.10)

137In fact, it is called the Lorentz distribution, the Cauchy-Lorentz distribution, the Lorentz function, the
Lorentzian function, or the Breit-Wigner function in various contexts. I was inspired by Filip Piękniewski and
his post on his website.

138If you do not believe this, see what you get for an answer when b = a and when a = 2b with limb→∞.
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and so

lim
a,b→∞

[ˆ a

−b
dx 1−

ˆ a

−b
dx

1

1 + x2

]
= lim

a,b→∞
[(a+ b) + arctan(a)− arctan(−b)]

= lim
a,b→∞

[(a+ b) + arctan(a) + arctan(b)]
(1.16.11)

which clearly diverges for any way that a and b approach ∞.

It is worth delving slightly into “fat” and “heavy” tails so that you will not be confused when
reading these in the literature.

You will often hear fat-tailed and heavy-tailed, but they have conflicting uses in the literature.
These terms can then apply to the left, right, or both tails. A fat-tailed distribution is always
a heavy-tailed distribution, but not the other way around. When such distinctions arise, it is
common to only use heavy-tailed, long-tailed,139 and subexponential distributions as the monikers
for different types of distributions.

A heavy-tailed distribution has its tail not exponentially bounded, that is, the tail can have a prob-
ability greater than that of the exponential distribution in the tail. A long-tailed distribution is one
that given that you have chosen a value from your distribution greater than x, then the probability
it is greater than x+ t for t > 0 approaches one as x→∞. That is, if you know x is a large value,
it is actually likely that it is more than likely an extremely large value. A long-tailed distribution
is a heavy distribution, but not necessarily vice versa. Finally, a subexponential distribution is
a distribution that given n independent random variables Xi from such a distribution, we have
the probability of

∑
iXi > x approaches the probability of max(X1, . . . , Xn) > x as x → ∞.140

All subexponential distributions are long-tailed distributions (but a long-tailed distribution is not
necessarily a subexponential distribution). Finally, a fat-tailed distribution is one that has the
probability density go to zero like x−a as x→∞ for a > 0.

Clearly we see that all fat-tailed distributions are heavy since a power of x will be greater than an
exponential of x.

Our Lorentzian is a fat-tailed distribution, and so we cannot depend on the original central limit
theorem to help us. In fact, the Lorentzian x0 = 0 and γ = 1 is a type of a student’s t distribution.
It destroys most of the common ideas we have that come from the central limit theorem. For
example, the idea that if you take enough samples, you will converge on the mean. The Lorentzian
distribution has no mean, so you will never get a convergence. A Lorentzian distribution also
means that “rare” events are not nearly as rare as they seem when thinking through the lens of a
Gaussian or normal distribution.

The main lesson here is that you need to make sure that you are working with a sensible model
and that to do so you cannot assume that you are working only with Gaussian distributions! It
will often be the case, but make sure that you have no reason to be working with a Lorentzian or
any other stable141 distribution! In other words, if you have a power law distribution (a fat-tailed
distribution), then don’t use intuitions honed on Gaussians.

139As if heavy-tailed and fat-tailed aren’t enough!
140This is sometimes called the big jump or catastrophe principle since it says that the probability of a rare event

occurring after n random samples is basically the probability of the worst case happening in any one sample.
141Stable in this sense means that the sum of two random independent variables with the same distribution also

has that same distribution up to location and scale parameters.
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Figure 1.15: This shows the Lorentzian (f(x; 0, 1), f(y : 0, 1)) and Gaussian (f(x; 0, 2
2.355

=
0.85), f(y; 0, 2

2.355
= 0.85)) so that the full-width half max is 2 for both cases. Note how we

are then going nearly 12 standard deviations out with our scale. The Gaussian is neatly contained,
but the Lorentzian seems to be doing something else.

The following Figures 1.15 and 1.16 show that rare events are perhaps not so rare with a Lorentzian,
at least when compared against a Gaussian.

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



Mathematical Beginnings 231

Figure 1.16: This shows the Lorentzian (f(x; 0, 1), f(y : 0, 1)) and Gaussian (f(x; 0, 2
2.355

=
0.85), f(y; 0, 2

2.355
= 0.85)) so that the full-width half max is 2 for both cases. Note how we

are then going nearly 120 standard deviations out with our scale! The Gaussian is neatly con-
tained, but the Lorentzian now looks like a cross. This is because it is rare to have extreme events
both in x and in y. You can see how what seem like rare events in a Gaussian become not so rare
with a Lorentzian.

1.16.2 Probability Thoughts

If you have studied probability, you have probably been exposed to probability interpretations.
People speak of “probabilities” as if it is clear what they mean, but I tend to think other than by
fiat, it is not at all clear what a probability means. Remember the example when I tell you the
weather will be rainy tomorrow with probability 1/2. How should this be interpreted? If you are
using a series of events from the real world, the question then becomes, how do you decide what is
“like” the situation? If I tell you 1/2 of days like this are rainy, a lot of work is being done by “days
like this”. This is the reference class problem, and it afflicts anyone who talks of an unconditional
probability (that is without stating the conditions. In probability circumstances, these are often
stated following the word “given”). I am indebted to the thinking and work by Hájek[19][18][20] for
making me aware of the problem and introducing me to thinking of probabilities as really being
conditional probabilities.

First, though, let me outline what is usually meant by probability. Many probability tutorials
start with sets and introduce an operator Pr that translates sets into probabilities. Then the sets
act as events that can be translated into the real world. We impose for admissible sets A that
Pr(A) ≥ 0 to ensure non-negativity. If C represents all possible sets (that is everything that is
possible/admissible) then Pr(C) = 1 so that we have a normalization. Finally, we have for all
admissible A and B with A ∩B ≡ ∅ (the empty set) that

Pr(A ∪B) = Pr(A) + Pr(B) (1.16.12)

Here ∪ is a union operator, so the largest possible set made up of elements of A and B. The way
to think about this is easier to understand with an example. Consider a coin that we will flip
once with only two sides. We could represent all possible options with the set C as 0, 1 where 0
represents heads and 1 represents tails. Then we must require

1 = Pr(0, 1) = Pr(0 ∪ 1) = Pr(0) + Pr(1) (1.16.13)
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If we have reasons to believe that there is no bias142 then we can assign Pr(0) = Pr(1) = 1/2. In
more complicated but finite examples the belief in no bias may or may not be satisfied, but it leads
to the usual analyses of an n sided die, for example. Note that these rules do not tell you what
you should assign as probabilities, however, just how to deal with them once you have.

If you work through all the possibilities and consider “and” to mean ∩ (this is the intersection, and
so A∩B means all the elements in common for A and B) and “or” to mean ∪, and “not” to mean
complement C (given the entire set C with B a subset of C, then BC = A is the set of all elements
of C that are not in B) then

Pr(AC) ≡ Pr(notA) = 1− Pr(A) (1.16.14)
Pr(A ∪B) ≡ Pr(A orB) = Pr(A)− Pr(B)− Pr(A ∩B) (1.16.15)
Pr(A ∩B) ≡ Pr(A andB) = Pr(A|B) Pr(B) A and B not independent (1.16.16)
Pr(A ∩B) ≡ Pr(A andB) = Pr(A) Pr(B) A and B independent (1.16.17)

Pr(A|B) ≡ Pr(A ∩B)

Pr(B)
=

Pr(B|A) Pr(A)

Pr(B)
Pr(B) > 0 (1.16.18)

where the last line is Bayes’ theorem proved via A ∩B = B ∩ A so

Pr(A|B) Pr(B) = Pr(A ∩B) = Pr(B ∩ A) = Pr(B|A) Pr(A) (1.16.19)
Pr(A|B) Pr(B) = Pr(B|A) Pr(B) (1.16.20)

Pr(A|B) =
Pr(B|A) Pr(B)

Pr(B)
(1.16.21)

(1.16.22)

We can “conditionalize” it using [Pr(C) 6= 0]

Pr(A ∩B ∩ C) = Pr(A ∩ [B ∩ C]) = Pr(A|B ∩ C) Pr(B ∩ C) = Pr(A|B ∩ C) Pr(B|C) Pr(C)

(1.16.23)
= Pr(B ∩ A ∩ C) = Pr(B ∩ [A ∩ C]) = Pr(B|A ∩ C) Pr(A ∩ C) = Pr(B|A ∩ C) Pr(A|C) Pr(C)

(1.16.24)
Pr(A|B ∩ C) Pr(B|C) Pr(C) = Pr(B|A ∩ C) Pr(A|C) Pr(C) (1.16.25)

Pr(A|B ∩ C) =
Pr(B|A ∩ C) Pr(A|C) Pr(C)

Pr(B|C) Pr(C)
=

Pr(B|A ∩ C) Pr(A|C)

Pr(B|C)
(1.16.26)

Pr(A|B andC) =
Pr(B|A andC) Pr(A|C)

Pr(B|C)
(1.16.27)

Later I will try to help this be more memorable by using different variables, but, for now, this is
fine. For finite sets with Pr(B) = 0 then Pr(A|B) is undefined, since B cannot happen. When we
consider infinite sets, this becomes problematic. Any competent probability textbook will teach
you that Pr(B) = 0 does not mean that something does not happen when you deal with continuum
values. For example, if you throw a dart at a dartboard and it hits the board at a random location,
the probability of hitting any location (x, y) is zero. But it will hit a location! Say it hits (0, 1).

142In fact, building a biased coin is very difficult if the coin is flipped well and the coin is caught before it hits the
floor and starts to spin.[15]
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We know that Pr ((0, 1)) = 0. This also tells us that with infinite sets that Pr(B) = 1 does not
mean the event will certainly happen. For in the previous case we would say Pr ( not(0, 1)) = 1
yet it would still be possible to hit (0, 1). The term “almost sure” is then defined to mean that a
probability 1 event is almost sure if the complement of the set (the “not”) in the probability space
is not the empty set. So (0, 1) above is not the empty set and so Pr(not(0, 1)) = 1 is an almost
sure event. Note that an impossible event will still have Pr = 0, and a certain event will have
Pr = 1, but that they are no the only events with these probabilities.

However, there are events we cannot say things about with the above formalism that seem like
they have straightforward answers. Suppose we know that by magic that the dart will hit either
(0, 1) or (1, 0) with them being equally likely. Doesn’t it seem like Pr ((0, 1)|(0, 1) or(1, 0)) should
be 1/2? But our rule says no, it is undefined because the probability is 0. Of course, if you go
through the weeds of mathematical sophistication, one can construct a new meaning for Pr(A|B)
that gives the “right” answer, but most texts simply ignore these problems. As we will see later,
there is an alternate formulation that avoids this problem altogether.

Indeed, suppose you have a coin you believe is fair. If you flip it, what is the probability that it
lands on heads if I toss it fairly? It seems like it should be 1/2, but our rule tells us

Pr(heads|fair toss) =
Pr(heads ∩ fair toss)

Pr(fair toss)
(1.16.28)

But what is the probability that I fairly toss the coin? Should it even matter for how I posed the
question?

All of this comes down to saying, whenever you deal with an unconditional probability, you should
ask yourself what is implicitly being used as a conditional. This will help you ensure you are using
the right data and makes it all the easier to understand what the probability even means. At the
very least, when you are given a probability, the set C (of all possibilities) you are talking about
should be given.

If you want to only work with conditional probabilities, consider using Popper functions. These
are traditionally given using statements (in propositional languages) A, B, or C rather than sets143
and use the following axioms

Pr(A|A) = 1 (1.16.29)
Pr(A|C andB) = Pr(A|B andC) (1.16.30)
Pr(B andA|C) = Pr(A andB|C) (1.16.31)

(1.16.32)

For a given B we have either for all A that

Pr(A|B) + Pr(notA|B) = 1 (1.16.33)

or for all C

Pr(C|B) = 1 (1.16.34)

143If you are worried about the math, these can be related to non-Archimedean probability functions.[6] You can
also change this back into sets, if you feel uncomfortable with statements.

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



234 Probability and Statistics Warnings

This is saying that if Pr(notB|B) = 1 then Pr(C|B) = 1 for all C. That is if we have a contradiction
as true, everything is true. Finally, we have

Pr(A andB|C) = Pr(A|B andC) Pr(B|C) (1.16.35)

We can now prove a conditional Bayes’ theorem using (1.16.31) and (1.16.35). We have

Pr(A andB|C) = Pr(A|B andC) Pr(B|C) (1.16.36)
Pr(B andA|C) = Pr(B|A andC) Pr(A|C) (1.16.37)

Pr(A|B andC) Pr(B|C) = Pr(B|A andC) Pr(A|C) Pr(A|B andC) =
Pr(B|A andC) Pr(A|C)

Pr(B|C)
(1.16.38)

This can be more easily remembered by saying using H for hypothesis instead of A, E for evidence
instead of B, and B for background conditions instead of C. Then we have

Pr(H|E andB) =
Pr(E|H andB) Pr(H|B)

Pr(E|B)
(1.16.39)

which says that the probability of the hypothesis given the evidence and background conditions
is related to the probability of the evidence given the hypothesis and background conditions, the
probability of the hypothesis given the background conditions alone, and the probability of the
evidence given the background conditions alone.

This brings up one final “problem”. What (background) conditions should you actually use? This
is the reference class problem, and the answer is generically use what is useful for the situation. If
your situation gives you certain conditions, use those. You will not find a probability unconditioned
out there.

One may apply to what I will call the unconditional probability Euthyphro dilemma144 to see
how there are no justifiable unconditional probabilities. Suppose someone has an unconditional
probability that they believe is justified. If we ask them why they think it is justified they have
essentially three responses available, which eventually must collapse to two. They could give a
reason by stating a principle that is at play in this situation. In this case, whatever that principle
is, it is a (background) condition, and so they actually have a conditional probability.145 Second
they could simply say they just assume or believe it. At this point, one should question whether
that is any justification at all. Third, they could refer to an expert, but then we ask the same
question to the expert. Eventually we must get an answer of conditions or sheer belief. If it truly
were an infinite loop of experts, then this would not be a justification, but an impressive consensus.
But it would not really be a justification if expert A cites expert B who eventually cites expert
A as the “reason” for their belief in an unconditional probability. At the very least, I wouldn’t be
confident in a statement if a loop of experts gave as justification that each of them believe each
other has a valid reason, but no one can produce it, but can only say another expert believes it.

144This is a famous morality dilemma (though there are those who dispute it is a dilemma). It’s modern form
asks, “Is something good because God commands it? Or does God command it because it is good?”.

145Note that if they say look at the results, then they are referring to a principle. That the it is consistent with
the given data. Certainly the data must have some sort of principles guiding how it was measured. At the very
least, one must outline the potential possibilities for the probability to mean something, and what is possible is a
condition.
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To end, let’s bring this back to physics. A lot plasma physics uses kinetics, and statistical mechanic-
like ideas. You should keep in mind that probabilities are notoriously difficult with thermodynamic
ideas, and it helps to spell out the assumptions used when given a probability. Conditional prob-
abilities do this explicitly. If someone says that a particular state is unlikely, they mean given
the macroscopic physical conditions we view, very few microstates are compatible with this. Of
course, one could ask why those particular physical conditions are important (the reference class
problem). Usually the answer is that these are what are useful to measure and calculate with,
which is as good of an answer as can be given.

1.17 Further Reading

There is a wealth of texts on curvilinear coordinates. W. D. D’haeseleer[9] is of course a good
read for curvilinear coordinates in a magnetic confinement plasma physics context. General rela-
tivity textbooks also provide some similar content, though generally lean heavily into differential
forms, differentiable manifolds, and more abstract mathematical approaches. If you would like to
see tensors generically investigated in a more mathematical context, Lovelock[23] is also a good
reference. There are a wealth of textbooks on tensor analysis, and so one should not find too much
trouble finding other references. Asymptology has quite a few texts that can be found under that
name and asymptotics. A text I enjoyed was deBruijn[7]. For a general treatment of mathemat-
ics for physical problems, Bender and Orzsag is a classic[2]. Fourier series, Fourier transforms,
Laplace transforms, and Taylor series should be found in common undergraduate mathematics
textbooks, but a delightful coverage of them in spectral methods is given by Boyd[5]. Balloon-
ing transforms are well-described in Connor, Hastie, Taylor[8], and there are some review papers
available. Variational Calculus is covered in classical physics texts, but functional analysis, espe-
cially for numerical work, is excellently covered in Sawyer[28]. For the Hamiltonian nature of the
magnetic fields, Morrison[25] has a good review article, though the subject goes back to Kerst[22]
in 1962, and, in fact, the idea was already there in the late 1950’s. However, most of the credit
should really go to Boozer[4] in 1981 and many papers thereafter. Unsurprisingly, the Frenet-Serret
formulas come from Frenet and Serret who independently discovered them. I have found online
resources to be more than sufficient for understanding them. The JWKB approximation also has
a wealth of resources to choose from online and in texts. Complex analysis texts are abundant,
and contour integration is usually treated excellently. Analytic continuation is treated in any good
complex variables textbook, as well, and also has fairly good treatments online. Special functions
are subjects on their own. I quite like the DLMF[10] (Digital Library of Mathematical Functions)
provided by NIST. This is similar to Abramowitz and Stegun[1] which is available online. The
probability and statistics section can be supplemented with online resources, textbooks, and if you
want more on conditional probabilities being the most basic, Hájek[19][18][20].

1.18 Problem Set

1.1. For Section 1.1.

1.1.1. Consider a function f(E, y, z) = E+z−y with E = x2+y2. What is
(
∂f
∂E

)
y,z
? How about(

∂f
∂y

)
E,z

and
(
∂f
∂z

)
E,y

? What if we substitute f(E, y, z) = f(x, y, z) = x2 + y2 + z − y?

What are
(
∂f
∂x

)
y,z
,
(
∂f
∂x

)
y,z
,
(
∂f
∂x

)
y,z
? If we compare our results, is there a simple way to
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translate something like
(
∂f
∂x

)
y,z

in terms of
(
∂f
∂E

)
y,z

and
(
∂E
∂x

)
y
? How about for

(
∂f
∂y

)
x,z

in terms of
(
∂f
∂y

)
E,z

,
(
∂E
∂y

)
x
, and

(
∂f
∂E

)
y,z
?

1.1.2. Show that for a function f(x, y, z) = g(a, b, c) with a = a(x, y, z), b = b(x, y, z), and
c = c(x, y, z) that(

∂f

∂x

)
y,z

=

(
∂g

∂a

)
b,c

(
∂a

∂x

)
y,z

+

(
∂g

∂b

)
a,c

(
∂b

∂x

)
y,z

+

(
∂g

∂c

)
a,b

(
∂c

∂x

)
y,z

(1.18.1)(
∂f

∂y

)
x,z

=

(
∂g

∂a

)
b,c

(
∂a

∂y

)
x,z

+

(
∂g

∂b

)
a,c

(
∂b

∂y

)
x,z

+

(
∂g

∂c

)
a,b

(
∂c

∂y

)
x,z

(1.18.2)(
∂f

∂z

)
x,y

=

(
∂g

∂a

)
b,c

(
∂a

∂z

)
x,y

+

(
∂g

∂b

)
a,c

(
∂b

∂z

)
x,y

+

(
∂g

∂c

)
a,b

(
∂c

∂z

)
x,y

(1.18.3)

The slightly more confusing notation, but perfectly valid way, is to write f(x, y, z) =
f(a, b, c) instead can be summarized as (here xi is a one of x = x1, y = x2, or z = x3

and xjj stands for the other two, not equal to i, and similarly for ai and ajj with a = a1,
b = a2, and c = a3) (

∂f

∂xi

)
xjj

=
3∑
i=1

(
∂f

∂ai

)
ajj

(
∂ai
∂xi

)
xjj

(1.18.4)

The other way is also perfectly valid, though it requires us to find x = x(a, b, c), y =
y(a, b, c), and z = z(a, b, c) to find(

∂f

∂ai

)
ajj

=
3∑
i=1

(
∂f

∂xi

)
xjj

(
∂xi
∂ai

)
ajj

(1.18.5)

Test this on our previous function f(E(x, y), y, z) = E + z − y with E = x2 + y2 and
f(x, y, z) = x2 + y2 + z − y. One can write x = x(E, y) and y = y(E, x) to use the
“inverse” formula.

1.1.3. Let
↔
T = xy2x̂ŷ. Find ∇ ·

↔
T a volume integral around the unit cube centered at the

origin. That is, find
ˆ 1

−1

dz

ˆ 1

−1

dy

ˆ 1

−1

dx ∇ ·
↔
T

Then find the same value via Gauss’s theorem (so six different surface integrals)
ˆ 1

−1

dz

ˆ 1

−1

dy

ˆ 1

−1

dx ∇ ·
↔
T =

‹
dS n̂ ·

↔
T

Now what do you get if you were to use the other convention for integral order? That
is what do you get for

ˆ 1

−1

ˆ 1

−1

ˆ 1

−1

∇ ·
↔
T dx dy dz =

‹
↔
T · n̂ dS
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And what would you get if with the other integral order convention used the alternate
divergence ∇ ·

↔
T
ᵀ

?
ˆ 1

−1

ˆ 1

−1

ˆ 1

−1

∇ ·
↔
T
ᵀ

dx dy dz =

‹
↔
T
ᵀ

· n̂ dS

1.1.4. Prove the generalized chain rule ∂f
∂x

= ∂y
∂x
· ∂f
∂y
. Make sure you understand why ∂f

∂x
6=

∂f
∂y
· ∂y
∂x
. As a hint, write out everything with Einstein summation notation remembering

that ∂
∂x

= ei ∂
∂ξi

.

1.2. For Section 1.2

1.2.1. Reproduce Figure 1.2 using ξ1 = x− y and ξ2 = y. Calculate ∂x
∂ξi

(using x = xx̂ + yŷ)
and ∂ξi

∂x
. Make sure you keep things constant that should be in the partial derivatives.

It is easiest to find the tangent basis vectors by solving x = x(ξ1, ξ2) and y = y(ξ1, ξ2).

1.2.2. Try finding the tangent basis vectors and reciprocal basis vectors for

ξ1 = x− y (1.18.6)
ξ2 = y − z (1.18.7)
ξ3 = x+ y + z (1.18.8)

With your favorite 3D plotting software plot the ξi = cij for constants cij. See the
normal directions to these surfaces. Then let ξj′ = cj′ and ξk

′
= ck′ and see how ξi

′

varies to find the tangent directions.

1.2.3. Show how the reciprocal basis defined by (1.2.33) are satisfied by (1.2.30)-(1.2.32). Try
it with the Cartesian basis x̂, ŷ, and ẑ. Do you notice anything about the reciprocal
basis and the tangent basis?

1.2.4. Calculate the tangent basis and reciprocal basis for cylindrical coordinates (use either
C.2 or C.3), spherical coordinates (use C.4), and primitive toroidal coordinates (see
C.5). Feel free to use Appendix C for the definitions. The answers are also there, but
try not to use them unless you have no choice.

1.2.5. For cylindrical, spherical, or primitive toroidal coordinates, is there a special relationship
between the tangent basis vectors, themselves? That is, what is ∂x

∂ξi′
· ∂x
∂ξj′

. What about
the reciprocal basis vectors ∇ξi′ · ∇ξj′? Are they orthogonal? What does that tell us
immediately about the metric coefficients gij and gij? Consider whether ∇ξi′ · ∇ξj′ =
f(ξk)δi

′j′ for some function f(ξk) implies that ∂x
∂ξi′
· ∂x
∂ξj′

= g(ξk)δi
′j′ and vice versa.

Similarly what if only ∇ξ1 · ∇ξ2 = ∇ξ1 · ∇ξ3 = 0 but ∇ξ2 · ∇ξ3 6= 0? And if only
∇ξ1 · ∇ξ3 = 0 for the basis vectors? This tells us what partial orthogonality gives us.
You should find something interesting for two pairs of basis vectors orthogonal, but
little of interest for only one pair orthogonal.

1.2.6. Consider cylindrical coordinates from C.3. Consider a vector representing velocity in
“standard” form V = SV RR̂+SV θθ̂+SV ZẐ. What would the contravariant components
V R, V θ and V Z be in terms of the standard components? What are the units of each of
the contravariant components? What are the units of the tangent basis vectors? What
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about the covariant components VR, Vθ, and VZ? What are the units of the reciprocal
basis vectors? What happens when we multiply a contravariant component by a tangent
basis vector? Or a covariant component by a reciprocal basis vector?

1.2.7. Consider primitive toroidal coordinates from C.5. Consider a vector representing ve-
locity in “standard” form V = SV rr̂ + SV θθ̂ + SV ζ ζ̂. What would the contravariant
components V r, V θ and V ζ be in terms of the standard components? What are the
units of each of the contravariant components? What are the units of the tangent
basis vectors? What about the covariant components Vr, Vθ, and Vζ? What are the
units of the reciprocal basis vectors? What happens when we multiply a contravariant
component by a tangent basis vector? Or a covariant component by a reciprocal basis
vector?

1.2.8. Suppose we used as a Jacobian matrix J ᵀ. Would this change the Jacobian determi-
nant? Would using this definition be consistent with acting on the closest vector to our
right for a matrix?

1.2.9. Show that δij is an order two type (1,1) tensor component. This will show that the
identity tensor 1 is indeed a tensor and is given in Einstein notation as the delta
function. Show that δij and δij are not components of an order two tensor.

1.2.10. Show that εijk and εijk are not components of an order 3 tensor. You will find that
the reason they are not has to do with a factor of J . Would J εijk and εijk/J be
components of an order 3 tensor? They should be. Call this new order three tensor E
the permutation tensor. Sometimes the Levi-Civita symbol is called a tensor density
since the Jacobian determinant simply needs to multiply it in order for it to become a
tensor.

1.2.11. The Christoffel symbols in the form Γijk and Γi,jk may suggest they are order three
tensors. Prove that they are not.

1.2.12. If you want practice with Einstein summation or index notation, the best practice is
to get a bunch of vector identities and do the translation into Cartesian components,
manipulate them to a new form, translate back into abstract vectors and see if you get
the same identity. These usually use εijkεijl identities, and such. Consult Appendix
B. Some good ones to derive yourself are (B.7)-(B.10), (B.16)-(B.19), (B.22), (B.25), -,
(B.132)-(B.136), or (B.145)-(B.159). I would definitely recommend proving

∇(A ·B) = A · ∇B + B · ∇A + A× (∇×B) + B× (∇×A)

∇ · (A×B) = B · (∇×A)−A · (∇×B)

∇× (A×B) = A(∇ ·B)−B(∇ ·A) + B · ∇A−A · ∇B

∇ · (AB) = (∇ ·A)B + A · ∇B

∇× (AB) = (∇×A)B + A× ∇B

1.2.13. We discussed dyadics a little bit. We showed that not every tensor can be constructed
from just a single dyad. Let’s think about how many dyads are required to generally
represent a second order tensor. Clearly we could arrange to sum nine dyads to form
any second order tensor. That is

↔
T =

∑
i,j T

ijeiej, and so we could define 9 vectors and
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append a basis vector. That is we could have (no summation) Ai,j = T ijei We then

append ej as a vector and we have the necessary dyads,
↔
T =

∑
i,j Ai,jej. So

A1,1 = T11e1

A1,2 = T12e1

A2,1 = T21e2

... =
...

Can we do better? Is there a way to use fewer than 9 dyads to form an order two tensor?

1.2.14. What should we do with triadics, quadradics, and polyadics generally? Can we use
fewer than 3n nth order polyadics to represent an nth order tensor?

1.2.15. Test some of the laws of nature to see if they respect parity inversion (x → −x). Try
Newton’s Law and Maxwell’s equations, for example. The Lorentz force law is also a
good test. If they don’t respect parity inversion, what if we do parity inversion and
time reversal (t→ −t) at the same time?

1.2.16. Construct the Maxwell Stress Tensor in abstract tensor form. Begin with the Lorentz
Force Law for a charged particle

F = q(v ×B + E)

We can work with a unit volume instead for convenience if we want to work with a
bunch of particles in a continuum limit.

F

V
=

q

V
(v ×B + E)

f = ρq(v ×B + E)

f = J×B + ρqE

Now use Maxwell’s Laws (with the Maxwell-Ampère Law) to replace ρq and J. Change
the time derivative so that it acts on E×B. Use Faraday’s Law to remove the resulting
∂B
∂t
. Define S = E×B

µ0
. You then collect E and B into

f = ε0 [(∇ · E)E− E×∇× E] +
1

µ0

[−B×∇×B]− µ0ε0
∂S

∂t

Now use vector identities and ∇ ·B = 0 to rewrite this as

f = ε0 [(∇ · E)E− E · ∇E] +
1

µ0

[(∇ ·B)B−B · ∇B]− 1

2
∇
(
ε0E · E +

1

µ0

B ·B
)

− µ0ε0
∂S

∂t

The Maxwell Stress Tensor is then defined by

∇ ·↔σ = ε0 [(∇ · E)E− E · ∇E] +
1

µ0

[(∇ ·B)B−B · ∇B]− 1

2
∇
(
ε0E · E +

1

µ0

B ·B
)
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so that we write the force law in a conservative form

f =∇ ·↔σ − µ0ε0
∂S

∂t

Using tensor identities show that we then have

↔
σ = ε0

(
EE− 1

2
E · E

)
+

1

µ0

(
BB− 1

2
B ·B

)
1.2.17. Show that the Maxwell stress tensor is a polar tensor and that it is even under time

reversal symmetry.

1.2.18. In special relativity and general relativity, one can rewrite Maxwell’s equations as a
single tensor law. Define the four-vector electromagnetic potential in 4D with our sign
convention (see Section 1.2.6) as A as (using the standard basis which I took to be
e0 = −x0)

A =
φ

c
x0 + A1x1 + A2x2 + A3x3 =

φ

c
x0 + A

where the components for A1, A2, and A3 are the same as the (3D) magnetic vector
potential. Remember that four-vectors have their own dot product rule, and the recip-
rocal basis ei have e0 = −x0. It is conventional to use Greek letters rather than Roman
letters as indices for running from 0 to 3. Roman letters as indices run from 1 to 3.
Then we can write

A = Aµeµ = Aµe
µ (1.18.9)

Then we can write the electromagnetic tensor (sometimes called the electromagnetic
field tensor, field strength tensor, Faraday tensor, or Maxwell bivector) as

↔
F = �A− (�A)ᵀ

with � indicating eµ ∂
∂ξµ

over all 4 indices (ξ0 = t in the standard basis and e0 = −x0).
Or using indices to write the components out, we find

↔
F = F µνeµeν = Fµνe

µeν = F µ
·νeµe

ν = F ·νµ eµeν

When using a contravariant representation with the standard basis (x̂i)
↔
F = F µνeµeν = eµ∂µ(Aνeν)− eν∂ν(A

µeµ)

find the components F µν and Fµν in terms of E and B. Note by definition that
↔
F
ᵀ

= −
↔
F , and that using the standard basis means that the basis set is unaffected

by derivatives.

1.2.19. Using the electromagnetic tensor, show that ε0∇·E = ρq and ∇×B = µ0J + 1
c2
∂E
∂t

can
be represented as

� ·
↔
F = µ0J
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with J = cρqx̂0 + J [J is in Cartesian form]. Use the contravariant representation of
↔
F

to do so. Then show that ∇ ·B = 0 and ∂B
∂t

= −∇× E is also represented via

�
↔
F + (�

↔
F

ᵀ

)ᵀ − (�
↔
F)ᵀ (1.18.10)

where the transpose only operates on the outermost indices so Gᵀαβγ = Gγβα. This uses
↔
F
ᵀ

= −
↔
F and so in textbooks it is often written in a covariant representation as

∂γFαβe
γeαeβ + ∂αFβγe

αeβeγ + ∂βFγαe
βeγeα

That is, this is the antisymmetric tensor and so could be written 6∂[aFβ,γ]. We could
define a new symbol ] such that it adds each even cyclic permutation of the basis vectors
divided by the factorial of the order of the tensor. Then

3!(�
↔
F)] =

∑
α,β,γ

(
eγ

∂

∂xγ
[
Fαβeαeβ

])]
=
∑
α,β,γ

(
eγ

∂

∂xγ
[
Fαβeαeβ

]
+ eα

∂

∂xα
[
F βγeβeγ

]
+ eβ

∂

∂xβ
[F γαeγeα]

)
And then note for order two that it simply yields

2(
↔
T)] = T ijeiej + T jiejei = 2

↔
TS (1.18.11)

1.3. For Section 1.3

1.3.1. Convince yourself that
ˆ π

−π
dx exp(ijkx) exp(ij′kx) = 2πδj,−j′

and see how it follows that
ˆ L/2

−L/2
dx exp(2ijπx/L) exp(2ij′πx/L) = 2πδj,−j′ (1.18.12)

What does this imply about sin(2jπx/L) and cos(2jπx/L) or sin(jkx) and cos(jkx)?

1.3.2. Directly calculate
ˆ π

−π
dx sin(jkx) sin(±j′kx) = ±2πδj,j′ (1.18.13)
ˆ π

−π
dx sin(jkx) cos(j′kx) = 0 (1.18.14)

ˆ π

−π
dx cos(jkx) cos(±j′kx) = 2πδj,j′ (1.18.15)

It is fastest to divide into two cases. One with j = −j′ and one without. Note we are
integrating even or odd functions over a symmetric interval, as well.
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1.3.3. Find the Fourier coefficients for the function f(x) = x for L = 1/2. Calculate N (the
number of coefficients) for N = 1, 2, 3, 4. Note that x is not periodic over this domain.
What do you notice when you plot the approximation

∑N
j=−N fj exp(2πijx/L) for these

values?

1.3.4. Find the Fourier coefficients for the function f(x) = |x| for L = 1. Calculate N (the
number of coefficients) for N = 1, 2, 3, 4. What does this look like over several periods.
Sometimes this is called a sawtooth wave. What do you notice when you plot the
approximation

∑N
j=−N fj exp(2πijx/L) for these values? Is the accuracy better than

you expected?

1.3.5. I defined the Fourier series for f(x) periodic in domain [−L/2, L/2]. What if you you
have f(x) periodic in domain [L1, L2]? Let L2 > L1 and L2 − L1 = ∆L . What would
y = x − L1 − (∆L/2) yield as the new domain of periodicity in y? That is calculate
y for x = L2 and x = L1 and note what we can say about the limits for the new y
integral. Would this yield the properties necessary for my definition with ∆L → L/2?

1.3.6. Suppose we have a complex function f(z). It is traditional to use the exponential
form since one has to translate sin and cos into this form when dealing with complex
arguments. Do we still have f−j = f ∗j or is this freedom now lost? Use f(z) = g(x, y) +
ih(x, y) for z = x + iy. However, our interval will always be over the real line so that
f(z) → f(x) = g(x, 0) + ih(x, 0). So show that the following use for complex f with
s = 2πx/L is fine:

f(x) =
N∑

j=−N

fj exp(2πijx/L)

<(fj) =
1

L

ˆ L/2

−L/2
dx <(f(x)) exp(−2iπjx/L) =

1

2π

ˆ π

−π
ds g(s) exp(−ijs)

=(fj) =
1

L

ˆ L/2

−L/2
dx =(f(x)) exp(−2iπjx/L) =

1

2π

ˆ π

−π
ds h(s) exp(−ijs)

fj = <fj + i=fj =
1

L

ˆ L/2

−L/2
dx f(s) exp(−2iπjx/L)

1.3.7. Create plots for a toroidal cross section (i.e., θ constant, or for θ = 0 we also have Z = 0
if we are using primitive toroidal coordinates) equivalent to those in Figure 1.4. For a
torus, this plot will look like an annulus. To do so, you will need to plot a function
like f(x, y) = R cos(−nζ) with tan(−ζ) = y/x and R the radius at which we want the
perturbation.

1.3.8. Use plotting software to reproduce Figures 1.6 and 1.7. Use (1.3.24) and (1.3.25) to do
so.

x = sin(θ)
[
R′ + r′ sin

(
mθ − nz

R′

)]
y = cos(θ)

[
R′ + r′ sin

(
mθ − nz

R′

)]
1.3.9. Consider the function f(θ) = exp(iθ) and compute the ballooning transform f̂ . This

should be very easy.
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1.3.10. Consider the differential equation

d2f

dθ2
+ a1

df

dθ
= λf(θ)

Find f by the usual linear ODE means over the interval θ from 0 to 2π. Then solve this
with the ballooning tranformation angle η from −∞ to ∞. What do you notice about
using the solution in this form? Do you think it has something to do with our ODE
solution form?

1.4. For Section 1.4.

1.4.1. Find an asymptotic expression (x→∞) for the integral
ˆ π

0

dt
sin(t)

t
exp(−xt)

Why does this work when Watson’s lemma seems to imply t−1/2 is a necessary prereq-
uisite? [Hint: What’s nice about sin(t) near t = 0?]

1.4.2. Find an asymptotic expression (x→∞) for the integral
ˆ ∞

0

dt
exp(−xt)

1 + t

1.4.3. Find an asymptotic expression (x→∞) for the integral
ˆ ∞
−∞

dt
exp(−xt2)

1 + t

1.4.4. Find an asymptotic expression (x→∞) for the integral
ˆ π/2

0

dt exp(−x sin(t))

1.4.5. Find an asymptotic expression (x→ 0) for
√
x4 + 2x3 + 4x2

1.4.6. Find an asymptotic expression (x→∞) for the inverse function of

x2 exp(x)

1.4.7. Find an asymptotic expression (x→∞) for the inverse function of

x+ exp(x)

1.4.8. Find the inverse function of

x+ exp(x)

in terms of the Lambert W function. Does this align with what you found in the
previous problem?
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1.4.9. Asymptotic matching across a resistive layer is a classic problem tackled by FKR (Furth,
Killeen, Rosenbluth)[14]. Work through the asymptotic matching procedure in their
paper.

1.5. For Section 1.5.

1.5.1. Consider f(z) = exp(z) for z = x + iy. What is ∂f
∂z̄
? Does this satisfy the Cauchy-

Riemann equations?

1.5.2. Consider the function f(z1, z2) = exp(z1) sin(z2). Now what are the Wirtinger deriva-
tives ∂f

∂z̄j
for both? How would you test that z1 and z2 satisfy the Cauchy-Riemann

equations otherwise [in this case it should be simple since z1 and z2 are easily separa-
ble]?

1.5.3. Consider the function f(z1, z2) = exp(z1z2). Now what are ∂f
∂z̄j

for both? How would
you test that z1 and z2 satisfy the Cauchy-Riemann equations otherwise?

1.5.4. Take f(x) = x · c + exp(x · k) and develop the Taylor series for x0.

1.6. For Section 1.6.

1.6.1. Linearize the Navier-Stokes equation

ρ

(
∂V

∂t
+ V · ∇V

)
= −∇p+∇ ·

↔
T + f

ρ =
∞∑
j=0

ρjδ
j V =

∞∑
j=0

Vjδ
j p =

∞∑
j=0

pjδ
j

↔
T =

∞∑
j=0

↔
Tjδ

j f =
∞∑
j=0

f jδ
j

Solve for O(1), O(δ) and O(δ2).

1.7. For Section 1.7.

1.7.1. Consider the Van der Pol oscillator

d2x

dt2
− µ(1− x2)

dx

dt
+ x = 0

Perform a perturbation series analysis and then a multiple scale time analysis.

1.7.2. Consider writing the kinetic equation in the form

df

dt
= C

Then introduce a collision time τc. We then expect C to be an important term on
this time scale and so write G = C/τc. Suppose there is a periodic motion on a long
time scale and give this periodic motion a time period of τb, the bounce time. Then let
ε = τb/τc � 1. We non-dimensionalize the above equation via introducing s = t/τb and
write

1

τb

df

ds
= G/τc ⇒

df

ds
= εG
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We can then consider f and C to be in a non-dimensional form (for example, divide by
f0 on both sides, if you truly desire this). Perform multiple scale analysis with τ0 = s
and τ1 = εson

df

ds
= εG

to fully solve at zeroth order in ε. You will use the idea that there can be no secular
terms so the solvability criterion will beˆ τb

0

dτ0
df

dτ1

=

ˆ τb

0

dτ0 G

This enforces that there is no growing in τ0 (time) solution. Rewrite the solvability
criterion in the original time t.

1.8. For Section 1.8.

1.8.1. Derive (1.8.59) below for a functional S, an integral of L(f, . . . , f(j))

∂L

∂f
+
∑
i

λi
∂Gi

∂f
+
∑
j>0

[
(−1)j

dj

dtj
∂L

∂f(j)

]
= 0 (1.8.59)

1.8.2. Find the variational derivative δF
δf

for F [f ] below. If there is no δF
δf
, say so and compute

δF .

F [f ] = [f(x)]2

F [f ] = [sin (f(x))]2

F [f ] =

ˆ x

0

dt t[f(t)]2

F [f ] = f(x)f ′(x)

F [f ] =

ˆ 1

0

dt [f ′(t)]2

1.8.3. Use the Rayleigh-Ritz method discussed near (1.8.85) for

S[ψ] =

´
dr ψ∗Hψ´
dr ψ∗ψ

(1.18.16)

with

H =
−~2

2µ

(
∂2

∂r2
+

2

r

∂

∂r

)
+

~2`(`+ 1)

2µr2
+ V (r) (1.18.17)

V = − e2

4πε0r
(1.18.18)

Try it first with a polynomial rα. Then try exp(r). For the ground state energy the
actual answer is

E1 = − µe4

32π2ε20~2
(1.18.19)

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



246 Problem Set

1.9. For Section 1.9.

1.9.1. Show that Newton’s second law is given by the Lagrangian

L =
ẋ2

2m
− V (x)

Calculate Hamilton’s equations for this, and show that they also lead to Newton’s
second law. You have shown that all three formulations (Newton’s, Lagrange’s, and
Hamilton’s) are equivalent for this problem statement.

1.9.2. For a harmonic oscillator H = p2 +x2 (In appropriately normalized coordinates), calcu-
late Hamilton’s principal function S. Also show how one can use the generating function
types on this particular equation to form all sorts of canonical variables.

1.10. For Section 1.10.

1.10.1. Consider B = BZẐ + Bζ ζ̂ with BZ and Bζ constant. Use the magnetic field line
equations to see the field line trajectories. Then find the appropriate magnetic toroidal
and poloidal fluxes. Here the toroidal flux is across a constant Z plane and the poloidal
flux is across a constant ζ plane. Show that Hamilton’s equatons are satisfied.

1.11. For Section 1.11.

1.11.1. Choose a κ(t) and τ(t) for t > 0 and plot the trajectory thus created.

1.11.2. Choose a helical parameterization

x = cos(t)

y = sin(t)

z = αt

and find κ and τ . Do κ+ τ sum to something?

1.11.3. Choose some other parameterization, say

x = cos(t)

y = sin(t)

z = αt3

and find κ(t) and τ(t). Do κ+ τ now sum to anything? Or are they independent?

1.12. For Section 1.13.

1.12.1. Use contour integration to evaluate
ˆ ∞

0

dx
1

x2 + 1

1.12.2. Use contour integration to evaluate
ˆ ∞

0

dx
exp(itx)

x2 + 1
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1.12.3. Use contour integration to evaluate
ˆ π

−π
dx

1

a+ b(sin(t))2

Use the substitution z = exp(it) so that sin(t) = z−z∗
2i

with z∗ = exp(−it) = 1/z.

1.12.4. Consider the function log z for z = r exp(iθ). You will remember this traditionally has
a branch cut on the negative real axis, where on the positive imaginary side it has
the value log |r| + iθ and on the negative imaginary side it has the value log |r| − iθ.
If we integrate over the branch cut, we will have problems [so never integrate over a
region with a branch cut. Get arbitrarily close, but not on it]. What is happening is
we are switching branches as we go around in θ when we do this, and so we have a
discontinuity. If we were to stay on the same branch then we would have a multi-valued
but continuous function. What other common functions have branch cuts?

1.12.5. Consider the function
√
z
√
z − 1. What is it’s value for z = 1−iε? How about z = 1+iε?

Suppose you want there to be only one value on the real axis. One could “glue” the
solutions together there. What region makes sense as the branch point then? The
problem above is simply that z1/2 = ±|

√
z| and similarly for (z − 1)1/2 = ±|

√
z − 1|. If

we choose inconsistent values on the ± we have multiple answers. If we instead force +
on both, then we have a branch cut there.

1.12.6. Use contour integration to evaluate
ˆ ∞

0

dx
xλ

1 + x

for −1 < λ < 0. This requires choosing a branch cut for xλ. The branch cut is where we
will have the function undefined, and so we need to create a contour integral path that
can approach but not be on the branch cut. The “keyhole contour” along the positive
real axis (a small near circle of radius ε around the origin, then a straight line off the
real axis [above it in th ecomplex plane] with an arc going from +∞ nearly 2π around
in the complex plane and coming back a small distance off of the real line from +∞
back to the nearly complete circle near the origin) is convenient. Remember you can
choose where you want your branch cut to be. For this case choosing the real axis is
nice.

1.13. For Section 1.14.

1.13.1. Try analytically continuing

f(z) =
∞∑
j=0

jzj (1.18.20)

which comes from 1/(z − 1)2 expanded around z = 0. Analytically continue it from
z1 = −0.5. You should get

f(z1) =
∞∑
j=0

(
2

3

)2+j

(1 + n)

(
1

2
+ z1

)j
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1.13.2. I said it could be shown that
∞∑
k=0

Ck
nz

k
0 =

zn0
(1− z0)n+1

Show it’s true for n = 0, and then use induction to prove it generally.
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Chapter 2

Plasma Physics

People say: “what good does it do to point out the obvious?” A great deal of good; for
we sometimes know facts without paying attention to them.

— Lucius Annaeus Seneca

This chapter serves as fairly basic introduction to plasma physics theory. It only touches on a
couple of topics, but should give you a good grounding for magnetic confinement problems. It
begins with explaining what plasmas are so that we know what it is we are studying. It then
details the magnetic field structure and its implications for confining a plasma. This includes a
fairly robust discussion of straight field line coordinates (flux coordinates). I briefly list some of the
major research areas for magnetic confinement devices, and then I explain how we can create fluid
theories of plasmas from the underlying kinetic behavior of particles in electromagnetic fields. After
deriving one such theory, magnetohydrodynamics (MHD), I talk about the various incarnations
of MHD that are typically used. I go into a bit more detail on Ideal MHD, where we consider
the plasma a perfect conductor. Plasma waves and instabilities is an enormous topic, and I only
touch on it through an MHD prism. The technique is the same, though, whatever your underlying
equations. This naturally leads to questions of discontinuous interfaces. Finally, I take a somewhat
unorthodox approach to particle drifts. It seems to me that particle drifts are often taught without
explaining their significance, and so I try to give a broader discussion that explains what particle
drifts are actually good for in theory.

2.1 What Plasmas Are
As will be emphasized on more than one occasion, children often fail to solve problems
because they cannot understand what the problems are. Naturally, if you do not know
what a question means, you cannot be expected to give the correct answer.

— W. W. Sawyer[17, p. 6]

With some of the mathematical subtleties behind us, we can finally get into what the plasma
physics field is about. To do so, we must first answer a question that dogs any field: What is
it that we are studying? Since we are doing research, to give a too rigorous answer may exclude
research that we would really rather consider a part of plasma physics, while giving too broad of
criteria makes it mysterious what is special about plasma physics as opposed to just physics. I will
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252 What Plasmas Are

give you an answer as to what a plasma is, but you should not take it as some given-down truth
that settles things. It is simply one way to come up with a quantitative answer to help you get
a sense of what really is a plasma and what really is not. Determining if something is a plasma
is more a question of how the phenomena can be explained rather than whether it fulfills some
exacting set of properties that corresponds to a plasma.

In words, plasmas are usually defined as ionized gases. We have given the components of a gas
enough energy that the nuclei and the electrons are no longer stuck to each other. This leads to
all sorts of fascinating effects because now the components are affected by electromagnetic fields
much more strongly, which leads to collective behavior of particles very different from that of gases.
From now on I will only refer to “neutral plasmas”, because non-neutral plasmas1 would require
a bunch of caveats to all of my statements. So if we look at the particles very closely, we don’t
care about the constituents themselves. That is, if we are looking too closely at the particles,
we won’t see collective behavior, we will just see particles moving around due to Maxwell’s and
Newton’s laws (ignoring quantum effects). Calculating the environment for the single particle may
be difficult on a practical level, but it is not difficult on a conceptual level. Thus we need a length
scale that is larger than single particles in order to say that we are studying a “plasma” rather
than just a bunch of charged particles. The sort of length scale we are looking for will describe at
about what scale single particle dynamics are substantially altered by the presence of many other
particles nearby.

2.1.1 Screening Lengths

To see this, consider the electrostatic potential φ for a volume of particles and a single test particle
of charge qT at the origin. It will satisfy Poisson’s equation

−∇2φ =
ρq
ε0

+
qT δ(x)

ε0
(2.1.1)

where ρq is the net charge of all particles in a unit volume. For a plasma, we can separate the
charged particles by species charge qs and number density ns via

ρq =
∑
s

qsns (2.1.2)

Now, for normal plasmas, we expect quasineutrality to hold. This means that
∑

s qsns ' 0. This
statement should not be read as the charge being exactly zero, but is really a statement about the
importance of the electric field E on the particles. We are saying that |qE| � |Fother|; the force
on a particle is not dominated by the electric field, and in fact the force due to the electric field is
sub-dominant to some other forces. We now need to think about the distribution of the number
density. From statistical mechanics, we would expect a Boltzmann distribution near equilibrium,
where the number density is stratified via the electrostatic energy divided by the thermal energy.
We will consider an equilibrium so that the temperature for each species Ts is constant. Then
ns = n0s exp(−qsφ/(kBTs)).2 The important thing is that qsφ/(kBTs) � 1, so that the thermal
energy is dominant over the electrostatic potential energy (note how this is one way of saying that

1Non-neutral plasmas are plasmas of a single species, such as electrons, and so do not satisfy the quasineutrality
conditions of usual plasmas. Non-neutral plasmas are fascinating, but beyond the scope of this book focusing on
fusion relevant plasmas.

2This is an equation using all SI units with kB the Boltzmann constant.
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electric forces are not dominant). Then we can use the handy Taylor series approximation around
this solution

−ε0∇2φ = qT δ(x) +
∑
s

qsns =
∑
s

qsn0s exp

(
−qsφ
kBTs

)
≈
∑
s

qsn0s

[
1− qsφ

kBTs
+O

({
qsφ

kBTs

}2
)]

(2.1.3)

−∇2φ ≈ qT
ε0
δ(x) +

�
�
�
�
�∑

s

n0sqs
ε0
−
∑
s

qsns0
qsφ

ε0kBTs
= qT δ(x)− φ

(∑
s

n0sq
2
s

ε0kBTs

)
︸ ︷︷ ︸

≡λ−2
D

(2.1.4)

Notice that the term in parentheses in (2.1.4) is constant with respect to the potential variation.
Notice that it also has units of inverse meters squared and so we define the Debye length λD
as one over the square root of the term in parentheses. If we now consider only radial variation,
consistent with a Boltzmann distribution, we can make some progress. We can consider a spherical
distribution so that in physicist’s spherical coordinates (see Appendix C.4) (r, θ, ϕ) we have

∇2φ =∇ · ∇φ =∇ ·
(
∂φ

∂r
∇r +

�
�
��∂φ

∂θ
∇θ +

�
�
�
�∂φ

∂ϕ
∇ϕ
)

= ∇
(
∂φ

∂r

)
· ∇r +

∂φ

∂r
∇ · ∇r (2.1.5)

The last term uses that r is the same as the position vector x and so

∇ · ∇r =∇ · r
r

= ∇
(

1

r

)
· r +

1

r
∇ · r

=
−r

r3
· r +

3

r
=
−1

r
+

3

r
=

2

r

(2.1.6)

whereas the first term satisfies

∇
(
∂φ

∂r

)
=
∂∇φ
∂r

=
∂

∂r

(
∂φ

∂r
∇r
)

=
∂2φ

∂r2
∇r +

∂φ

∂r

∂∇r
∂r

=
∂2φ

∂r2
∇r +

∂φ

∂r
�
�
�
�
�

∇
(
∂r

∂r

)
(2.1.7)

Thus,

∇2φ =
∂2φ

∂r2
∇r · ∇r +

2

r

∂φ

∂r
=
∂2φ

∂r2
+

2

r

∂φ

∂r
(2.1.8)

and we have as our differential equation

−∂
2φ

∂r2
− 2

r

∂φ

∂r
+

φ

λ2
D

=
qT δ(r)

ε0
(2.1.9)

− 1

r2

∂2

∂r2

(
r2φ
)

+
φ

λ2
D

=
qT δ(r)

ε0
(2.1.10)

One can find the solution is (try using Φ = rφ and solve the resulting equation for Φ)

φ =
qT exp

(
−r
λD

)
4πε0r

(2.1.11)

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



254 What Plasmas Are

Now we have shown that there is a screening distance of

λ−1
D =

√∑
s

n0sq2
s

ε0kBTs
(2.1.12)

called the Debye length over which the plasma will actually screen out the charge. This is exactly
what we are looking for. If we look too closely we will just see the bare charge, but if we look at
a scale L > λD, then we will be looking at the effects that are due to the quasineutral plasma.
Thus, the first criterion is that for L a characteristic length of the system we are looking at, we
want λD � L. Note that in many cases people talk of the Debye length, but mean the electron
Debye length

λDe =

√
ε0kBTe
n0ee2

with e the elementary charge. When there are only two species (ions i and electrons e), and the
temperatures Ti = Te ≡ T are the same, then (using quasineutrality the ion charge must be +e
and so n0i = n0e ≡ n0/2)

λD =

√
1

n0ee2

ε0kBT
+ n0ie2

ε0kBT

=

√
ε0kBT

(n0i + n0e)e2
=

√
2n0ee2

ε0kBT
=
√

2λDe (2.1.13)

and the
√

2 factor is a fairly negligible correction for most calculations.

2.1.2 Many Particles in a Debye Sphere

The next criterion seems like a similar way of saying the same thing, but we again want there to
be something more than just particle dynamics. Thus we want a lot of particles in whatever region
we are considering. For the screening process to even make sense, we need there to be a sea of
ions and electrons around our test charge so that we can reasonably call it a plasma. So if we take
a sphere with the Debye length as its radius, and we call the number of particles in this Debye
sphere N , we want

N
4
3
πλ3

D

� 1 particle/volume (2.1.14)

or in other words, we want the number density to be much larger than an inverse Debye sphere.
Thus, this is often written for number density n as

4

3
πnλ3

D � 1 (2.1.15)

Because these are rough approximations, the 4π/3 is often dropped. So then Λ ≡ 4πnλ3
D is often

defined as the plasma parameter. Note that the factor of 4π is essentially for convention, and
not too much weight should be put in the specific pre-factor. Unfortunately, the inverse of this is
sometimes also called the plasma parameter but denoted g

g ≡ 1

nλ3
D

� 1 (2.1.16)
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In some literature the Debye number ND ≡ 4
3
πnλ3

D is used instead of the plasma parameter. It
would not surprise me if this was partially to offset the confusion from the term plasma parameter.
One final comment on this terminology is that the plasma coupling factor Γ is often defined. This
is a ratio of the electrostatic energy (for a radius of approximately n−1/3) to thermal energy

Γ ≡ EC
ET
≈

q2

4πε0n−1/3

kBT
=

q2n1/3

4πε0kBT
=

1

4πn2/3λ2
D

∝
(

1

nλ3
D

)2/3

∝ Λ−2/3 (2.1.17)

and so the plasma coupling factor and the plasma parameter are describing similar things.

In addition, we can see that this approximation is necessary via our our Taylor series expansion
(2.1.4) from earlier. We needed φ

ε0kBT
� 1 and so using an electron as our test particle we’d find

−eφ
ε0kBT

≈
e2 exp

(
−r
λD

)
4πε0kBTr

=
n0ee

2

ε0kBT

exp(−r/λD)

4πn0er
=

1

λ2
De

exp(−r/λD)

4πn0er
(2.1.18)

we can use that n1/3
0e functions as a scale factor on r and we could then write

−eφ
ε0kBT

≈
exp

(
−rn1/3

0e

(n0eλ3
De

)1/3

)
4π(n0eλDe)

2/3(n
1/3
0e r)

(2.1.19)

If we expect n1/3
0e r ∼ 1 then the above expression simplifies to

−eφ
ε0kBT

∼
exp

(
−1

(n0eλ3
De

)1/3

)
4π(n0eλDe)

2/3
(2.1.20)

From this it is again easy to see that nλ3
De
� 1 will ensure that eφ/(ε0kBT ) is small.

2.1.3 Two Other Criteria

There are two further considerations that are used when talking of plasmas. First, we will not
consider scales where quantum effects on particle dynamics are important. That is we cannot allow
our scale to be smaller than an atom, so we need n−1/3

0 � a0 where a0 is the Bohr radius, given in
SI by

a0 ≡
4πε0~2

mee2
= 5.3× 10−11 m (2.1.21)

Thus, we desire

L� λD � n
−1/3
0 � a0 (2.1.22)

The final consideration is for that of neutrals. We do not want neutrals dominating the behavior by
thermally bouncing into our ionized gas and disrupting the plasma dynamics with atomic processes.
For a simple plasma, we can see what a typical frequency for plasma motion is and so determine a
frequency criterion. Consider a plasma with uniform density n = n0e/2 = n0i/2. We want to look
at the force on a small portion of the plasma. For simplicity, consider a very thin slab, and say the
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positive particles are shifted out of this thin slab a distance ∆x . So then on the right side of the
slab we will have a surface charge density σ = ne∆x . On the other side of the slab, we will have
a surface charge density of −σ because we initially had no net charge. Inside the slab we would
have an electric field of σ/ε0 directed towards the left due to a uniformly charged plane. Using
Newton’s 2nd law with the Coulomb force Fq = qE we’d then find for a single particle of mass m
and charge e in the slab that

m
d2

dx2
(∆x ) = −ne

2∆x

ε0
(2.1.23)

which for n constant, is an equation for ∆x

d2∆x

dx2
= −

ω2
p︷︸︸︷

ne2

mε0
∆x (2.1.24)

∆x = A exp(−iωpx) +B exp(iωpx) (2.1.25)

or simple harmonic motion with the plasma frequency of species s defined by

ωps =

√
nsq2

s

msε0
(2.1.26)

So these are the oscillations that we expect from a plasma. If something else dominates this
process, we expect that the system will no longer be a plasma. So if we use this as a characteristic
frequency for plasma motion, we want the plasma species-neutral collision frequency νsn to be
much less frequent.

Then the final criterion is
ωps
νsn
≡ ωpsτsn � 1 (2.1.27)

2.1.4 Other Considerations

The four criteria are listed in Table 2.1. As stated before, these should really only be thought of
as guiding principles. People will argue about what a plasma is by applying the criteria, but the
only real answer to the question is if the equations commonly used in plasma physics describe the

Criterion Number Approximation
1 L� λD
2 nλ3

D � 1
3 n−1/3 � a0

4 ωpsτsn � 1

Table 2.1: The four plasma criteria. Here L is characteristic length for the system we are looking
at, λD = (

∑
s[n0sq

2
s ]/[ε0kBTs])

−1/2 is the Debye length, n is the number density of the plasma
species, a0 is the Bohr radius, ωps =

√
[n0sq2

s ][mε0] is the plasma frequency of species s and
τsn = nnσ

s|n
s

√
kBTs/ms is the species-neutral collision time. σs|ns is the cross section for a collision

and nn is the neutral density.
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physical behavior. If the physical behavior is described, then you may as well call it a plasma for
the purposes of that application. If you find that equations used to model plasmas do not apply
then it is not a plasma.

Finally, I want to emphasize the limitations of the criteria again. These do not apply to non-
neutral plasmas; they do not apply to strongly coupled plasmas.3 I am considering only a certain
type of plasma that is common in the universe4 and explaining when we can expect our models to
accurately describe the physical behavior. This is ultimately what we care about, and so no single
definition for a plasma should have too much emphasis. Otherwise we get trapped in word games
rather than whether we can predict or explain what is going to happen.

This may appear to be tautological, in that only things that are described by plasma models are
considered plasmas, but there is not too much to worry about. If you wish to be more rigorous, then
you start with what the particles5 are doing and you can come up with approximations that divide
the world into plasmas and non-plasmas. There is a degree of arbitrariness in the exact criteria,
but it is usually clear if something is a borderline case or not. If we consider a boundary in some
parameter space where physics is well-described by plasma models, we will consider scenarios inside
that boundary as having plasmas in them. These are situations when our small parameters are
actually small for the problem at hand. If it is not a borderline case, then the model will be broken
[outside the boundary], or it will work excellently [inside the boundary]. Near the that boundary
edge, the plasma model will only partially work, or work for some behavior but not others. If you
want to call phenomena of interest in the boundary plasma behavior depends on what you consider
to be important to model correctly. This is simply accepting that our coarse-grained categories
are useful approximations, not something that nature necessarily respects. Figure 2.1 shows a
diagram for a plasma model space. There are regions where it simply is not clear if the model
accurately describes the physics of the situation. If our plasma model does not accurately describe
the physics, then whatever we are studying is not a plasma for those circumstances. Perhaps a
different plasma physics model will let the situation be called a plasma.6

3Quark-gluon plasmas are one such plasma. There the Λ� 1, Γ� 1 criterion is relaxed to allow Λ . 1, Γ & 1.
4And that is applicable to magnetic confinement fusion.
5If you are a true stickler, then you could go down to the fields used in the field theory of the Standard Model.
6For example, a plasma may not act like an electrically conducting fluid and so is not an MHD plasma. But it

may be easy to represent with plasma kinetic theory.
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258 What Plasmas Are

Figure 2.1: Consider a plasma theory that uses parameters s and t. This theory has only a certain
regime of validity, so that if s and t are particular values, it no longer works, and so we would
question whether the system at those parameters are a plasma. This is a fuzzy question, as is
indicated by the large shaded region where it’s not clear if the object is a plasma because the
model isn’t fully reliable there. Even here, the crisp clean lines demarcating the shaded region are
more clear than it is in reality.
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2.2 Magnetic Field Topology
If you have trouble thinking of a new project, take your old project and just add a
magnetic field.

— Unknown origin, attributed to some Russian physics group

When considering how to analyze plasmas, one of the most important considerations is whether
magnetic fields are important for the analysis of the plasma configuration. This is usually measured
by a term called the magnetization parameter δm, and sometimes by another parameter δc. These
are given by

δm ≡
ρ

L
(2.2.1)

δc ≡
ν

Ω
(2.2.2)

Here Ω = eB/m is the gyrofrequency7 so ρ is a characteristic Larmor radius,8 v is a characteristic
velocity, L is a characteristic length, and ν is the collision frequency.9 The ρ/L parameter is more
commonly used for approximations, though both need to be small, generally speaking, for accurate
results. For a plasma to be magnetized, we desire the particle’s orbit to be significantly altered by
the presence of the magnetic field, which means that ρ, the radius of a gyrorbit should be smaller
than a characteristic length. That is, we require ρ/L� 1 for a magnetized plasma. If ρ & L then
the particle has barely gone through the gyroorbit over the characteristic length scale L and so its
effects on particle trajectories (and hence the plasma at the scale we care about) will be minimal
because the particle is hardly gyrating. The other magnetization parameter δc needs δc � 1, as
well for it to be a magnetized plasma. This is a way of stating that collisions are not so overly
dominant that the particles go through a couple of gyroorbits before they undergo a collision and
so the magnetic field is affecting the trajectories more than simple collisions. Note that δc and δL
are independent of each other. In most cases of interest, however, when one parameter is small,
the other is as well.

Once these conditions are met, then the structure or topology of the magnetic field will be an
important consideration in the dynamics of the plasma.

2.2.1 Flux Coordinates

If we have a magnetized plasma and it is possible to form nested flux surfaces, then there are a
couple of coordinate systems that obey properties that are incredibly useful. But first, what is a
flux surface? When talking about the Hamiltonian nature of magnetic fields (see Section 1.10) we
mentioned toroidal fluxes and poloidal fluxes and this will lead into what a flux surface is. First,
let’s look at what a flux is. A flux for a given vector quantity g, which I will denote Φg, over a
given surface Sf with unit normal n̂ is given by

Φg =

¨
Sf

dS n̂ · g (2.2.3)

7The gyrofrequency is often called the Larmor frequency or the cyclotron frequency.
8Similarly, the Larmor radius is often called the gyroradius, cyclotron radius, or radius of gyration.
9Do not confuse this collision frequency with the neutral collision frequency. This is the frequency of collisions

between plasma species.
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Then a flux surface is a surface with normal n̂ such that g · n̂ = 0. Thus, over a flux surface the
corresponding flux is automatically zero. Because magnetic flux is the most common type I will
omit the B and simply write Φ for the flux. Often ψ is used for a flux or for a normalized flux
ψ = Φ/(2π), and the surface is often chosen to have a disk-like structure. The poloidal or toroidal
designation for a flux tells us the surface to consider. A poloidal flux is the flux over a surface at a
constant poloidal angle and a toroidal flux is a flux over a constant toroidal angle. They are often
written as ψp,Φp and ψt,Φt for poloidal flux and toroidal flux, respectively. Whenever you see a
flux, you should realize that a factor of 2π could be lurking in the definition somewhere.

2.2.2 Flux Integrals and Surfaces

A flux surface is then a surface where the flux Φ is constant along that surface (since B · n̂ = 0
on this surface by definition). From before, this is equivalent to saying it is a surface such that
the surface normal is everywhere parallel to ∇Φ or n̂ = ∇Φ/| ∇Φ|. It is a contour of constant
Φ in space. If the magnetic field creates nested flux surfaces, this means that each constant Φ
surface is closed and completely contained within a different flux surface. This can be broken if
there are magnetic nulls, for example, because then the magnetic flux surface may not be closed
and so there is no sense in which one flux surface is “inside” of another. For a torus, we simply
can imagine a doughnut. If we consider the surface of the doughnut a flux surface, it is clear we
could form nested flux surfaces by shaving off layers of the doughnut and defining that as a flux
surface. Because each shaved off layer can fit into a previous layer, the flux surfaces would be
nested. The importance of the nested flux surfaces is that we can then label a radial coordinate
via a flux surface. As we go outward radially, Φ either increases or decreases and so Φ can label
where we are radially.10 Now let’s use cylindrical coordinates (R,Z, ζ) and the primitive toroidal
coordinates (r, θ, ζ) to give a simple example that can be easily visualized. Here θ is a poloidal
angle and ζ is a toroidal angle. Let’s assume for plotting purposes that our flux surfaces are simple
(circular) torii centered around r = 0. Then to find a toroidal flux we simply need to integrate the
circular cross section in the form of a disk. This is seen in Figure 2.2. So using the dummy (minor
radius) radial variable s we write

Φt(r) =

¨
dS ζ̂ ·B =

ˆ r

0

ds s

ˆ 2π

0

dθ ζ̂ ·B

=

¨
dS J ∇ζ ·B

(2.2.4)

When it comes to a poloidal flux there are two options. A ring flux or a disk flux. The disk flux is
analogous to the toroidal flux above, it integrates from R = 0 out to a disk at some other radius
R as seen in Figure 2.3. This is called the disk flux Φd

p and given by (using dummy radial variable
Sr for the major radius)

Φd
p(R) =

¨
Sd

dS θ̂ ·B =

ˆ R

0

dSr Sr

ˆ 2π

0

dζ θ̂ ·B

=

¨
Sd

dS J ∇θ ·B
(2.2.5)

10You may worry about whether this is a one-to-one function, but for plasma experiments it often is. If it isn’t
then one must be a little more careful when exchanging r for Φ.
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Figure 2.2: The toroidal flux ST and the ring poloidal flux SP through a portion of a toroidal
device is shown.
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262 Magnetic Field Topology

Figure 2.3: The surface to use for integration with a poloidal disk flux is the blue disk shown. The
torus itself is cut open to see the shape of the poloidal disk flux.
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Note that this form requires thinking about the magnetic field in two different coordinate systems,
as we are using R and θ together. If this is undesirable, one can use that R = R0 + r sin θ and the
above integral is equivalent to θ = π and

Φd
p(r) =

¨
Sd

dS θ̂ ·B =

ˆ R−R0

R0

ds s

ˆ 2π

0

dζ θ̂ ·B

=

¨
Sd

dS J ∇θ ·B
(2.2.6)

You may find the sign flipped above so that the integral is from 0 to R0 in some cases depending
on whether the person desires Φd

p(r) to increase in the same direction as Φd
p(R).11 Again, one must

look carefully at the particular application to see what convention is chosen.

When using a ring flux, it is conventional to choose θ = π, although in principle any angle could
be chosen when the nested flux surfaces exist. θ = π is most convenient, however, because then
there is a simple relationship between the ring flux and the disk flux versions. The way to create
a ring flux is to go from the magnetic axis (we’ll say it is r = 0 in our simple system) out to some
other minor radius, as seen in Figure 2.2. Then it is easy to show

Φd
p(R = R0) = φdp(r = (R−R0)/ sin θ) + φrp(r) (2.2.7)

That is a disk flux for a certain radius (or flux surface) and a ring flux to that same radius (or flux
surface) will always sum to the disk flux for the magnetic axis (R = R0 or r = 0).

One last comment is that one can rewrite the above equation for a generic flux from a surface
integral into a volume integral. It is sometimes claimed this is easier or more useful, but if one
were to actually calculate the flux it is not clear there are any savings. To change to a volume
integral, one must integrate over the volume enclosed by a flux surface. This means you need to
know the form of the flux surface (at which point, why not just do the surface integral?), but it is
sometimes useful from a theoretical point of view.

The way is clever and not at all obvious. First consider a ribbon flux12 at constant θ. Then we
can form the volume by following flux surfaces around from the constant θ = 0 surface around to
the θ = 2π surface. We can consider the constant θ = 0 surface S0 and consider the surface at 2π
[which is physically the same location and so forms a full volume] S2π with Sf for the surface that
follows the flux surface defined between S0 and S2π surfaces. The volume enclosed is then given
by Vθ. Even though there is in a sense, no room between S0 and S2π, we can use them as two
separate surfaces that happen to be essentially the same surface. This is like splitting doughnut
but not unfurling it. We then find
˚
Vθ

d3x B · ∇θ =

¨
Vθ

d3x [∇ · (θB)−����θ∇ ·B] =

¨
Vθ

d3x ∇ · (θB) =

‹
dS n̂ · θB (2.2.8)

By construction the surface integral is given by
‹

dS n̂ · θB =

¨
dS0 n̂ · θB +

¨
dS2π n̂ · θB +

¨
dSf n̂ · θB (2.2.9)

11This is saying we can write either f(r) or g(r) if f(r) = g(−r) and so usually one chooses f(r).
12The disk flux is more complicated to handle but an analogous form can be derived.
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264 Magnetic Field Topology

both S0 and S2π have n̂ = θ̂, while Sf has n̂ pointing perpendicular to B because it is a flux surface
by construction. We can also note that for S0 we have θ = 0 throughout the integral (because dS0

and dS2π only vary with r and ζ) and for S2π we have θ = 2π throughout the integral and so we
can replace the θ. Thus

‹
dS n̂ · θB =

���
���

���
¨

dS0 n̂ · (0)B +

¨
dS2π n̂ · 2πB +

XXXXXXXX

¨
dSf n̂ · θB (2.2.10)

‹
dS n̂ · θB = 2π

¨
dS0 n̂ ·B = 2πΦr

p(r) (2.2.11)

Similarly, for the toroidal flux we can cut at ζ = 0 for S0 and ζ = 2π for S2π and create a toroidal
volume by following flux surface to connect these surfaces Sf . This time S0 and S2π are two circular
disks and, if we unfurled the torus would form the top and bottom of a cylinder. Again, we use
that the S0 and S2π are essentially the same location and it is as if we made a slice but didn’t pull
apart the doughnut. If the total contained volume is Vζ then we use
˚
Vζ

d3x B · ∇ζ =

¨
Vζ

d3x [∇ · (ζB)−����ζ∇ ·B] =

¨
Vζ

d3x ∇ · (ζB) =

‹
dS n̂ · ζB (2.2.12)

By construction the surface integral is given by
‹

dS n̂ · ζB =

¨
dS0 n̂ · ζB +

¨
dS2π n̂ · ζB +

¨
dSf n̂ · ζB (2.2.13)

both S0 and S2π have n̂ = ζ̂, while Sf has n̂ pointing perpendicular to B because it is a flux
surface. We can also note that for S0 we have ζ = 0 throughout the integral and for S2π we have
ζ = 2π throughout the integral and so we can replace the ζ. Thus

‹
dS n̂ · ζB =

��
���

���
�

¨
dS0 n̂ · (0)B +

¨
dS2π n̂ · 2πB +

XXXXXXXX

¨
dSf n̂ · ζB (2.2.14)

‹
dS n̂ · ζB = 2π

¨
dS0 n̂ ·B = 2πΦt(r) (2.2.15)

We then have altogether that

2πΦt(r) =

˚
Vζ

d3x B · ∇ζ (2.2.16)

2πΦr
p(r) =

˚
Vθ

d3x B · ∇θ (2.2.17)

as alternate forms for finding the toroidal flux and the ribbon poloidal flux.

Note that the only real property we used was that the surface was periodic with θ or ζ over a
period of 2π. The verbal descriptions assumed a circular torus shape, but the mathematics did
not. Thus this is general for any periodic θ and ζ with nested flux surfaces.

2.2.3 The Properties and Construction of Flux Coordinates

Now the flux surfaces can be much more complicated then the simple torii, and in those cases
we can construct coordinates that take into account the shapes of the flux surfaces. The pay
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off is simpler expressions for the magnetic field, and often simpler dynamical equations to solve.
Because these coordinates are often difficult to visualize, however, one often loses the ability to
easily translate a result into Cartesian coordinates.

In general, it is possible to construct flux surfaces[9, p. 100], although these flux surfaces are not
necessarily nested. If we just assume that they are, then we can use that given a flux, we can
identify the radial position. When the flux is nested like this, we can use that toroidal flux ψt
and poloidal flux ψp are related such that ψt = ψt(ψp) or ψp = ψp(ψt) without any needed angle
information. For now we’ll just call the flux Φ and not worry whether it is toroidal or poloidal.
All we require is that it is a flux that corresponds to a radial position. We will later use nested
flux surfaces so that we can simplify our magnetic field representation. Then a flux function is
a function that satisfies f = f(Φ), that is, f is constant on flux surfaces. Remember that by
definition we have for a flux surface that B · ∇Φ = 0. Then flux surfaces are created such that B
is always perpendicular to them. This means that

B · ∇f = B · ∇Φ
∂f

∂Φ
= 0 (2.2.18)

is another way of determining that f is a flux function or flux label. Then one way of proceeding
is to construct a way of describing the magnetic field in relation to our fluxes.

We can construct a surface potential[13]13 as G(Φ, θ, ζ). We let θ = θ(x) and ζ = ζ(x) be general
multi-valued functions that determine a flux surface which can be labeled by a radial variable (Φ
here). Then we require (1) ∇G × ∇Φ is single-valued on every path and (2) G is single-valued
along paths that do not encircle a magnetic axis or geometric axis (along flux surfaces). This is a
surface potential because what matters is ∇G, not G itself.

We can then show that given a flux function/label f and a vector function W(x) satisfying ∇f ·
∇×W = 0, then there exists a surface potential G such that ∇f ×W = ∇f × ∇G. We proceed
by defining a point z on the flux surface defined by f that contains the point x that we are
constructing our function for. In other words, find the flux surface that a chosen x is on and find
another point on that flux surface z. Thus given this x, we find a z on a surface of f so that

G(x) =

ˆ x

z(f)

dx′ ·W(x′) (2.2.19)

with the path from z(f) to x fully on the surface of f containing z and x. We can explicitly
parameterize this with s so that

G(x) =

ˆ s2

s1

ds
∂x′

∂s
·W(x′(s)) ≡

ˆ s2(s)

s1(s)

ds′ k(s′) (2.2.20)

We use the Leibniz integral rule for differentiating an integral:

d

dx

ˆ b(x)

a(x)

dt f(x, t) = f(x, b(x))
db

dx
− f(x, a(x))

da

dx
+

ˆ b(x)

a(x)

dt
∂f(x, t)

∂x
(2.2.21)

13This is sometimes called a stream function or generating function. Whatever we call it, the important thing is
that it has properties (1) and (2) as described above.
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and so

∂G

∂x
=

∂

∂x

ˆ s2(x)

s1(z)

ds′ k(s′) = k(s2)
∂s2

∂x
− k(s1)

∂s1

∂x
= W(x) ·

=1︷ ︸︸ ︷
∂x

∂s2

∂s2

∂x
−W(z) · ∂z

∂s1

∂s1

∂x

= W(x)− ∂s1

∂x

∂z

∂s1

·W(z) = W(x)− ∂s1

∂x

∂x

∂s1

· ∂z

∂x
·W(z)

= W(x)−

1︷ ︸︸ ︷
∂s1

∂x

∂x

∂s1

·

∂f
∂x

∂z
∂f︷︸︸︷

∂z

∂x
·W(z) = W(x)− ∂f

∂x

[
∂z

∂f
·W(z)

]
= W(x)− C(z)

∂f

∂x

(2.2.22)

with C(z) some function dependent only on z. We had to be very careful above, as we required
the z part of ∂z/∂x to be dotted into W(z), which is why ∂z/∂x is moved to the left of W. The
last term is in the direction ∇f = ∂f

∂x
and so

∇f × (W − ∇G) = ∇f × (��HHW −��HHW + C∇f) = 0 (2.2.23)

Or equivalently

∇f ×W = ∇f × ∇G (2.2.24)

Because W is single-valued then ∇f × ∇G must be single-valued along flux surface paths as
required for property (1). Then we would like property (2) to hold as well for this G. We consider
a closed path (along a flux surface) with no loops encircling a magnetic or geometric axis. Then
we have ˛

C

d` ·W =

¨
dS n̂ · ∇×W =

¨
dS

∇f
| ∇f |

· ∇×W =

¨
dS 0 = 0 (2.2.25)

where we have used the property (that must be checked in general) that ∇f · ∇ ×W = 0. This
path is essentially a deformed circle inscribed on a flux surface. If we encircled the geometric or
magnetic axis, however, then the surface enclosed by the bounding curve C would not just be a
flux surface and so n̂ would not point in the ∇f direction.

We can now write the magnetic field as

B = ∇f ×W (2.2.26)

Because ∇f ∝ ∇r ∝ ∇Φ and B · ∇Φ = 0 then for a generic W it must be possible to write the
magnetic field as above. We use

0 =∇ ·B =∇ · (∇f ×W) =���
���(∇× ∇f) ·W − ∇f · ∇×W (2.2.27)

We then have ∇f · ∇ ×W = 0 and our above theorem applies so we can replace W with ∇G.
This means that

B = ∇f × ∇G (2.2.28)
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Do not confuse this with the more general Clebsch representation, usually shown as

B = ∇α× ∇β (2.2.29)

In our case f = f(Φ) while α = α(Φ, θ, ζ) and β = β(Φ, θ, ζ). That is neither α nor β are flux
functions/labels. Our form (2.2.28) is more specific to our needs and therefore is more limiting on
(and so tells us a great deal more about) the form of B.

What is the form of our surface potential? Clearly G = G(Φ, θ, ζ) is the most general, but we
desire it to describe things on flux surfaces. Therefore, we want it to depend on θ and ζ with
coefficients dependent on the particular flux surface labeled by Φ. We can then write

G(Φ, θ, ζ) = a(Φ)θ + b(Φ)ζ +G0(Φ, θ, ζ) (2.2.30)

where G0(Φ, θ, ζ) = G0(Φ, θ + 2π, ζ + 2π) is an arbitrary periodic function of θ and ζ. Note how
property (1) enforces that only linear in θ and ζ terms are possible to keep G single-valued on
flux-surface paths. For example assume it depended on c(Φ)ζn. Then

∇G× ∇Φ = nc(Φ)ζn−1∇ζ × ∇Φ + ζn((((
((∇c× ∇Φ (2.2.31)

Then ζn−1 being a function of ζ (for n 6= 1) means that ∇G × ∇Φ depends on the multi-valued
function ζ, and so it cannot be single valued. Therefore n = 1 is the only allowable function. The
same argument can be used for θ. You might worry that this is not enough to rule out more exotic
functional relationships. Suppose we did try a new function h(θ, ζ) which is not periodic in θ and
ζ. We can still form an arbitrarily small path and perform a Taylor series expansion of h along the
path. This will reduce h to a polynomial to whatever accuracy is desired. We then use the same
argument as above and show that only a linear contribution is allowable, and so the function h is
not allowable. The enforcement of G0 being periodic in θ and ζ ensures that G is single-valued for
all other functions.

So we replace G with expression (2.2.30) and can write

B = ∇f × ∇G = ∇f × ∇[a(Φ)θ + b(Φ)ζ +G0(Φ, θ, ζ)]

= a∇f × ∇θ + b∇f × ∇ζ + ∇f × ∇G0

(2.2.32)

We can of course choose a new θ coordinate to eliminate G0 dependence. Simply use θ′ = θ−G0/a
and we find

∇θ′ = ∇θ − 1

a
∇G0 +

G0

a2
∇a (2.2.33)

which with ∇a pointing in the same direction as ∇f (the ∇Φ direction) implies

a∇f × ∇θ′ = a∇f × ∇θ′ − ∇f × ∇G0 +���
���

�G0

a2
∇f × ∇a (2.2.34)

and so we could just as easily write

B = a∇f × ∇θ′ + b∇f × ∇ζ (2.2.35)

Note that this is of the same form as (1.10.8) for the canonical form of B if we identify

a(Φ)∇f → ∇ψt (2.2.36)
b(Φ)∇f → ∇ψp (2.2.37)

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



268 Magnetic Field Topology

Can we do this identification? First of all, remember that ψt is actually 1/(2π) times the toroidal
flux Φt and similarly ψp = Φp/(2π) = Φ/(2π). When there are magnetic flux surfaces, we know
that ψt (or Φt) and ψp (or Φp) are directly related to each other. Here we have Φ = 2πψp = Φp.
If we choose b = −1 then clearly we can use f = ψrp = Φr

p/(2π), for the ribbon flux definition of
poloidal flux as our flux label f . We then require

a(Φ)∇f =
a(Φ)

2π
∇Φ = ∇ψt (2.2.38)

We use nested flux surfaces to write Φt = Φt(Φ
r
p) and so ∇Φt = dΦt

dΦrp
∇Φr

p. Thus if we choose
a(Φr

p) = dΦt
dΦrp

we find

a(Φ)∇f =
1

2π

dΦt

dΦr
p

∇Φr
p =

1

2π
∇Φt = ∇ψt (2.2.39)

Thus, we can make the identification by construction. This then implies

B = ∇ψt × ∇θ′ − ∇ψrp × ∇ζ = ∇ψt × ∇θ′ + ∇ζ × ∇ψrp

B =
∇Φt × ∇θ′ + ∇ζ × ∇Φr

p

2π

(2.2.40)

which shows we can express the magnetic field in terms of its fluxes. We can also bring up the
idea of the safety factor. The safety factor in these straight-field line flux coordinates has a simple
interpretation. We could have kept ∇ψt in terms of ∇Φr

p = ∇Φ and then defined

q(Φ) =
dΦt

dΦr
p

(2.2.41)

as the safety factor and written

2πB = q∇Φr
p × ∇θ′ + ∇ζ × ∇Φr

p = ∇Φr
p × ∇(qθ′) + ∇ζ × ∇Φr

p (2.2.42)
2πB = ∇Φr

p × ∇[qθ′ − ζ] (2.2.43)

We can then identify qθ′ − ζ as constant along field B and call this a field line label. Sometimes
it is called the field line label. This is somewhat poor terminology since it is not constant along
field lines because the field lines can go past 2π in either angle. But qθ′ − ζ is only constant on a
cut from 0 to 2π in θ′ or ζ. If a field line goes more than 2π in θ′ or ζ without meeting itself, then
qθ′ − ζ can change value. For rational field lines it does not matter much because they connect
back on themselves and so going past will simply take you to a self-similar rational field line.

We can also identify poloidal (Bp) and toroidal (Bt) components of B from (2.2.40) via defining

Bp =
∇ζ × ∇Φr

p

2π
= ∇ζ × ∇ψrp (2.2.44)

Bt =
∇Φt × ∇θ

2π
= ∇ψt × ∇ζ (2.2.45)
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2.2.3.1 The Safety Factor

Finally, it is worth delving a bit into the safety factor q. In our flux coordinates we can note that
the field line pitch is given by (see Section 1.10 from (1.10.14) to (1.10.30))

dθ′

dζ
=

B · ∇θ′

B · ∇ζ (2.2.46)

We can use (2.2.43) to write

dθ′

dζ
=
−∇θ · ∇Φr

p × ∇ζ
∇ζ · ∇Φr

p × ∇(qθ)
= ((((

((((
(∇ζ · ∇Φr

p × ∇θ
q(Φr

p)((((
(((

((∇ζ · ∇Φr
p × ∇θ

=
1

q(Φr
p)

(2.2.47)

which shows the field line pitch is a constant on flux surfaces and 1/q(Φr
p). Note that only when

using straight-field line (flux) coordinates is it true that the safety factor is a flux surface quantity
equal to the field-line pitch. Flux coordinates are straight-(magnetic)-field line coordinates and
vice versa as these terms are used interchangeably.

In general, q is a flux-surface quantity, but it is not the field-line pitch. To see this we will assume
we do have angles θ and ζ, but that they are not necessarily flux coordinates. We will still have
that Φp and Φt are flux labels, and that therefore they can be thought of as functions of each other.
The derivative of Φp = Φp(Φt) is called the rotational transform14 and is given by

ι = 2π
dΦp

dΦt

(2.2.48)

The factor of 2π is there so that as ζ varies from 0 to 2π periodically, ι gives the change in θ
when ζ finishes one period. This quantity is for a single field line, and so it can change as one
goes from the first toroidal transit to the second, and so on. However, as you increase the number
of transits, one finds that average change in θ per toroidal transit approaches a consistent value
given by ι/2π or ι.15 Note that ι = 0 implies a purely toroidal line (i.e., no changes in θ for each
toroidal transit in ζ) while ι =∞ implies a purely poloidal line (there never is a change in ζ and
so the denominator of ι blows up).

To get an averaged rotational transform, we consider the field line over a large number of toroidal
transits. We wait until the field line returns to the original location (or within some arbitrary area
of it related to the error we are willing to tolerate) after n toroidal circuits. Each toroidal circuit
will be associated with some change in θ and will therefore create m poloidal circuits. Then we
can say on average the field line pitch (just dΦp/dΦt without 2π and the line over the quantity
indicating an average over toroidal transits) is

dΦp

dΦt

=
n

m
(2.2.49)

This form seems to imply that n/m is always rational, but this is not actually true unless we let
the arbitrary area around our initial location become the exact initial location (so that the error

14Unfortunately terminology is muddled once again. The factor of 2π is often omitted when calling something
the “rotational transform”. But you rarely hear normalized rotational transform. You will hear iota (rotational
transform) and iota-bar (rotational transform, but iota divided by 2π).

15The use of iota ι is also rather unfortunate since in actual writing ι looks like an i without the dot and so could
be so confused. ι is hardly better, as if you are not careful it will look like a t. The notation is standard now, and
so it is not worth trying to change.
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tolerated goes to zero). For then the field line has actually returned to its initial location and it
is a rational flux surface.16 In the generic case we have only found a rational number close to the
desired irrational average value by not requiring the line to close on itself exactly.

Generically we define ι and ι as this average, but omit the averaging line over them since the
non-averaged quantity is usually not useful. Also remember that ι and ι are for a specific flux
surface so the quantities should be evaluated at a specific radial location. Thus

ι = lim
Z→∞

´ Z
0

dζ B·∇θ
B·∇ζ

Z
(2.2.50)

ι = 2π lim
Z→∞

´ Z
0

dζ B·∇θ
B·∇ζ

Z
(2.2.51)

One can then follow the exact same idea for the safety factor q as an average value given by 1/ι.
In practice, one usually instead considers the number of poloidal transits m to toroidal transits n
and so defines

q = lim
Θ→∞

´ Θ

0
dθ B·∇ζ

B·∇θ
Θ

(2.2.52)

which gives the average pitch of dΦt/dΦp. These are equivalent descriptions of the problem. Here
q = 0 implies that the average field line at that surface is purely poloidal, while q = ∞ implies
that the average field line at that surface is purely toroidal.

The use of q or ι is a matter of taste in some sense, but you will find that in the literature q is more
often used for tokamaks ans ι is more often used for stellarators. The radial logarithmic derivative
of q is often given the name magnetic shear and given the variable s to represent it. Thus

s =
r

q

dq

dr
=

d ln q

d ln r
=

d(− ln ι)

d ln r
= −r

ι

dι

dr
= −r

ι

dι

dr
(2.2.53)

The safety factor is related to plasma stability and so that is where its name comes from. Generally
speaking, higher q indicates more stability, however, when q is rational, instabilities often occur
near that location. When using reverse field pinches (RFPs), one reason to prefer q to ι is that
the field becomes purely poloidal and so it is easier to deal with q = 0 than ι =∞ numerically or
analytically.

I have often heard people say that “it makes sense” that tokamak literature uses q and stellarator
literature uses ι. None of the answers have seemed especially convincing to me, other than for
RFPs. The association of high with good may make the safety factor easier to interpret, but I
do not think that is an especially strong answer. The shear is usually opposite for tokamaks and
stellarators, so if one wanted, what one usually calls negative shear in our definition would be more
common in stellarators and so it might make sense to write s = d ln ι/d ln r for stellarators and
consider rotational transform. The only other reason I can think of is that with stellarators you
are often thinking of how the plasma shape changes as you go along the toroidal direction, and so
ι seems more natural. There is nothing wrong with the literature diverging in preferred notation,
but I have never felt that anyone gave a great reason for it.

16In reality, it’s more like a rational field line, but if we have many field lines it forms a surface of closed field
lines.

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



Plasma Physics 271

Figure 2.4: A typical profile shape is shown for a tokamak and stellarator for the safety factor
q on top, and for rotational transform ι = ι/(2π) on bottom. Obviously the profile shapes can
change quite a bit depending on the tokamak or stellarator and the desires of the operators of the
device, but these are rather typical shapes and numbers. Tokamaks like to have a safety factor of
greater than 1 at the center and rapidly rising (generically speaking). Stellarators usually have the
opposite sign of shear and the absolute value of the shear is less than that of a tokamak generically.

In any case, a typical shape and somewhat typical numbers are shown for a stellarator and tokamak
case in Figure 2.4.

One other thing to note is that one usually cares about the edge q. In a limited tokamak, this
is simply whatever q is at the limiter location, but in a diverted tokamak, the edge has q → ∞.
Thus, people usually quote q95 or something similar where q95 indicates the value of q at 95% of
the radial edge value. That is, if a is the edge of the plasma, then q95 = q(0.95a), which does not
suffer from being infinite.

2.2.3.2 Flux Surface Averaging

We can now advance to flux surface averaging. The conventional definition is to define for some
quantity Q the flux surface averaged value 〈Q〉 given by

〈Q〉 ≡
˝

d3x′ Q(x′)δ(r′ − r)˝
d3x′ δ(r′ − r)

=

‚
Sr

dS Q(x′)‚
Sr

dS
(2.2.54)
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where r is some radial variable, the primes denote dummy integration variables, and Sr is the
surface picked out by radial value r. Note that for any flux label f = f(r), this ensures

〈f〉 =

˝
d3x′ f(r′)δ(r′ − r)˝

d3x′ δ(r′ − r)
= f(r)

���
���

��
��XXXXXXXXXX

˝
d3x′ δ(r′ − r)˝
d3x′ δ(r′ − r)

= f (2.2.55)

so that flux labels/functions are unaffected by flux surface averaging, as we’d expect.

We can form a volume of a flux surface via

V (r) =

˚
V

d3x′ =

ˆ
dr

ˆ
dθ

ˆ
dζ J (2.2.56)

where the limits of r, θ, and ζ are given through them covering the volume V (r). If we define the
surface given by θ and ζ as Sr then we can realize

dV

dr
=

d

dr

ˆ
dr

ˆ
dθ

ˆ
dθ J =

‹
Sr

dθ dζ J =

‹
Sr

dS (2.2.57)

where we have used that d
dr

essentially removes the
´

dr .

This means we can write

〈f〉 =
1

dV
dr

‹
Sr

dθ dζ J f =
1

dV
dr

‹
Sr

dS f (2.2.58)

Note that if our radial coordinate r is in fact the flux surface volume V , then we can write

〈f〉 =

‹
Sr

dθ dζ J f =
d

dV

ˆ
dV

‹
Sr

dθ dζ J f =
d

dV

˚
V

d3x′ f (2.2.59)

Consider vector A. Then using Gauss’s Law we find

〈∇ ·A〉 =
d

dV

˚
d3x ∇ ·A =

d

dV

‹
dSr n̂ ·A (2.2.60)

The unit vector is given by n̂ = ∇V/| ∇V |, and we can use that dSrn̂ = dθ dζJ ∇V . We can then
apply (2.2.58) and so

〈∇ ·A〉 =
d

dV

ˆ
dθ

ˆ
dζ ∇V ·A =

d

dV
〈∇V ·A〉 (2.2.61)

Note that if we choose gB then

d

dV
〈∇V · gB〉 = 0 (2.2.62)

This follows from ∇V ·B = 0 because ∇V points perpendicular to flux surfaces and B lies only
on flux surfaces and so by definition of a flux surface we must have ∇V ·B = 0. From this we use
for arbitrary function g

〈∇ · (gB)〉 = 〈g����∇ ·B + B · ∇g〉 = 〈B · ∇g〉 =
d

dV
〈∇V · gB〉 = 0 (2.2.63)

〈B · ∇g〉 = 0 (2.2.64)
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Finally, we can use for arbitrary vector C that

∇ · (∇r ×C) =���
��∇× ∇r ·A−∇×C · ∇r (2.2.65)

∇ · (C× ∇r) = (∇×C) · ∇r (2.2.66)

Thus we find replacing A with C× ∇r and using ∇V = ∂V
∂r
∇r that

〈∇r · ∇×C〉 = 〈∇ · (C× ∇r)〉 =
d

dV
〈(((((

(((∇V · [C× ∇r]〉 = 0 (2.2.67)

The importance of these results is that 〈B · ∇g〉 = 0 means that 〈·〉 is an annihilator for the
operation B · ∇g because 〈B · ∇g〉 is automatically zero. That is, if you have any equation you
want to flux surface average, you know that B · ∇ terms can be annihilated by the flux surface
averaging operation. This is often useful in problems where the operator B · ∇ shows up, because
it leads to great simplifications in the flux averaged equations. It is also worth stating that a
similar trick can work for a generic dyad BA with B the magnetic field. Then

〈∇ · (BA)〉 =
d

dV

ˆ
dθ

ˆ
dζ ∇V ·BA =

d

dV
〈∇V ·BA〉 = 0 (2.2.68)

because again ∇V ·B = 0. We then have

〈∇ · (BA)〉 = 〈�����(∇ ·B)A + B · ∇A〉 = 〈B · ∇A〉 =
d

dV
〈∇V ·BA〉 = 0 (2.2.69)

〈B · ∇A〉 = 0 (2.2.70)

so that the generalization also works. However, remember that BA 6= AB so that

〈∇ · (AB)〉 =
d

dV

ˆ
dθ

ˆ
dζ ∇V ·AB =

d

dV
〈∇V ·AB〉 (2.2.71)

and there is no guarantee of this vanishing because we have not put any restrictions on A.

2.2.3.3 Flux Coordinate Systems

Finally, let’s consider a couple of different flux coordinate systems (i.e., flux coordinates). We can
begin by reminding ourselves of some notation. I will use r is a radial coordinate (any flux label
will do, though I will enforce the Jacobian determinant to be positive), θ can be a generic poloidal
coordinate, ζ a generic toroidal coordinate, and the subscript f implies that the coordinates are
now flux coordinate angles. We remind ourselves that we can construct the surface potential

G(r, θ, ζ) = a(r)θ + b(r)ζ +G0(r, θ, ζ) (2.2.72)

with two properties satisfied. (1) ∇G× ∇r is single-valued on every path and (2) G is single-valued
along paths that do not encircle a magnetic axis or geometric axis (along flux surfaces). We can
also write

B = ∇r × ∇G (2.2.73)

Note how this automatically implies

Br = ∇r ·B = ∇r · ∇r × ∇G = 0 (2.2.74)
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as required for a flux function/label r. We can then write

B = Bθeθ +Bζeζ = JBθ∇ζ × ∇r + JBζ ∇r × ∇θ (2.2.75)

Because ∇ ·B = 0 this implies

∂

∂θ

(
JBθ

)
+

∂

∂ζ

(
JBζ

)
= 0 (2.2.76)

and so we can recognize that we can use our surface potential to get the contravariant representation
of the components of B. Thus, we use

Bθ = − 1

J
∂G

∂θ
(2.2.77)

Bζ =
1

J
∂G

∂ζ
(2.2.78)

which satisfies the ∇ ·B = 0 constraint. Using this with ∇r × ∂G
∂r
∇r = 0 we can write

B = ∇r × ∇G (2.2.79)

as we began. We can then again remind ourselves that the form of G is given by

∂G

∂θ
= a(r) +

∂G0

∂θ
(2.2.80)

∂G

∂ζ
= b(r) +

∂G0

∂ζ
(2.2.81)

We can then use that

dΦt

dr
=

d

dr

1

2π

˚
d3x B · ∇ζ =

1

2π

ˆ 2π

0

dθ

ˆ 2π

0

dζ JB · ∇ζ

=
1

2π

ˆ 2π

0

dθ

ˆ 2π

0

dζ JBζ =
1

2π

ˆ 2π

0

dθ

ˆ 2π

0

dζ
∂G

∂ζ

=
1

2π

ˆ 2π

0

dθ

ˆ 2π

0

dζ

[
b(r) +

�
�
�∂G0

∂ζ

]
= 2πb(r)

(2.2.82)

where I have used the periodicity of G0 for the integral of ∂G0

∂ζ
. Analogously,

dΦp

dr
=

d

dr

1

2π

˚
d3x B · ∇θ =

1

2π

ˆ 2π

0

dθ

ˆ 2π

0

dθ JB · ∇θ

=
1

2π

ˆ 2π

0

dθ

ˆ 2π

0

dθ JBθ =
1

2π

ˆ 2π

0

dθ

ˆ 2π

0

dθ [−∂G
∂θ

]

= − 1

2π

ˆ 2π

0

dθ

ˆ 2π

0

dθ

[
a(r) +

�
�
�∂G0

∂θ

]
= −2πa(r)

(2.2.83)

Thus

G(r, θ, ζ) =
1

2π

[
dΦt

dr
θ − dΦp

dr
ζ

]
+G0(r, θ, ζ) (2.2.84)
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Now, if G0 = 0 or is a flux function only, then θ and ζ are considered flux coordinates. If not,
we can construct flux coordinates by absorbing G0 into θ or ζ as we did before. This comes from
seeing that G on a flux surface is a constant. Because B = ∇r × ∇G, then if we hold r at r0 (so
stay on a single flux surface), then B must be perpendicular to ∇G and ∇r|r=r0 . Because B lies
on flux surfaces, then G must be constant on flux surfaces because B = ∇r× ∇G says that B lies
on surfaces of constant r and constant G. So G must be constant on a flux surface. So when G0

is a flux surface quantity, then G−G0 is a constant and we have

dΦt

dr
θ − dΦp

dr
ζ = C (2.2.85)

This is of course just the equation of a straight line in (θ, ζ) coordinates. Note that we could write

ζ =
dΦt

dΦp

θ − C = qθ − C (2.2.86)

or

θ =
dΦp

dΦt

ζ + C = ιθ + C (2.2.87)

which on a flux surface is the simple equation of a line and hence the field lines are straight. Thus,
in this case we have θ = θf and ζ = ζf . Generically, this will not happen, of course. We can use

θf = θ + 2π
G0

dΦt
dr

ζf = ζ

(2.2.88)

or

θf = θ

ζf = ζ + 2π
G0

dΦp
dr

(2.2.89)

to produce flux coordinates. In either case we find

2πG(r, θf , ζf ) =
dΦt

dr
θf −

dΦp

dr
ζf (2.2.90)

which for constant G on a flux surface also gives straight lines with field line pitch of the safety
factor or rotational transform. The new magnetic field coordinates are then

Br = 0 (2.2.91)

Bθf =
1

2πJf
dΦp

dr
(2.2.92)

Bζf =
1

2πJf
dΦt

dr
(2.2.93)

We can create different flux coordinates (with subscript F ) via the transformation

θF = θf +
dΦp

dr
G1(r, θf , ζf ) (2.2.94)

ζF = ζf +
dΦt

dr
G1(r, θf , ζf ) (2.2.95)
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which implies

2πG(r, θF , ζF ) =
dΦt

dr
[θF −

dΦp

dr
G1(r, θf , ζf )]−

dΦp

dr
[ζF +

dΦt

dr
G1(r, θf , ζf )]

=
dΦt

dr
θF −

��
��

��dΦt

dr

dΦp

dr
G1 −

dΦp

dr
ζF +

��
��

��dΦp

dr

dΦt

dr
G1

=
dΦt

dr
θF −

dΦp

dr
ζF

(2.2.96)

which allows us freedom through G1 to change our flux coordinates while keeping magnetic field
lines straight.

2.2.3.4 Symmetry Coordinates

The first set of flux coordinates to consider are called symmetry coordinates. As we will see, they
should be called axisymmetry coordinates, but that is neither here nor there at this point. They
are symmetry coordinates because we define ζ via an extra symmetry in our problem; that it is
independent of ζ, namely

∂Q

∂ζ
= 0 (2.2.97)

for any scalar quantity Q. Notice that vectors cannot obey this identity because the basis vectors
may change as ζ changes. For example in cylindrical coordinates ∇R and ∇ζ change as ζ changes.
A tokamak ideally satisfies axisymmetry in the conventional geometric toroidal direction, however,
and so looking at symmetric coordinates is useful. It is traditional to use subscript zero or a lower
case “o” on these flux coordinates, and so I will use ζo as the symmetry coordinate.

We want to know how the basis vectors (tangent basis vectors and reciprocal basis vectors) asso-
ciated with ζo are related to each other. Ideally, they would point in the same direction so that
the cross product between them is zero. We can then look at

∇ζo ×
∂x

∂ζo
= J ∇ζ × (∇ro × ∇θo) = J (∇ζo · ∇θo)∇ro − J (∇ro · ∇ζo)∇θo (2.2.98)

For simplicity, say

∇ζo ×
∂x

∂ζo
= A (2.2.99)

Aro = J (∇ζo · ∇θo) = J gζ0θo (2.2.100)
Aθo = J (∇ro · ∇ζo) = J groζo (2.2.101)
Aζo = 0 (2.2.102)

If groθo 6= 0, this implies that ∇ζo has a component along ∇ro. We can then write ∇ζo in a
contravariant representation

∇ζo = ∇ζo · ∇ro
∂x

∂ro
+ ∇ζo · ∇θo

∂x

∂θo
+ ∇ζo · ∇ζo

∂x

∂ζo
= groζo

∂x

∂ro
+ gθoζo

∂x

∂θo
+ gζoζo

∂x

∂ζo
(2.2.103)

Unfortunately, the angular symmetry implies nothing to help us with this problem. We must
instead specify a ζo and determine if it has the desired property of having ∇ζo × ∂x/∂ζo = 0.

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



Plasma Physics 277

In the case of using a cylindrical azimuthal angle ζo via tan(−ζo) = y/x. One can then find
∇ζo = (yx̂− xŷ)/

√
x2 + y2. If we assume

x = a(ro, θo) cos ζo (2.2.104)
y = −a(ro, θo) sin ζo (2.2.105)

z = b(ro, θo) (2.2.106)

then
∂x

∂ζo
= −a sin ζox̂− a cos ζoŷ = yx̂− xŷ (2.2.107)

and so

∇ζo ×
∂x

∂ζ
= ẑ

(
−yx+ yx√
x2 + y2

)
= 0 (2.2.108)

which indeed is zero. Axisymmetry implies symmetry around an axis, and so symmetry coordinates
really should be called axisymmetric coordinates.

It is important to realize symmetry coordinates require two assumptions. One is that we are
using a geometric angle such that ∂x

∂ζo
× ∇ζo = 0 so that we have true axisymmetry and not just

symmetry. Also, that if we rotate our coordinates around the axis of symmetry by an arbitrary
angle, then the components of the new vector or tensor remain the same.17 For any scalar this says
Q(ro, θo, ζ0 = a) = Q(ro, θo, ζo = b) for any a and b and so ∂Q/∂ζo = 0. Note because the basis
vectors can still depend on ζo, we cannot write things like ∂B/∂ζo = 0. For a vector we can write
B = Bi(ro, θ0, ζo)ei(ro, θo, ζo) = Bi′(ro, θo, ζo + cζ)e

′
i(ro, θo, ζo + cζ) where ei is some basis vector set

and e′i is the basis vector set rotated by an angle cζ . Then axisymmetry says that Bi = Bi′ which
means that Bi are independent of ζo and so ∂Bi

∂ζo
= 0. When books say things like

(
∂Q
∂ζo

)
ro,θo

= 0 for

any physical quantity Q, we need to remember that this means components of vectors and tensors,
rather than the vectors or tensors themselves.

If you take away only one thing, remember that symmetry coordinates should be axisymmetry
coordinates. A simple angular symmetry is not enough, as I will show.

A simple counterexample that angular symmetry is not enough is that instead of the ζo constant
surface being a plane purely in the z direction, it could tilt, so that at ζo = 0 it is a plane extending
in y and z with an angle α from the z = 0 plane. We could then rotate this plane around the origin
for each ζo constant plane. Clearly ∂x

∂ζo
will be the same, but now ∇ζo will not point in ∂x/∂ζo by

construction. See Figure 2.5 for an example of these tilted constant ζ planes.

However, once we have gζoro = gζoθo = 0 we can find gζoro = gζoθo = 0 by using ∇ζo =
H(ro, θo, ζo)∂x/∂ζo and the reciprocal relations.

We now consider the symmetry coordinates for cylindrical (R,Z, ζ) system for a tokamak with
axisymmetric ζ = ζo. We previously showed that this system’s angle satisfies the necessary con-
straints. We can find gζoζo in this system through the usual manipulations for coordinate systems,

17Some textbooks say all physical quantities q must have ∂q
∂ζo

= 0 or worse that ∂B
∂ζo

= 0. The first suffers from
vagueness (are vectors physical quantities or are there components?) while the latter is too restrictive. Think about
it. If ∂B

∂ζo
= 0 that means that B cannot change directions as we change ζo. What we actually want is that the

components of B, when rotated around the symmetry axis, are invariant.
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278 Magnetic Field Topology

Figure 2.5: This shows planes of constant ζ, when they are tilted off of pure planes in z. We can
clearly still have ζ going around the axis, but now the normals of the planes of constant zeta do
not point tangent to ζ.

for example in Appendix C.8.2. Then | ∇ζo|2 = 1/R2 and so gζoζo = R2 and gζoζo = 1/R2 using
partial orthogonality.

We can then write Ampère’s Law for the ro component

µoJ
ro = (∇×B)ro =

1

J

(
∂

∂θo
Bζo −

∂

∂ζo
Bθo

)
(2.2.109)

The ∂Bθo/∂ζo term is zero by axisymmetry. In ideal MHD we have J × B = ∇p with p a flux
label. J · ∇p = 0, and because p is a flux label this implies J · ∇ro ∂p∂ro = 0 so that Jro = 0. Thus
we find ∂Bζo/∂θo = 0 so that Bζ is not a function of θo or ζo and is thus a flux function. Then

Bζo =��
�gζoroBro +��

�gζoθoBθo + gζoζoBζo =
Bζo

R2
(2.2.110)

If we define I(ro) = Bζo then this says Bζo = I/R2. We then would like to find J . We can do this
via our generic representation (2.2.93) which says

Bζo =
1

2πJ
dΦt

dro
=

I

R2
(2.2.111)

Thus

J =
R2I

2π

dΦt

dro
= q

R2I

2π

dΦp

dro
(2.2.112)

for this coordinate system. It is worth noting that R is not a flux label and so J is not a flux
label. Finally, we can rewrite the magnetic field using the poloidal flux Φp = ro. Then

2πB = q∇Φp × ∇θo + ∇ζo × ∇Φp (2.2.113)
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with q = dΦt/dΦp. We know that J ∇Φp × ∇θo = ∂x
∂ζo

= ∇ζo/R2 and so the form is

2πB = q
∇ζo
JR2

+ ∇ζo × ∇Φp = 2πI∇ζo + ∇ζo × ∇Φp (2.2.114)

2.2.3.5 Hamada Coordinates

The next coordinate system straightens the J current density field lines as well as the magnetic field
lines. These are called Hamada coordinates. In order to do so we can follow the same procedure
for straightening current lines as we did for the magnetic field since we will require for the straight
J coordinates that ∇·J = 0 and J · ∇r = 0. It is not obvious that r can be chosen so that both J
and B are straight, that is, that the magnetic flux surfaces coincide with the current density flux
surfaces. We can follow the same procedure outlined by (2.2.76) with GJ instead of the G used for
the magnetic fields. Thus we have

J = ∇r × ∇GJ (2.2.115)

and we define It and Ip to be the flux of the current density through a constant toroidal or poloidal
surface, respectively. Note that the flux of the current density is simply the current through that
surface. We’ll use Irp for the ribbon flux, and so we define

Irp(r) =
1

2π

˚
V (r)

d3x J · ∇θ =

¨
Sp

dS n̂ · J =

¨
Sp

drdθ J ∇θ · J (2.2.116)

It(r) =
1

2π

˚
V (r)

d3x J · ∇ζ =

¨
St

dS n̂ · J =

¨
St

drdζ J ∇ζ · J (2.2.117)

We can use that

GJ(r, θ, ζ) =
1

2π

[
dΦt

dr
θ − dΦp

dr
ζ

]
+G0,J(r, θ, ζ) (2.2.118)

Then we use the same transformation laws

θf = θ + 2π
G0,J

dIt
dr

ζf = ζ

(2.2.119)

or

θf = θ

ζf = ζ + 2π
G0,J

dIp
dr

(2.2.120)

to create straight (current density) field lines. Then the equation of a current density line is given
by

dIt
dr
θf −

dIrp
dr

ζf = Co (2.2.121)

for a constant Co = GJ −G0,J.
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Now what if we want G0,J to be a flux function in the sense that B · ∇G0,J = 0? This is what we
would need for straight current density and straight magnetic field lines to coincide with the same
coordinate system. It can be shown that for p a flux function and the ideal J×B = ∇p that this
can be rewritten as

dIp
dr

dΦt
dr
− dIt

dr

dΦp
dr

4π2J
−B · ∇G0,J =

dp

dr
(2.2.122)

B · ∇G0,J =
dIp
dr

dΦt
dr
− dIt

dr

dΦp
dr

4π2J
− dp

dr
≡ Q (2.2.123)

so that we write B · ∇G0,J = Q. If you’re curious how you get this, you use the contravariant
representations of the magnetic and current density vector fields

B =
1

2πJ

[
dΦp

dr

∂x

∂θf
+

dΦt

dr

∂x

∂ζf

]
(2.2.124)

J =
1

2πJ

[(
dIp
dr
− 2π

∂G0,J

∂θf

)
∂x

∂θf
+

(
dIt
dr
− 2π

∂G0,J

∂ζf

)
∂x

∂ζf

]
(2.2.125)

For this to occur we must have

〈B · ∇G0,J〉 = 〈Q〉 = 0 (2.2.126)˛
dl

B
Q = 0 (2.2.127)

where l is a parameter that gives the length along a magnetic field line and B = |B|. One can
then do the flux surface average taking into account flux functions and find a solvability criterion
of

dIp
dr

dΦt

dr
− dIt

dr

dΦp

dr
=

dp

dr

dV

dr
(2.2.128)

in addition to the closed line integral. We put this result in our integral and find
˛

dl

B

[
1

4π2J
dp

dr

dV

dr
− dp

dr

]
= 0 (2.2.129)

We can use then use that field line equations imply d`/B = dζfB
ζf and use Bζf = Φt/(2πJ ) to

find ˛
dζf
Φt

2π�J

1

4π2
��J

dp

dr

dV

dr
=

dp

dr

˛
d`

B
(2.2.130)

1

2π dΦt
dr

dp

dr

dV

dr

˛
dζf =

dp

dr

˛
d`

B
(2.2.131)

If the field line closes after N toroidal transits then
¸

dζf =
´ 2πN

0
dζf = 2Nπ and so

N
dp
dr

dV
dr

dΦt
dr

=
dp

dr

˛
d`

B
(2.2.132)
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For dp/dr 6= 0 and using dV
dr
/dΦt

dr
= dV/dΦt we can write this condition as

1

N

˛
d`

B
=

dV

dΦt

(2.2.133)

The left hand side integral is sometimes called the proper length of a field line. Thus on a flux
surface, we require all closed field lines to have the same proper length. This condition is true
under axisymmetry, but is not in general true. Thus Hamada coordinates can have troubles in
stellarators, but work well in tokamak settings. We can then find J via〈

1

4π2J
dp

dr

dV

dr
− dp

dr

〉
= 0 (2.2.134)

and so (using dp
dr
6= 0) 〈

1

J

〉
=

4π2

dV
dr

(2.2.135)

Note that if we choose r = V as our radial coordinate then〈
1

J

〉
= 4π2 (2.2.136)

We then simply make the choice J = 1/(4π2) and we have Hamada coordinates. This way J is a
flux label and even better, a constant.

Thus if we put a subscript H on Hamada coordinates we have

rH = V (2.2.137)

JH =
1

4π2
=

1

(2π)2
(2.2.138)

〈Q〉 =

‹
dθHdζh
(2π)2

Q(rH , θH , ζH) (2.2.139)

which is very simple looking.

2.2.3.6 Boozer Coordinates

These are the straight field line flux coordinates introduced by Boozer. These coordinates divide
the magnetic field into B = Bo + BJ where

∇×B =∇×B0 +∇×BJ = 0 + µ0J (2.2.140)

so that B0 is the vacuum field and because it is curl-free we write it as

B0 = ∇µ (2.2.141)

for scalar potential µ, called the magnetic scalar potential. Then one can eventually write

B = ∇χ× ∇r (2.2.142)

J =
1

µ0

∇λ× ∇r (2.2.143)

χ = µ+
µ0

2π

(
Itθf + Idpζf

)
(2.2.144)

λ = −µ0

2π

(
2πG0(r, θf , ζf ) +

dIt
dr
θf +

dIdp
dr

ζf

)
= −µ0G(r, θf , ζf ) (2.2.145)
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where Idp is the disk current. One can replace Idp = −Irp if one wants to use ribbon currents.
Boozer-Grad coordinates then change θf and ζf so that µ = 0 everywhere.

The Jacobian determinant is given by

J =
µ0

4π

ΦtI
d
p + Φr

pIt

B2 −B · ∇µ =
µ0

4π

ΦtI
d
p + Φr

pIt

B2
(2.2.146)

if we use r = Φt then

J =
µ0

4π

ιIt + Idp
B2

(2.2.147)

There actually is a good amount of information on Boozer Coordinates in D’haeseleer[9] and online
resources, so I will defer to them.

2.3 Magnetic Field Terminology
Words are pegs to hang ideas on.

— Henry Ward Beecher

It is worth examining the terminology used for magentic fields in plasma physics in a bit more
detail in order to understand why people talk of magnetic tension and pressure. One of the most
common analogies is that of magnetic field lines as similar to strings in physical space. This model
is not actually explicitly taught all that often, so it is worth examining it here. Back in the old
days, magnetic field lines were often called magnetic lines of force, or just lines of force,18 but the
lines of force should be thought of as small tubes that represent properties of the magnetic field.
When the lines of force are thought of as analogous to tubes or strings, we can use the same ideas
that we use for tubes or strings to characterize the magnetic field lines. For example, a magnetic
field line and a string can then both be under tension. And the tension increases if we pull them
so that they are no longer a straight line.

That is, a string on a guitar has tension that tries to pull the string back towards its resting spot
when it has been plucked. This tension acts such that it creates a force perpendicular to the
direction of the cord itself. We call the tendency of magnetic field lines to want to be straight
magnetic tension in analogy. In an actual string the tension is a force. For magnetic field lines it
is a force density.

Another property with some other analogous situation is that for magnetic field strength |B|2
which can be thought of as analogous to regular fluid pressure. That is, the effects of a strong
magnetic field strength have similar effects to having a high pressure. If you like the string analogy,
think of an object that has many strings per volume. The more strings there are, the more difficult
it is to move through that area because you have to push against all the strings. In the same way,
we think of the density of magnetic field lines as increasing as |B|2 increases.19 Because energy

18Leading to the memorable quip from Chen[6], “The magnetic field lines are often called ‘lines of force.’ They are
not lines of force. The misnomer is perpetuated here to prepare the student for the treacheries of his profession.”

19Do not take this situation too seriously, as it is simply helpful as an analogy. Of course in this analogy, the
“pressure” is only increasing because there are more strings under tension, whereas in reality with magnetic field
lines this increase in pressure is separate from the tension.
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density and pressure have the same units, we can think of the energy density of a magnetic field
as a pressure, which we will now explore mathematically.

This all comes together when we write µ0J =∇×B (ignore the Maxwell-Ampère correction) and
so then the force density F20 is written (just for the magnetic contribution)

F = J×B = −B

µ0

× (∇×B) = −∇
(magnetic pressure︷︸︸︷
B2

2µ0

)
+

magnetic tension︷ ︸︸ ︷
B · ∇B

µ0

(2.3.1)

Remember that in this way of thinking, the density of magnetic field lines represents a pressure,
and magnetic tension is a pull on magnetic field lines to unbend them into straight lines. For
an electrically conducting fluid, the force density has a component given by the fluid pressure
−∇p so that the magnetic pressure really does look like a regular fluid pressure since it is also
−∇[B2/(2µ0)]. One other useful decomposition is to recognize the magnetic curvature κ via

B · ∇B

µ0

=
B

µ0

b̂ · ∇(Bb̂) =
B

µ0

(b̂ · ∇B)b̂ +
B2

µ0

κ︷ ︸︸ ︷
b̂ · ∇b̂

= b̂b̂ · ∇
(
B2

2µ0

)
+
B2

µ0

κ

=

b̂b̂·∇︷︸︸︷
∇‖
(
B2

2µ0

)
+
B2

µ0

κ

(2.3.2)

which means we could write

F =

≡−∇⊥
(
B2

2µ0

)︷ ︸︸ ︷
−∇

(
B2

2µ0

)
+ ∇‖

(
B2

2µ0

)
+
B2

µ0

κ (2.3.3)

In an Ideal MHD situation where the force density is given by

F = J× B̂− ∇p (2.3.4)

we can define the total pressure pT = p+B2/(2µ0) and write

F = −∇pT +
B · ∇B

µ0

(2.3.5)

= −∇⊥pT − ∇‖p+
B2

µ0

κ (2.3.6)

The last line can also help further explain the mathematical analogy. If you look at the Frenet-
Serret formula in Section 1.11, especially Section 1.11.3, we can remember that the normal com-
ponent to b̂ is given by κ, the magnetic curvature, and so just as the tension in the string leads
to a net force normal to the string, we can identify B2

µ0
κ as the magnetic tension normal to the

magnetic field line b̂.
20In this section I will write a force density as F, but generally we write F even though this could be confused

with a force rather than a force density.
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There is another interesting analogy here. In a string we have for distance transverse to the string
y and distance along the string in equilibrium x that the tension T for a string of mass per unit
length λ is given by Newton’s Law as

∂2y

∂t2
=
T

λ

∂2y

∂x2
(2.3.7)

where
√
T/λ is the velocity of the transverse wave along the string. As we will later find, a

shear Alfvén wave has velocity vA =
√
B2/(µ0min) and so if we said magnetic tension is given

by T = B2/(µ0) (the coefficient on the curvature κ) then we can recognize x as along a magnetic
field line and y as perpendicular to field lines (in addition we have mass per volume min instead
of mass per length λ) as a strong resemblance. That is our analgous equation is

∼ ∂
2y

∂t2︷︸︸︷
F

nmi

=

∼T
λ︷ ︸︸ ︷

B2

µ0nmi

∼ ∂
2y

∂x2︷︸︸︷
κ (2.3.8)

Note how these are dimensionally consistent identifications, with the only somewhat questionable
identification being κ and ∂2y

∂x2 . This identification is more difficult to see because κ explicitly
refers to the magnetic field line while ∂2y

∂x2 instead refers to the change in the transverse component
along the string’s equilibrium distance x. However, it is not hard to see that it is dimensionally
consistent and that if we used a vector equation along the string, it is plausible it would lead to a
more simlar equation.

We then see how shear Alfvén waves are considered “plucking” magnetic field lines, similar to a
string on a guitar being plucked by the analogies between their equations.

This then relates to the idea of good and bad curvature regions. Remember that B · ∇B/µ0

tries to unbend field lines so that they are straight. If we have an equilibrium, we can place our
origin at the center of the plasma and then there is also fluid pressure from the plasma which will
always be pointing radially outward. If the magnetic field lines circle around the plasma, then the
fluid (and magnetic) pressure is balancing the magnetic tension. If we push a small amount of
fluid outward and the magnetic field can swap places with it,21 then the magnetic tension in the
outwardly moved fluid will decrease and the pressure gradient will decrease, while the fluid that
was moved inwardly have more magnetic tension pushing it inward leading to a configuration that
can continue to repeat itself; if this process repeats we have an unstable situation as plasma and
magnetic field interchange, similar to the Rayleigh-Taylor instability. If the magnetic field lines
bend the other way [see the good curvature in Figure 2.6] then if we put the fluid outward into the
field line, it would require the magnetic tension to increase so that it opposes the movement and
so we are in a stable situation. In an unstable situation this is called an interchange instability
because if we view magnetic field lines as magnetic flux tubes, then moving a fluid parcel outward
is like swapping or interchanging flux tubes.

A common way of explaining instabilities is to talk about energy and that it is energetically
favorable to go to a low energy state. This has the potential to be a very confusing way of
explaining the situation. This is because in an isolated system the total energy is constant, so a

21For example, one can consider a cylinder and then have the radial perturbation be a sine wave and then calculate
if the sine perturbation increases or decreases.
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Figure 2.6: When the curvature and pressure gradient align, the interchange stability can occur,
whereas when they point in opposite directions, interchange is not favorable. So the configuration
on the right has “good curvature” (or favorable curvature) and the configuration on the left has
“bad curvature” (or unfavorable curvature).

“low energy state” does not exist. What is actually meant is that it is entropically favorable, i.e.,
the entropy clearly increases when we have an unstable situation, whereas in a stable situation
there is no easy way to increase entropy. When people talk about “lowest energy states”, they are
instead talking about the potential energy. If you think of kinetic energy as dissipating via friction
or other mechanisms as something we no longer count then the lowest potential energy state is the
most likely state (or the most entropically favorable). The use of “lowest energy” is ubiquitous,
but always remember that it depends on what energy you are counting.

Sometimes you will hear an analogy that if it is not carefully explained as a memory device may
make you look at this situation and get a misleading impression.22 We tend to think of pushing
against a shape bending towards us as more difficult then pushing on a shape bending away from us.
So if we were in a room under pressure with a plastic sheet bulging towards another less pressurized
room, we think it would be easier to push the plastic sheet from inside the high pressure room
towards the low pressure room than from the low pressure room towards the high pressure room.
Thus, if we think about pushing on the magnetic field lines from the plasma side (with −∇p, the
fluid pressure), it is more stable to push on lines that are bending “against” us rather than bending
with us (that is if we push on the magnetic field line and it is against us, we are working to make
the line straight, whereas if it is bending with us, then us pushing on the magnetic field line will
make it less straight). This works as a good device for remembering which curvature is good and
bad. With “hard to bend” being good curvature and “easy to bend” being bad curvature. But
remember that in fact magnetic field lines want to be unbent into straight lines so the analogy has
a core problem with the idea that pushing against the bend should be easier.

We can see a good curvature and bad curvature configuration in Figure 2.6.

22If you think I am chiding others, I am guilty of using this analogy as an explanation in my own thesis.
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2.4 Magnetic Confinement Devices
There have been a number of magnetic confinement devices designed since the idea of using nuclear
fusion for energy was first entertained. These devices can be broadly divided into two types. Those
that are “linear”, often called “open”, and those that close on themselves and so are “toroidal” or
“closed”. The most popular research devices are stellarators and tokamaks. I will discuss a number
of different concepts. First we will look at the closed concepts, those being stellarators, tokamaks,
and reversed-field pinches.

2.4.1 Tokamaks

Tokamaks have progressed farthest along the path to break even, and have “simpler” initial designs.
The main defining property of a tokamak is the use of a net toroidal current to create the poloidal
magnetic field. Another important property is axisymmetry (or near axisymmetry) around the
geometric axis. Tokamaks also satisfy other important relations, such as Bθ

Bζ
∼ Bp

Bt
∼ r0

R0
where

Bt and Bp are toroidal and poloidal magnetic fields and r0 is the minor radius and R0 the major
radius. The aspect ratio is given by A = R0/r0 and the inverse aspect ratio is usually denoted
ε = r0/R0 = 1/A and is considered a small parameter. In reality, ε ∼ 1/3 is typical, but the
approximation of high-aspect ratio does lead to insight into most tokamak physics. When A→∞
or ε→ 0 we have a high-aspect ratio tokamak (again, in reality A ∼ 10 would be considered very
high aspect ratio, with values A > 3 being considered fairly large aspect ratio), because in this
limit the torus becomes essentially a cylinder. What I mean by this, is that the torus major radius
is so large that we can consider the curvature from bending the cylinder into a toroidal shape
to be negligible, so we treat it like a cylinder. Thus, a straight tokamak is interpreted as taking
the “major radius” to be 2πL where L is the length of a cylinder. Thus we treat the torus in a
cylindrical geometry where R0 = 2πL and ζ = z/L. This analysis will miss effects that do not
take into affect curvature of the torus, but usually suffices for a basic analysis of a problem and
has the advantage of being simple to analyze analytically.

Tokamaks have a couple of large drawbacks, however. They are susceptible to pressure and current
instabilities. Stellarators avoid the current instabilities by not having net currents for the most
part. Tokamaks are found to be unstable for number densities growing too large, a phenomenon
called the Greenwald density limit.

There are also spherical tokamaks23 where A ∼ 1, so that they look like a cored apple (see Figure
2.8). Note that A = 1 would simply be a sphere, so it is strictly speaking impossible to achieve
as a toroidal magnetic confinement device, but this “low” aspect ratio is the defining property of a
spherical tokamak. Spherical tokamaks have a number of advantages and disadvantages relative to
“regular” tokamaks. The key advantage is that the magnetic field lines generally twist around the
geometric axis near the geometric axis where the stability properties of the plasma are the best.24
The key disadvantage is that the “central stack”, the center of the torus, is very small and so it is
more difficult to access the inboard side (the area of the torus nearest to the geometric axis) of
the device or to put diagnostics or plasma heating devices in this space.

The most important property of a tokamak is that the poloidal field is generated by a net current
in the plasma, and that the plasma is axisymmetric.

23Do not confuse these with spheromaks which are a completely different type of magnetic confinement concept.
24Think about good and bad curvature regions, and you will see why.
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Figure 2.7: The image shows an exmaple of a generic tokamak. Note the axisymmetric toroidal
magnetic field coils. The image is from S. Li, H. Jiang, Z. Ren, C. Xu - S. Li et. al. "Optimal
Tracking for a Divergent-Type Parabolic PDE System in Current Profile Control" , Abstract and
Applied Analysis doi:10.1155/2014/940965. It is available to the public under a CC 4.0 license.

Figure 2.8: The image shows an example of a spherical tokamak. Note the very small central
column (the central hole for the torus). The image is from A. Sykes et al. - (2018). "Compact
fusion energy based on the spherical tokamak". Nuclear Fusion 58 (1): 016039. doi:10.1088/
1741-4326/aa8c8d. ISSN 0029-5515. It is available to the public under a CC 3.0 license.
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2.4.2 Stellarators and Heliotrons

Stellarators’ and heliotrons’ distinctive property is a lack of net toroidal current within the plasma,
and so the external magnetic coils determine the magnetic flux surfaces. In fact, it is desired that
the plasma not produce much net toroidal current in stellarators or heliotrons, because the toroidal
currents deform or destroy the flux surfaces which are usually designed for optimal confinement;
in addition, for a reactor this would be non-steady state.25 One way of stating this is by using the
rotational transform. The external coils or magnets are designed to create a rotational transform.

First, let’s examine the difference between a stellarator and a heliotron. The difference is somewhat
subtle and often ignored in practice. A stellarator device achieves the magnetic flux surfaces with
external magnetic field coils in general. A heliotron uses magnetic coils that helically (that is
both in the toroidal and poloidal directions) wind around the plasma. If one subscribes to such
a definition then Wendelstein-7X (W7X) is a stellarator but not a heliotron, whereas the Large
Helical Device (LHD) is both a stellarator and a heliotron.26 I personally find this treatment
somewhat hair-splitting, but it is good to be aware that there can be differences implied by this
splitting of stellarator and heliotron. From now onward, I will just speak of stellarators, since they
are the more general concept.

General principles establish that plasma confinement and stability require a magnetic field with
both toroidal and a poloidal magnetic fields. One way to achieve the right combination is to use
magnetic coils to produce the flux surfaces desired, and make sure that such an equilibrium is
consistent. Designing coils to do this is still a subject of much investigation, and generally requires
computational tools to produce coils with desired flux surfaces. As we will learn, plasma particles
drift off flux surfaces, and so designing the flux surfaces so that the drift doesn’t lead to loss
of confinement is of major importance. This led the original stellarators to have figure-eight like
confinement vessels with simpler coils around them. Current stellarators have toroidal confinement
vessels with exotic-looking coils to create the required flux surfaces.

Because of the helical coils (or coils that create magnetic fields similar to a helical coil) there
is generally not an angle over which we can say that the flux surfaces are invariant. That is
there is no axisymmetric angles (where quantities are the same along an angle). In some cases,
there is an angle (though it is not the simple geometric angle) that can satisfy a similar condition
but only for the magnetic field modulus. In this case, it is B = |B| that is symmetric in an
angle along flux surfaces. That is for B(r, α, β) for angles α and β, with β the quasisymmetric
angle, then B(r, α, β = a) = B(r, α, β = b) and so B(r, α, β) = B(r, α) only. Then we say a
“quasisymmetry” exists. There are three types. Quasihelical symmetry, where the quasisymmetric
angle is a simple combination of the geometric θ and ζ in primitive toroidal coordinates. We
could write B(r, θ, ζ) = B(r,mθ− nζ) for some values of m and n (integers so that the new angle
closes on itself). Quasi-poloidal symmetry has B(r, θ, ζ) = B(r, ζ) so that the B is independent
of the poloidal angle. Quasi-axisymmetry has B(r, θ, ζ) = B(r, θ) so that B is independent of the
toroidal angle. Why we care about B is that in Boozer coordinates one can write the guiding
center equations of motion such that they only depend on a position via r and B, so that these

25Of course, the magnetic coils may be designed such that they create fields that expect a net toroidal current
in the stellarator plasma. The important thing is that the magnetic flux surfaces are generated mostly by external
coils and magnets.

26The terminology is in fact a good bit more complicated. The geometric “figure eight” stellarator is sometimes
called a spatial stellarator. Subsequent devices which were more toroidal, but had separate helical coils on each end
are called classical stellarators. As far as I can tell, torsatron and heliotron are synonymous.
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Figure 2.9: The image shows an example of a stellarator with the Wendelstein 7X design. Note
how the coils are not simple. The yellow surface is a flux surface and the green line an example
magnetic field line. The image is from Max-Planck Institut für Plasmaphysik (IPP) and IPP has
the copyright. It is available to the public under a CC 3.0 license.

equations are similar to what happens in an axisymmetric field. Another way of saying this is that
there is an angular momentum for some angle coordinate that is conserved.

Because stellarators keep their equilibrium flux and don’t have a net current (or a very small net
current) at steady-state, they could be easily operated in a steady-state. In fact, this is one large
advantage of stellarators, as it is quite obvious how to operate one in steady state. A related
disadvantage is that stellarators cannot really use ohmic heating to start and maintain a plasma
since they require little net current.

In some sense, stellarators have more freedom than tokamak plasmas because they are not restricted
by axisymmetry. This means that it is much more difficult to design, but you can also tailor your
design much more easily. In a day of vast computational resources, making a tailored design for a
stellarator is not as large of a burden as it once was.

The bottom line is that a stellarator does not impose axisymmetry, and tries to reduce net current
to zero so that the flux surfaces are completely due to the magnetic field coils.

2.4.3 Reversed Field Pinch

A reversed field pinch, almost always referred to as an RFP, is yet another toroidal confinement
concept. In this one, the most defining feature is that the toroidal magnetic field reverses direction
as one goes from the magnetic axis (r = 0) outward radially towards the confinement vessel. This
means at some radial point that Bt = 0, which is usually near the edge, that is for a the minor
radius of the plasma, the field reversal is near r ≈ a. This means that Bt/Bp is no longer always
a large number as it is in a tokamak. Generally speaking, this means that Bt ∼ Bp and that |B|
is moderate in comparison to tokamaks (or stellarators). This means less energy is required to
power the magnetic coils. The major disadvantage is that RFPs have terrible stability near the
edge. The ways of dealing with this are putting a close-fitting electrically conductive shell (the
shell generates currents that counteract the instabilities) or putting a series of magnetic coils that
receive feedback from the plasma and act to prevent instabilities directly. Another disadvantage
is that the current required to produce an RFP is rather large and so would require advances in
current production. Ohmic current production is the only known way to get the required currents,
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Figure 2.10: The image shows an example of an RFP, especially the q profile. Note how the black
lines indicating the q profile reverse their slant as one moves out in minor radius. The image was
made by user DaveBurke on Wikipedia. It is available to the public under a CC 2.5 license.

but ohmic current production becomes much less efficient as the plasma temperature rises.

The “pinch” part of RFP refers to the fact that the magnetic field produced by the currents in the
RFP pinch the plasma radially inward away from the wall.

The most important property of an RFP is that the toroidal magnetic field reverses as one goes
out in (minor) radius. Hence q goes through zero and changes sign. RFPs require less powerful
magnets, but have plasma surface instabilities requiring some sort of intervention. For the close-
fitting wall solution, the problems for a fusion reactor will be the heat and neutrons into the
close-fitting wall.

2.4.4 Z Pinch

The Z pinch or, sometimes zeta pinch, uses the pinch effect previously described. That is, by
driving a large axial current (axial meaning along the Z direction, which in toroidal Z pinches
means in the ζ direction), the plasma is pinched radially inward. The Z pinches proved to be
too unstable due to the large currents being driven, and so were abandoned in favor of tokamaks
where larger magnetic fields were instead used. Currently, Z pinches tend to be linear devices (so
they are cylinders), and are less studied as energy producing devices, than as devices capable of
producing high energy x-rays, and for national defense adjacent concepts.27 Z pinches as fusion
devices are no longer a major area of study, though there are some ideas of using some sort of
magnetic liner28 that would aid in the pinch to produce energy.

2.4.5 Field Reversed Configurations and Spheromaks

Field Reversed Configurations or FRCs, are plasmas that look like smoke rings, and are, along
with spheromaks, compact toroids. They are generated in linear devices, and are self-stable (for
a while. . . ). Self-stable actually means that magnetic coils are not (directly) causing the toroidal
shape of the plasma. FRCs have a weak to no toroidal magnetic field on them, and so have only

27If you do not know what national defense adjacent is, then feel free to look at the uses of Z pinches online.
28By magnetic liner, I mean some material surface around the plasma that has inertia when pinched inward.
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a confining poloidal magnetic field which allows larger β = 2µ0p/B
2 which translates into more

pressure for less magnetic field and so better power production capabilities. Spheromaks have a
toroidal magnetic component along and in them.29

Compact toroids still do not have the performance of stellarators or tokamaks, but their linear
design and high β have led to continued interest as fusion concepts.

2.4.6 Magnetic Mirrors

Magnetic mirrors are linear devices whose defining feature is that end losses are prevented by a
steep gradient in |B|. The particles then “bounce” when they meet the ends, as if they were hitting
a mirror, and go the other direction. The problem that magnetic mirrors have faced is that they
don’t stop high energy particles and so the end losses have proved to be too large. With more
powerful magnets and a larger gradient in |B|, one can contain more particles, and so there is
some renewed interest in magnetic mirrors, often called gas dynamic traps (GDTs) because they
also use other strategies to prevent ion and electron losses at the ends.

2.5 Plasma Kinetics

Ludwig Boltzmann, who spent much of his life studying statistical mechanics, died in
1906, by his own hand. Paul Ehrenfest, carrying on the same work, died similarly in
1933. Now it is our turn to study statistical mechanics.

— David Goodstein in States of Matter

Now let’s start with a very basic way of looking at a collection of particles.30 This will just touch
the surface, if you would like some good plasma kinetics references, such as notes I helped edit
J. D. Callen’s notes[5]. Montgomery[15] is an old, but quite readable reference. There are also
many modern texts now available on the subject.

We can start with Newton’s equations for each particle, considering each a δ-function in position.
This will lead to the Klimontovich equation which, though exact, is also not continuous and not
very useful.31 We consider there to be distinct plasma species labeled by s. Then in each species
there are Ns particles of the species. We could then write out the forces for each particle via

∑
s

Ns∑
i=1

dps,i(xs,i, t)

dt
= qs [E(xs,i, t) + vs,i ×B(xs,i, t)] (2.5.1)

where ps,i(xs,i, t) is the momentum of the ith particle of species s as a function of the position of
that particle at time t. For our non-relativistic, non-quantum case ps,i = msvs,i(xs,i, t) the mass
of the species times the velocity of the ith particle of species s. The E and B come from Maxwell’s
equations, and are in fact very ugly because we are still using point particles. Thus with xs,i

29If you take a spheromak and put a central core conductor through its hole and add external magnetic coils, you
have basically created a spherical tokamak.

30Do not worry. Despite the quote by Goodstein, learning plasma kinetics, which encompasses statistical me-
chanics, is pretty harmless.

31I mean not practically useful to find particle trajectories. It is extremely useful for seeing how to derive
equations!
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pointing to the ith particle of species s we have

E(x) =
1

4πε0

∑
s

Ns∑
i=1

qs(xs,i − x)

|xs,i − x|3
=

˚
V

d3x′
ρq(x

′)(x′ − x)

4πε0|x′ − x|3
(2.5.2)

B(x) =

˚
V

d3x′
µ0J(x′)× (x′ − x)

4π|x′ − x|3
(2.5.3)

J(x) =
∑
s

Ns∑
i=1

ρq,svs,i (2.5.4)

where J is the definition of the current density. These are “ugly” because

ρq(x
′) =

∑
s

Ns∑
i=1

qsδ(xs,i) (2.5.5)

J(x′) =
∑
s

Ns∑
i=1

qsδ(xs,i)vs,i(xs,i, t) (2.5.6)

Note that these definitions are if we care only about the plasma particles. If we include externally
applied fields, then we can do the same thing, specifying all the particles of the total system.
Alternatively, we could instead focus on a specific volume and make sure our E and B satisfy the
proper boundary conditions consistent with the external fields and our distribution of particles.

This is a set of N0 =
∑

sNs equations that are all coupled to each other. Solving N0 equations
when it is orders of magnitude larger than Avogadro’s number32 is an impossible proposition
for complicated dynamics. We can make some progress by introducing a distribution function
fs(xs,vs, t) for each species s. This distribution function will have units of inverse (volume times
speed cubed) or in SI units m−6 s3. Then fs is a way of telling us the probability of a particle
being in a specific volume of phase space,33 where phase space is an abstract space of all possible
velocities and positions. That is, the probability of a particle of species s having a position between
x and x + dx and a velocity between v and v + dv at time t is given by fs(x,v, t) dx dv

There is often confusion over using this phase space because one should not think of it as the
actual position or velocity of a particle in the system. Instead, the trajectory of the particle is a
specific curve in this generalized phase space and fs is a way of giving us the proper information to
determine what curve the particle is likely to be on. This also explains why v and x are considered
independent of each other. For any position x in this phase space, any v is possible. When we move
to actual trajectories of particles, then the actual vas,i and xas,i followed by particle i of species s are
obviously related. Thus, if we are talking about a specific actual trajectory, we can use the relation
dxas,i

dt
= vas,i but if we are talking about the phase space x and v, dxi

dvj
= 0 for all i and j because

the positions and velocities are all independent of each other. That is, for a particle trajectory
dxas,i

dt
= vas,i, clearly xas,i and vas,i have a relationship of some form that is like xas,i = xas,i(t(v

a
s,i))

because they are both parameterized by t. In the phase space, there is no time dependence and
hence no connection.

32Avogadro’s number NA is the number of constituent particles in one mole (by definition) and is defined to be
6.022× 1023 mol−1.

33When generalizing to quantum or relativistic situations, one should use momentum and position instead of
velocity.
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In our case, we will assume we do know the trajectories of the particles exactly as given above as
the Dirac delta functions. Then clearly

fs(x,v, t) =
Ns∑
i=1

δ[x− xs,i(t)]δ[v − vs,i(t)] (2.5.7)

because it is guaranteed to be at a specific velocity and position but zero elsewhere. In general,
it won’t be possible to know this, but let’s see what happens if we look at that change in the
distribution over time. We will have

∂fs
∂t

=
Ns∑
i=1

[
∂δ[x− xs,i(t)]

∂t
δ[v − vs,i(t)] + δ[x− xs,i(t)]

∂δ[v − vs,i(t)]

∂t

]

=
Ns∑
i=1

[
∂xs,i
∂t
· ∂δ[x− xs,i(t)]

∂xs,i
δ[v − vs,i(t)] + δ[x− xs,i(t)]

∂vs,i
∂t
· ∂δ[v − vs,i(t)]

∂vs,i

] (2.5.8)

Now we can switch from partial to full derivatives on the xs,i and the vs,i because they are variables
of only t. Thus we have

∂fs
∂t

(x,v, t) =
Ns∑
i=1

[
dxs,i
dt
· ∂δ[x− xs,i(t)]

∂xs,i
δ[v − vs,i(t)] + δ[x− xs,i(t)]

dvs,i
dt
· ∂δ[v − vs,i(t)]

∂vs,i

]
(2.5.9)

We can use two things now. For the vs,i and xs,i we have the actual trajectories so

dvs,i
dt

= as,i(t) =
qs
ms

(E + vs,i ×B) (2.5.10)

dxs,i
dt

= vs,i (2.5.11)

and that because of the delta functions we have for any g(x− xs,i) that

∂g(x− xs,i)

∂xs,i
= −∂g(x− xs,i)

∂x
and xs,i = x (2.5.12)

∂g(x− xs,i)

∂vs,i
= −∂g(x− xs,i)

∂v
and vs,i = v (2.5.13)

Using these two identities we can then write

∂fs
∂t

(x,v, t) =
Ns∑
i=1

[
−vs,i ·

∂δ[x− xs,i(t)]

∂x
δ[v − vs,i(t)]− δ[x− xs,i(t)]as,i ·

∂δ[v − vs,i(t)]

∂v

]

=
Ns∑
i=1

[
−v · ∂δ[x− xs,i(t)]

∂x
δ[v − vs,i(t)]− δ[x− xs,i(t)]a ·

∂δ[v − vs,i(t)]

∂v

]
(2.5.14)

where

a ≡ qs
ms

(E + v ×B)
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We can use that x and v are independent of each other, so

δ[x− xs,i(t)]
∂δ[v − vs,i(t)]

∂v
=

∂

∂v

(
δ[x− xs,i(t)]δ[v − vs,i(t)]

)
(2.5.15)

∂δ[x− xs,i(t)]

∂x
δ[v − vs,i(t)] =

∂

∂x

(
δ[x− xs,i(t)]δ[v − vs,i(t)]

)
(2.5.16)

It is important to use this order if we are to conceptually keep the independence of x and v but
not of the particular trajectories of the particles xs,i and vs,i. By doing this, we can also take our
v and a terms and derivatives outside of the sum to find

∂fs
∂t

(x,v, t) = −
[
v · ∂

∂x
+ a · ∂

∂v

] Ns∑
i=1

δ[x− xs,i(t)]δ[v − vs,i(t)]

= −
[
v · ∂

∂x
+ a · ∂

∂v

]
fs

(2.5.17)

We can then take the full time derivative of fs and find

dfs
dt

=
∂fs
∂t

+
dx

dt
· ∂fs
∂x

+
dv

dt
· ∂fs
∂v

=
∂fs
∂t

+ v · ∂fs
∂x

+ a · ∂fs
∂v

=

= ∂fs
∂t︷ ︸︸ ︷

−
{
�
�
�
�

v · ∂fs
∂x

+
Z
Z
Z
Z

a · ∂fs
∂v

}
+
�
�
�
�

v · ∂fs
∂x

+
Z
Z
Z
Z

a · ∂fs
∂v

= 0

(2.5.18)

This is not as surprising as one might at first expect. It is a statement that the probability can
only be moved around, but that no particles are disappearing.

We can sum over all species and we will find the same answers because the E and B are from
the total and not just for a single species. Thus with f =

∑
s fs we write the total Klimontovich

equation as

df

dt
=

d

dt

∑
s

fs = 0 (2.5.19)

This is of course equivalent to simply writing out our N0 equations above and solving for the
particle trajectories using Newton’s Second Law. We have simply rearranged the information by
putting it into the distribution function f . Because N0 > NA and sometimes N0 � NA, the actual
calculation of these trajectories would be enormously time consuming for computers. You would
also be left with the trajectories of N0 particles, which may not give you any intuition for what is
happening. Imagine I gave you the positions and velocities of all the particles in a tire. Would you
be able to easily tell me what the pressure inside the tire is? We also have mathematical headaches
because of those Dirac delta functions lurking in fs. If we were to actually look at the E and B
generated by the point particles we would have singularities at all the point particle positions.
What we’d like to do is reduce the information we have, smooth the results, and have a way of
getting information about the system as a whole rather than of specific particles. This is where
plasma kinetics comes in.
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2.5.1 Smoothing and Fluid Quantities

There are a couple of ways of imagining going from the spiky functions of the Klimontovich equation
to smooth distributions for the plasma kinetic equation.

One way is inspired from thermodynamics, and thus has all of the intricacies and troubles of in-
terpretation that comes from such thermodynamic thought experiments. Namely, that it seems
what we’re doing is sensible, but it requires us to consider an immense number of states that are
“macroscopically” indistinguishable. This requires us to determine what is “macroscopic” and what
is “distinguishable” which may not seem physically relevant. In any case, this is the ensemble ap-
proach. This approach says that we should average over an ensemble of systems that are consistent
with the values we see macroscopically, but could differ in their microscopic arrangements. We are
usually dealing with a 6D+1 (six-dimensional plus time) arrangement,34 but the interpretational
issues are no different if we restrict ourselves for discussion to 2D+1. The simplest method is to
simply say that things are macroscopically indistinguishable for a small volume around a point
in phase space. Deciding what is small enough is then always a question, and one has to really
think about whether we can choose the same volume for every point in our phase space. You may
also have trouble deciding if particular points in phase space really are indistinguishable for the
macroscopic quantities you care about.

Another subtlety is in what does “average” mean. Is this an average over time? Or is it an average
in the sense that we should appropriately weight each configuration in the ensemble. If that is
the case, how should each weighting be chosen? In statistical mechanics the latter definition of
weighting configurations is used. Then different ensembles are used depending on what macroscopic
properties you wish to keep constant. See a statistical mechanics book on the microcanonical, the
canonical, the grand canonical, the Gibbs, or the enthalpy ensembles to see all of the possibilities.
One must now be very careful about counting all the ways that a system is represented correctly.
If you accidentally overcount or overrepresent a state, you can get incorrect answers. Thus, this
approach requires mathematical sophistication, perseverance, and accuracy to get results. There
is nothing wrong with this approach, but an easier method presents itself.

The second way is to simply think of splitting our point particles in a manner consistent with charge
and mass conservation. This is often called a mush limit, and involves changing our particles
by spreading them into a continuous smear near their initial xs,i and vs,i, and thus forming a
continuous distribution. Operationally, we can think of this as choosing a box size in phase space
and spreading the charge and mass throughout the box so that the same total charge and mass
is in it, and it is consistent with surrounding box edges. Simplistically we could think of doing
a process where we split qs → qs/2 + qs/2 and ms → ms/2 + ms/2 with each particle spread a
little bit in space and repeating this on each of the subdivided particles until we have a sufficiently
smoothed out function.

Then we would consider the variations in v and x to be negligible (small enough box sizes), and,
of course, we are not messing with t.35 Both ρq and J are negligibly changed for the scale we
are looking at so E and B are the same (except very near particle positions, where they are now

34The 6D is often written 3D3V to emphasize three spatial and three velocity dimensions. If quantum or relativistic
effects are included this is still written this way, though p will replace v in the phase space considered

35You might argue that this is essentially choosing small enough phase space volumes for an ensemble average,
and it is mathematically equivalent, though I would say this mush limit process is easier for me to comprehend.
Depending on how an ensemble average is done, it does not even necessarily yield a continuous distribution.
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smooth and not singular). By design, qs/ms remains the same. Thus if we use 〈·〉 to indicate the
new mushed quantities we would find 〈

df

dt

〉
=
∑
s

〈
dfs
dt

〉
= 0 (2.5.20)〈

dfs
dt

〉
=

〈{
∂

∂t
+ v · ∂

∂x
+

qs
ms

(E + v ×B) · ∂
∂v

}
fs

〉
= 0 (2.5.21)

∂ 〈fs〉
∂t

+ v · ∂ 〈fs〉
∂x

+
qs
ms

〈
(E + v ×B) · ∂fs

∂v

〉
= 0 (2.5.22)

For the last term, we can consider a formal expansion around the true E such that E = 〈E〉 + Ẽ

and fs = 〈fs〉+ f̃s. We can then write

E · ∂fs
∂v

= 〈E〉 · ∂ 〈fs〉
∂v

+ Ẽ · ∂ 〈fs〉
∂v

+ 〈E〉 · ∂f̃s
∂v

+ Ẽ · ∂f̃s
∂v

(2.5.23)

By our definition of 〈q̃〉 = 0 for any quantity q. So we have〈
Ẽ · ∂ 〈fs〉

∂v

〉
=

〈
〈E〉 · ∂f̃s

∂v

〉
= 0 (2.5.24)

Similarly for the v ×B term where we can use B = 〈B〉+ B̃. Then we can say〈
dfs
dt

〉
=
∂ 〈fs〉
∂t

+ v · ∂ 〈fs〉
∂x

+
qs
ms

(〈E〉+ v × 〈B〉) · ∂ 〈fs〉
∂v

= −

〈
(Ẽ + v × B̃) · ∂f̃s

∂v

〉
(2.5.25)

If the change from the average is small, then we expect the terms on the right hand side (the
“twiddle” terms) to be near zero and we get the Vlasov equation〈

dfs
dt

〉
=
∂ 〈fs〉
∂t

+ v · ∂ 〈fs〉
∂x

+
qs
ms

(〈E〉+ v × 〈B〉) · ∂ 〈fs〉
∂v

= 0 (2.5.26)

with the 〈E〉 and 〈B〉 being macroscopic averages of the fields. This also gives a heuristic ex-
planation of collisions as being from the higher-order effects of the electric and magnetic field
interactions where the plasma kinetic equation is written〈

dfs
dt

〉
=
∂ 〈fs〉
∂t

+ v · ∂ 〈fs〉
∂x

+
qs
ms

(〈E〉+ v × 〈B〉) · ∂ 〈fs〉
∂v

−
∑
r

Csr(fs, fr) (2.5.27)

∂ 〈fs〉
∂t

+ v · ∂ 〈fs〉
∂x

+
qs
ms

(〈E〉+ v × 〈B〉) · ∂ 〈fs〉
∂v

=
∑
r

Csr(fs, fr) (2.5.28)

with Csr(fs, fr) is the collision operator for collisions between species s and r. We can define the
sum as C(fs) =

∑
r Csr(fs, fr). They are coming from the ignored interactions between different

charge species (by changing the E and B to smoothed quantities we miss what really happens
when charged particles actually do get near each other) which will alter the electric and magnetic
fields.

Because it is often assumed we’re working in the mush limit or some ensemble average, we then
omit the averaging brackets and the plasma kinetic equation is written

∂fs
∂t

+ v · ∂fs
∂x

+
qs
ms

(E + v ×B) · ∂fs
∂v

= C(fs) (2.5.29)
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2.5.2 Fluid Moments

Now to getting information about the system as a whole rather than to individual particle trajec-
tories. We will follow a hierarchy of moments approach. This will allow us to understand fluid
quantities (such as temperature, pressure, flow velocity, and number density) as coming from the
plasma kinetics. Thus, we take our distribution function fs and we take moments, integrating over
the velocity space v. We begin by defining some quantities using v′s ≡ v −Vs so that

0 =

¨
d3v v′sfs (2.5.30)

ns(x) ≡
˚ ∞

−∞
d3v fs(x,v) (2.5.31)

ns(x)Vs(x) ≡
˚ ∞

−∞
d3v vfs(x,v) (2.5.32)

ps(x) ≡
˚ ∞

−∞
d3v

msv
′2
s

3
fs (2.5.33)

↔
Ps(x) ≡

˚ ∞

−∞
d3v msv

′
sv
′
sfs = ps(x)1 +

↔
Πs(x) (2.5.34)

↔
Πs(x) ≡

˚ ∞

−∞
d3v ms

(
v′sv

′
s −

v′2

3

)
fs (2.5.35)

Qs(x) ≡
˚ ∞

−∞
d3v

msv
2

2
vfs = qs +

5

2
nskBTsVs +

1

2
nsmsV

2
s Vs + Vs ·

↔
Πs (2.5.36)

qs(x) ≡
˚ ∞

−∞
d3v v′s

msv
′2
s

2
fs (2.5.37)

These quantities are given names that correspond to features of fluids that we measure. The ns is
the number density, Vs is the flow velocity, ps = nskBTs is the pressure,

↔
Ps is the total pressure

tensor,
↔
Πs is the stress tensor, Qs is the total heat flow, and qs is the conductive heat flow.

Sometimes, Qs is called the energy flux and qs the heat flux, but these term names are not always
very descriptive, anyway.

It is also convenient to define moments of the total collision operator.
˚ ∞

−∞
d3v C(fs) = 0 (2.5.38)

˚ ∞

−∞
d3v mvC(fs) =

˚ ∞

−∞
mv′sC(fs) = Rs (2.5.39)

˚ ∞

−∞
d3v

mv′2s
2

C(fs) = Qs (2.5.40)

Then Rs is the collisional friction or the energy-weighted stress, while Qs is, thankfully, just called
the collisional heating.

One can continue to go up the moment chain by multiplying fs by (1,v, v2,vv2, v4, . . . ) with
various factors to calculate an unending chain of quantities. These become ever more difficult to
understand physically and more difficult to measure experimentally.
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Now, we can take our plasma kinetic equation and take moments. We have

∂fs
∂t

+ v · ∂fs
∂x

+
qs
ms

(E + v ×B) · ∂fs
∂v

= C(fs) (2.5.41)

and so we can simply take it one term at a time. We begin with just taking the moment with no
factors. ˚ ∞

−∞
d3v

∂fs
∂t

=
∂

∂t

˚ ∞

−∞
d3v fs =

∂ns
∂t

(2.5.42)

where we have used that we can interchange the integration and differentiation operations. The
next term is given by

˚ ∞

−∞
d3v v · ∂fs

∂x
=

˚ ∞

−∞
d3v

[
∂

∂x
· (fsv)− fs

�
�
��∂

∂x
· v
]

(2.5.43)

where we use that v is independent of x. The divergence operator can also be taken out of the
integral and so we find

∂

∂x
·
˚ ∞

−∞
d3v vfs =

∂

∂x
· (nsVs) (2.5.44)

The next term is given by
˚ ∞

−∞
d3v

qs
ms

E · ∂fs
∂v

=
qs
ms

˚ ∞

−∞
d3v

[
∂

∂v
· (fsE)− fs

�
�
��∂

∂v
· E
]

(2.5.45)

where we have used that E is independent of v. We can then use the divergence theorem and we
have

qs
ms

˚ ∞

−∞
d3v

∂

∂v
· (fsE) =

qs
ms

¨
S∞

d2v n̂ · Efs = 0 (2.5.46)

Now we have used that at the surface at infinity S∞, we must have fs → 0 and E → 0 because
there are no particles far, far away.

The next term is given by
˚ ∞

−∞
d3v

qs
ms

(v ×B) · ∂fs
∂v

(2.5.47)

We can use a similar trick. We use

v ×B · ∂fs
∂v

=
∂

∂v
· [fsv ×B]− fs

∂

∂v
· [v ×B] (2.5.48)

because B is independent of v, then we have the final term as

fs
∂

∂v
· [v ×B] = fs

[
B · ∂

∂v
× v − v · ∂

∂v
×B

]
= fsB ·

∂

∂v
× v (2.5.49)

We then can use that ∂
∂v
× v = 0 so that in fact this term identically vanishes.
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We then have the moment of the collision operator which vanishes. Thus, we have

∂ns
∂t

+
∂

∂x
· (nsVs) = 0 (2.5.50)

∂ns
∂t

+∇ · (nsVs) =
∂ns
∂t

+ ns∇ ·Vs + ∇ns ·Vs = 0 (2.5.51)

where I have switched to more conventional notation with ∇ and ∇ rather than ∂
∂x
.

It is common to define a new type of time derivative36 called alternatively the convective derivative,
the advective derivative, or the total derivative for fluid equations.37 This follows from assuming
that all quantities q are functions of x and t. Thus

dq

dt
=
∂q

∂t
+
∂x

∂t
· ∂q
∂x

=
∂q

∂t
+ V · ∇q (2.5.52)

If we consider only particles of a single species we use

dsq

dt
=
∂q

∂t
+ Vs · ∇q (2.5.53)

With this definition of the total derivative the above first moment equation reads

dsns
dt

+ ns∇ ·Vs = 0 (2.5.54)

the number density continuity equation. This is a statement that particles are neither created
or destroyed in our processes. Thus the total change is due only to compression or expansion of
particles due to the flow velocity field.

We can then do the msv moment. Again, let’s take these one term at a time.
˚ ∞

−∞
d3v msv

∂fs
∂t

= ms
∂

∂t

˚ ∞

−∞
d3v vfs = ms

∂nsVs

∂t
(2.5.55)

Then ˚ ∞

−∞
d3v msvv · ∂fs

∂x
= ms

˚ ∞

−∞
d3v

[
∂

∂x
· (fsvv)− fs

�
��

��∂

∂x
· [vv]

]
= ms

∂

∂x
·
˚ ∞

−∞
d3v (fsvv)

= ms
∂

∂x
·
˚ ∞

−∞
d3v [fs(Vs + v′s)(Vs + v′s)]

= ms
∂

∂x
·
[
nsVsVs + 0 + 0 +

↔
Ps

]
= ms∇ ·

[
nsVsVs +

↔
Ps

]
(2.5.56)

36Remember this term has at least nine other names in the literature. This naming scheme should be considered
a (horrific) model for creating a confusing mess of notation over a concept that already can can cause confusion.

37It is unfortunate that there is so much terminology. The advective derivative is sometimes also used to refer
only to the V · ∇ part of the total derivative d

dt . Caution when using these words should apply, as always, until
you see an author’s definition.
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It is convenient to use our definition of a from before. We have then shown that

a · ∂fs
∂v

=
∂

∂v
· (fsa) (2.5.57)

and so ˚ ∞

−∞
d3v msva · ∂fs

∂v
= ms

∂

∂t

˚ ∞

−∞
d3v v

∂

∂v
· (afs)

= ms

˚ ∞

−∞
d3v

[
∂

∂v
· (avfs)− afs ·

�
�
���
1

∂v

∂v

]
= ms

���
���

���
�

¨
S∞

d2v n̂ · avfs −
˚ ∞

−∞
d3v [qsEfs + qsv ×Bfs]

= −nsqsE− nsqsVs ×B

(2.5.58)

where we have been careful about dot product placement. Remember that ∂
∂x
· (AB) indicates

that the derivative’s components are matching onto A, that is, for Cartesian coordinates we can
write this in Einstein notation as

∂

∂x
· (AB) = ∂i(AiBj) 6=

∂

∂x
· (BA) = ∂i(BiAj) (2.5.59)

By definition we have from the collision integral that we get Rs. Thus, we find all together that

ms
∂nsVs

∂t
+ms∇ · (nsVsVs) +∇ ·

↔
Ps − nsqsE− nsVs ×B = Rs (2.5.60)

We can use that ∇ ·
↔
Ps = ∇ps +∇ ·

↔
Πs and write

��
��
��

msVs
∂ns
∂t

+msns
∂Vs

∂t
+msnsVs · ∇Vs +((((

((((
(

msVs∇ · (nsVs) = nsqs (E + Vs ×B)

− ∇p−∇ ·
↔
Πs + Rs

(2.5.61)

msns
dsVs

dt
= nsqs (E + Vs ×B)− ∇p−∇ ·

↔
Πs + Rs (2.5.62)

Where we have used the total derivative definition. It is important to note at this point that the
total derivative will differ for each species s for the Vs · ∇ part of the total derivative. This is the
momentum balance equation.

The energy/temperature equation is calculated similarly, though one must use the density and
momentum balance equations to get it into this standard form.

3

2
ns

ds(kBTs)

dt
+ ps∇ ·Vs = −∇ · qs −

↔
Πs : ∇Vs +Qs (2.5.63)

Higher order equations can also be derived but they are seldom used in practice analytically.38 We
note that for every moment equation, we have terms that depend on higher order moments. The
momentum equation has

↔
Πs and qs terms that are not defined from within our fluid approximation.

38There are always exceptions, and higher moment methods are used quite a lot in numerical simulations.
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We could get equations for them via doing higher order moments, but would find that they in turn
had other even higher order moments that they needed. This problem is often called the moment
hierarchy problem. There are a few ways to “solve” it.

The first way to “solve” the moment hierarchy problem is to not use moments. You just solve the
plasma kinetic equation and then take moments later if you need insight. This means you need
to solve a 3D3V+1 problem, which will scale very poorly computationally if you need to increase
resolution in either the velocity space or the position space.

The second way is to truncate the equations. This just means we ignore any pieces we don’t have
an expression for, and just substitute them with zero. The pesky

↔
Πs and qs are thus ignored in

our equations. This has the advantage of being simple. It has the disadvantage of being ad hoc
and non-rigorous. This can be seen as leading to the ideal MHD equations, however, and offers
surprising insight into many plasma problems, so these terms turn out to be unimportant to many
problems of interest.

The third way is to use an asymptotic approximation scheme. The most common method is
often called a Chapman-Enskog-like closure. A closure here is just any way of “closing” the set
of equations (truncation or supplying values for the higher order moments).39 Chapman-Enskog
applies for neutral gases, and so these closure schemes are Chapman-Enskog-like. These schemes
are only good for certain parameter regimes, where a value for

↔
Πs or qs [or higher order terms] is

supplied via the closure scheme. The parameter of interest for validity is that the characteristic
length of our system is much longer than a mean free path L� λmfp = vthsτs with vths the thermal
velocity and τs the collision time. The Knudsen number defined as Kn =

λmfp
L

is sometimes referred
to instead of L and λmfp directly. We see that a small Knudsen number is then what we desire,
and, that this just means the plasma is very collisional. When we include magnetic fields, we must

further use that ion Larmor radius satisfies ρs =
vths
Ωs

=

√
2kBTs/ms

qsB/ms
=
√

2kBTsms
qsBs

� L. The most
famous of this type of closure scheme is called the Braginskii closure scheme[4]. Other closure
schemes use a strong magnetic field rather than collisions as an asymptotic parameter.

The problem of closures is just as acute for some astrophysical plasmas as it is for fusion-relevant
plasmas. The particles in astrophyiscal plasmas are collisionless over extreme distances because
the number density is so low; there are just very few particles to collide with.

The ways of coming up with rigorously valid closures are few. There are Grad closure schemes
rather than a Chapman-Enskog-like closure, which instead of assuming collisionality is necessary,
assumes that the distribution function is only a small distortion from a background f0 distribution.
Then one can indeed find the requirements for the approximation scheme to be true. These
will depend on the collisionality if they are a part of your kinetic equation, but they do not a
priori assume large collisionality is necessary. Usually f0 is an isotropic Maxwellian, and so the
requirements then turn out to be that one has a highly collisional plasma. Indeed, the Grad
schemes turn out to be difficult to prove they are valid in areas where they would be most useful.
In addition, there is the CGL (Chew, Goldberger, Low) closure[7] where a strong magnetic field
can take the place of high collisionality to a certain extent. This assumes a “double adiabaticity”,
which is a way of saying a pressure tensor of a certain form. Assuming such a form turns out to

39A closure (or closure equation or closure relation) should be viewed as an equation that we use instead of
calculating the infinite moments necessary for a kinetic description. That is if the nth moment is vn then a closure
at order k is such that we do not need to consider moments of vm for m ≥ k. Instead we use the closure relation.
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be very limiting on the actual physical situations, as you have to check if any physical plasmas
actually have the requirement met. The double adiabaticity requirement turns out to be rather
restrictive, in practice.

Thus, a closure scheme requires extreme care if you want it to be accurate. One needs to keep in
mind the relevant symmetries that the closure should obey, and how simple or complicated it is
to use. For example, the CGL laws are valid when the divergence of the heat flux tensor is zero
(the double adiabaticity or adiabatic hypothesis), which means that time variations ∆Tc must be
shorter than the time for particles to move along characteristic distances along magnetic field lines
1/k‖ at thermal speeds vth. In other words, the frequencies ω ∼ 1/Tc we are interested in must be
larger than the “thermal frequency” along magnetic field lines, or ω � k‖vth. Methods that use
linear closures based off of a background can be constructed for a wide variety of situations, but
they usually suffer from having restrictions like these. The idea of using strong magnetic fields,40
however is a fruitful one, and can lead to fluid closures with well-defined regions of validity for
practical situations. See Chust[8] for an especially cogent review of collisionless scenarios, and how
to create closure schemes that are valid in some collisionless scenarios.

You may have noticed that two of the “solutions” to our moment hierarchy problem are not really
even solutions: ignore doing moments altogether and ignore all higher order moments (that is
truncate and hope).41 Alas, the final solution of Chapman-Enskog-like closures turns out not to
be applicable for the plasmas of interest in fusion. The mean free path turns out to be longer than
the plasma devices. The strong magnetic field closures usually have severe restrictions on what the
pressure can be like, and so their applicability to collisionless plasmas is also often questionable.
Thus, in reality, none of our solutions is rigorous for turning our plasmas into fluids.

Do not worry, this will not stop us from doing it anyway. It turns out that with suitable kinetic
corrections,42 this is not even that bad of an approximation. Even without the kinetic corrections
(or other empirical corrections), the magnetic fluid approximation turns out to yield an incredible
amount of insight and information about plasma systems.

2.5.2.1 The Meaning of Temperature

One subtlety of plasma kinetics that is often underappreciated is that what is called temperature
in a plasma kinetic setting is not a thermodynamic temperature unless the plasma distribution
function is in fact Maxwellian in all directions. Remember that we defined

kBTs =

˝∞
−∞ d3v msv′2s

3
fs´∞

−∞ d3v fs
(2.5.64)

There was no assumption that fs is Maxwellian. Using a Maxwellian with temperature Θs defined
thermodynamically via Θs = (∂U/∂S)V,N with U internal energy, S entropy, V volume, and N the

40You will see the term gyrotropy. This means that on the time and spatial scales we care about, the motion
of particles is gyrations around magnetic field lines and movement along magnetic field lines. That is, the helical
motion of particles around magnetic field lines.

41If you have done research long enough, you will recognize the wisdom in avoiding an unnecessary problem. You
could spend your time making sure that the problem is handled correctly. But if you have another method that
works without trouble, why wouldn’t you use it? In this case, the 3D3V+1 method requires vast computational
resources and sometimes more complicated computer programs.

42That is, we add terms coming from kinetic theory to our fluid problems that replicate behavior we desire. These
can be justified rigorously in some cases. Kinetic corrections may also refer to using actual kinetic calculations
(rather than approximations) in the fluid equations.
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number of particles will lead to an expected result. Then direct substitution of the Maxwellian,
now given by

fs =
ns

π3/2v3
ths

exp

(
− v2

s

v2
ths

)
= ns

(
ms

2πkBΘs

)3/2

exp

(
− msv

2
s

2kBΘs

)
(2.5.65)

will show you that for Maxwellian with temperature Θs, our definition is completely consistent
and Θs = Ts. Note that I did not prove that a Maxwellian is the proper distribution at thermal
equilibrium, but if you accept that, then Ts = Θs must follow. However, Θs is not necessarily
equal to Ts in general. Our temperature is different than the thermodynamic one and should be
thought of as a measure of the random motion of a large number of particles and so it is sometimes
called the kinetic temperature. This means we can define things like T‖,s or T⊥,s which tells us an
effective temperature for particles along the parallel or perpendicular direction. If ‖ and ⊥ easily
separate for temperature then we write a bi-Maxwellian given by

fs = ns

(
ms

2πkBT⊥,s

)
exp

(
−
msv

2
s,⊥

2kBTs,⊥

)(
ms

2πkBT‖,s

)1/2

exp

(
−
msv

2
s,‖

2kBTs,‖

)

= ns

(
1

πv2
th,s,⊥

)
exp

(
−

v2
s,⊥

vth,s,⊥

)(
1

π1/2vth,s,‖

)
exp

(
−

v2
s,‖

vth,s,‖

) (2.5.66)

which we can define as v2
th,s,⊥ = 2kBTs,⊥/ms and v2

th,s,‖ = 2kBTs,‖/ms. In this case the plasma
has an anisotropic temperature, but can be “in equilibrium” in a relevant sense along different
directions. Note in this anisotropic case we can still define a kinetic temperature Ts but it will not
simply be given by v2

ths = 2kBTs/ms, and in general will have a complicated relationship to T‖ and
T⊥ if they exist.

In general we write fs(v‖, v⊥) = nsg(v‖)h(v⊥) with43

1 =

ˆ ∞
−∞

dv‖ g(v‖) (2.5.67)

1 =

ˆ ∞
0

dv⊥ 2πv⊥h(v⊥) (2.5.68)

If we have a bi-Maxwellian we then have the simple relationship

kBTs =
kBTs,‖ + 2kBTs,⊥

3
(2.5.69)

2.6 Magnetohydrodynamics

Early on in my career I was told that the one of the simplest plasma models is a non-
linear system of 8 coupled differential equations. I thought, “That sounds like a field
for me.” [From the author’s recollection of a statement in a class]

— C. C. Hegna
43It is not always possible to cleanly separate into perpendicular and parallel components. Note also that v⊥ is

essentially r in a polar coordinate system to see the form of the integrals.
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Now that we have started from plasma kinetics, let’s actually get to a fluid theory. For simplicity,
let’s just consider a positive ion and (negative) electron plasma. We then have from before the
fluid equations

dns
dt

+ ns∇ ·Vs = 0 (2.6.1)

msns
dVs

dt
= nsqs (E + Vs ×B)− ∇ps −∇ ·

↔
Πs + Rs (2.6.2)

3

2
ns

dkBTs
dt

+ ps∇ ·Vs = −∇ · qs −
↔
Πs : ∇Vs +Qs (2.6.3)

In the momentum balance equation we often omit the Rs friction term and we will soon see that
many of the other terms are often omitted because they can be shown to be negligible under certain
approximations. The temperature/energy evolution equation also was used with a definition of
pressure for a monatomic gas. We can slightly generalize by using the adiabatic index γ so we get

ns
γ − 1

dkBTs
dt

+ ps∇ ·Vs = −∇ · qs −
↔
Πs : ∇Vs +Qs (2.6.4)

We also will use some of Maxwell’s equations for electrodynamics

∇ ·B = 0 (2.6.5)

∇× E = −∂B

∂t
(2.6.6)

∇×B = µ0J (2.6.7)

J =
∑
s

qsnsVs (2.6.8)

E = ηJ (2.6.9)

We can then find E in multiple ways. One useful fact is that me/mi≪ 1 so
√
me/mi � 1 since

me/mi ≈ 1/1836 and
√
me/mi ≈ 1/43. For now, consider the number density continuity equation

for ions and electrons

dene
dt

+ ne∇ ·Ve = 0 (2.6.10)

dini
dt

+ ni∇ ·Vi = 0 (2.6.11)

remembering that

dsq

dt
=
∂q

∂t
+ Vs · ∇q (2.6.12)

for any quantity q. We can define a center of mass velocity V via

V =
miniVi + nemeVe

nimi + neme

=
Vi

1 + me
mi

ne
ni

+
me
mi

ne
ni

Ve

1 + me
mi

ne
ni

= Vi +
neme

nimi

Ve +O

([
me

mi

]2
)

(2.6.13)

where I have used me/mi ≪ 1 to get a good approximation. It is possible to write this slightly
differently using quasineutrality so that ne ' ni so ne = ni = n. Then we can note that J =
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qeneVe + qiniVi so that

J = ne (Vi −Ve) (2.6.14)

Ve = Vi −
J

ne
(2.6.15)

We can then write

V =
Vi

1 + me
mi

+
me
mi

(Vi − J/[ne])

1 + me
mi

= Vi −
me
mi

J

ne(1 + me
mi

)
= Vi − λi

J

ne
(2.6.16)

V =
Ve + J/(ne)

1 + me
mi

+
me
mi

Ve

1 + me
mi

= Ve +
J

ne(1 + me
mi

)
= Ve + λe

J

ne
(2.6.17)

For simplicity we can define two useful parameters

λi =
me
mi

1 + me
mi

(2.6.18)

λe =
1

1 + me
mi

(2.6.19)

and we see that λe + λi = 1. These can then be rearranged to

Vi = V +
λiJ

ne
= V +O

(
me

mi

)
(2.6.20)

Ve = V − λeJ

ne
= V − J

ne
+O

(
me

mi

)
(2.6.21)

This means that Vi ≈ V, which to zeroth order in mass ratio usually means that we can simply
replace Vi with V and ignore any terms with Ve. However, we shall look at this rigorously to
make sure this makes sense. We have to remember that dene

dt
= ∂ne

∂t
+ Ve · ∇ne so

∂ne
∂t

+∇ · (neVe) = 0 (2.6.22)

∂ni
∂t

+∇ · (niVi) = 0 (2.6.23)

We can replace the Vs and find

∂ne
∂t

+∇ ·
(
neV −

λeJ

e

)
= 0 (2.6.24)

∂ni
∂t

+∇ ·
(
niV +

λiJ

e

)
= 0 (2.6.25)

So if we were to add the equations together with n = ne + ni we’d find

∂n

∂t
+∇ · (nV) +

λi − λe
e
∇ · J = 0 (2.6.26)
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Because of our definition of J then µ0∇ · J =∇ ·∇×B = 0 identically so we find

∂n

∂t
+∇ · (nV) = 0 (2.6.27)

dn

dt
+ n∇ ·V = 0 (2.6.28)

(2.6.29)

where the new dn
dt

= ∂n
∂t

+V·∇n has no subscript on the total derivative to denote the center-of-mass
velocity is being used.

We can now consider momentum balance for electrons and ions. First let’s consider ion momentum
balance.

mini
diVi

dt
= ne (E + Vi ×B)− ∇pi −∇ ·

↔
Πi (2.6.30)

Now if we add the electron balance equation

mene
deVe

dt
= −ne (E + Ve ×B)− ∇pe −∇ ·

↔
Πe (2.6.31)

we find (using neVi − neVe = J)

min
diVi

dt
+men

deVe

dt
= J×B− ∇p−∇ ·

↔
Π (2.6.32)

We remember that

diVi

dt
=
∂Vi

∂t
+ Vi · ∇Vi (2.6.33)

deVe

dt
=
∂Ve

∂t
+ Ve · ∇Ve (2.6.34)

Using our relations for V we can find the correct quantities. Then we find

Vi · ∇Vi =

(
V +

λiJ

ne

)
· ∇

(
V +

λiJ

ne

)
(2.6.35)

= V · ∇V +
λi
e

V · ∇
(

J

n

)
+
λiJ

ne
· ∇V +

λ2
i

ne2
J · ∇

(
J

n

)
(2.6.36)

Then we can use

∇ · (AB) = (∇ ·A) B + A · ∇B (2.6.37)
∇ · (BA) = (∇ ·B) A + B · ∇A (2.6.38)

∇ · (AB + BA) = (∇ ·A)B + (∇ ·B)A + A · ∇B + B · ∇A (2.6.39)

So that

V · ∇
(

J

n

)
+

J

n
· ∇V =∇ ·

(
VJ + JV

n

)
− (∇ ·V)

J

n
−
(
∇ · J

n

)
V (2.6.40)
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We also have ∇ · (J/n) = −∇n · J/n2 so that we find

V · ∇
(

J

n

)
+

J

n
· ∇V =∇ ·

(
VJ + JV

n

)
− (∇ ·V)

J

n
+

(
∇n
n2
· J
)

V (2.6.41)

We can then write

Vi · ∇Vi = V · ∇V +∇ ·
(
λi[VJ + JV] +

λ2
i

e
JJ

ne

)
− λi∇ ·V

n
J +

λi∇n
n2
· JV (2.6.42)

Similarly for the electron terms we find (simply substitute λi → λe)

Ve · ∇Ve = V · ∇V +∇ ·
(
−λe[VJ + JV] + λ2

e

e
JJ

ne

)
+
λe∇ ·V

n
J− λe∇n

n2
· JV

(2.6.43)

me

mi

Ve · ∇Ve =
me

mi

V · ∇V +∇ ·
(
−λi[VJ + JV] + λiλe

e
JJ

ne

)
+
λi∇ ·V

n
J− λi∇n

n2
· JV

(2.6.44)

noting that λeme/mi = λi. So we find

Vi · ∇Vi +
me

mi

Ve · ∇Ve =

(
1 +

me

mi

)
V · ∇V +∇ ·

(
λi

(λi + λe)JJ

ne2

)
(2.6.45)

Remember λi + λe = 1 so this actually says

Vi · ∇Vi +
mi

me

Ve · ∇Ve =

(
1 +

me

mi

)
V · ∇V +∇ ·

(
λi

JJ

ne2

)
(2.6.46)

It is also clear that through similar procedures we can find

∂Vi

∂t
+
me

mi

∂Ve

∂t
=

(
1 +

me

mi

)
∂V

∂t
+
∂

∂t

[
��

���
���λiJ

n
−

me
mi
λeJ

n

]
(2.6.47)

Thus we find

diVi

dt
+
me

mi

deVe

dt
=

(
1 +

me

mi

)[
∂V

∂t
+ V · ∇V

]
+∇ ·

(
λiJJ

ne2

)
(2.6.48)

dVi

dt
+
me

mi

dVe

dt
=

(
1 +

me

mi

)
dV

dt
+∇ ·

(
λiJJ

ne2

)
(2.6.49)

Thus, the total equation would yield

nmi

(
1 +

me

mi

)
dV

dt
+ nmi∇ ·

(
me

mi

JJ

ne2(1 + me
mi

)

)
= J×B− ∇p−∇ ·

↔
Π (2.6.50)

which is surprisingly simple considering it is not an approximation. If we only take zeroth order
in mass ratio terms, we get an equation that looks like a single species equation

nmi
dV

dt
= J×B− ∇p−∇ ·

↔
Π (2.6.51)
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If we had simply said that O(me/mi) should be ignored for each species, and used our Vi → V
rule and then added our two-species equations we would arrive at the same equation. In either
case, we can ask ourselves about E.

We can use the electron equation anticipating that we can find equations in the parameter me/mi.
The E we’d find would then be

E = −me

e

dVe

dt
−Ve ×B− ∇pe

ne
− ∇ ·

↔
Πe

ne
(2.6.52)

We then can write

dVe

dt
=

[
∂V

∂t
− ∂

∂t

[
λeJ

n

]
+ V · ∇V +∇ ·

(
−λe[VJ + JV] + λ2

e

e
JJ

ne

)
+
λe∇ ·V

n
J− λe∇n · J

n2
V

]
(2.6.53)

Ve ×B = V ×B− λe
J×B

ne
(2.6.54)

We can factor an ion mass to find

E = mi

− me

mie

dVe

dt
− Ve ×B

mi

− ∇pe −∇ ·
↔
Πe

mine

 (2.6.55)

Then the λe → λi which are on the order of the mass ratio. So

E = −mi

e

[
me

mi

∂V

∂t
− ∂

∂t

λiJ

n
+
me

mi

V · ∇V +∇ ·
(
−λi[VJ + JV] + λiλe

e
JJ

ne

)]

− mi

e

[
λi∇ ·V

n
J− λi∇n · J

n2
V

]
−V ×B +

λeJ×B

ne
− ∇pe +∇ ·

↔
Πe

ne

(2.6.56)

We can of course, via symmetry, use our relations for the ions instead of the electrons for E. Then
we find

E =
mi

e

dVi

dt
−Vi ×B +

∇pi +∇ ·
↔
Πi

ne
(2.6.57)

E =
mi

e

[
∂V

∂t
+
∂

∂t

λiJ

n
+ V · ∇V +∇ ·

(
λi[VJ + JV] +

λ2
i

e
JJ

ne

)]

+
mi

e

[
−λi∇ ·V

n
J +

λi∇n · J
n2

V

]
−V ×B− λiJ×B

ne
− ∇pi +∇ ·

↔
Πi

ne

(2.6.58)

Thus we can find the electric field via addition

2E =
mi

e

[(
1− me

mi

)(
∂V

∂t
+ V · ∇V

)
+ 2

∂

∂t

λiJ

n
+∇ ·

(
2λi

VJ + JV

ne
+
λiJJ

ne2

)]
+

2miλi
e

[
∇n · J
n2

V − ∇ ·V
n

J

]
− 2V ×B +

(λe − λi)J×B

ne
− ∇p+∇ ·

↔
Π

ne

(2.6.59)

E =
mi

e

[
1

2

(
1− me

mi

)(
∂V

∂t
+ V · ∇V

)
+
∂

∂t

λiJ

n
+∇ ·

(
λi

VJ + JV

ne
+
λiJJ

2ne2

)]
+
miλi
e

[
∇n · J
n2

V − ∇ ·V
n

J

]
−V ×B +

(λe − λi)J×B

2ne
− ∇p+∇ ·

↔
Π

2ne

(2.6.60)
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We can then use any of the values for E that are convenient. Now if we take zeroth order in the
mass ratio we get

E = −V ×B +
J×B

ne
− ∇pe +∇ ·

↔
Πe

ne
(2.6.61)

E =
mi

e

dV

dt
−V ×B− ∇pi +∇ ·

↔
Πi

ne
(2.6.62)

E =
mi

2e

dV

dt
−V ×B +

J×B

2ne
− ∇p+∇ ·

↔
Π

2ne
(2.6.63)

The clear winner is (2.6.61) for zeroth order as there are no time derivatives necessary.

Finally, we should make some comments on the energy/temperature evolution equation. As previ-
ously mentioned, we know that the 3/2 factor comes from assuming an ideal monatomic gas, and
so can be generalized to 1/(γ − 1). Then we have

ns
γ − 1

dkBTs
dt

+ ps∇ ·Vs = −∇ · qs −
↔
Πs : ∇Vs +Qs (2.6.64)

as our equations for Ts. Let’s remove Vs from these equations. then

Ve · ∇Te = V · ∇Te −
λeJ

ne
· ∇Te (2.6.65)

pe∇ ·Ve = pe∇ ·V −
peλe
e
∇ · J

n
= pe∇ ·V −

λepe
2e
∇
(

1

n

)
· J (2.6.66)

There is a further trick using ∇×B = µ0J so

∇a · J = ∇a · ∇× B

µ0

=∇ ·
(

B

µ0

× ∇a
)

+ B ·����
�∇× ∇a (2.6.67)

So

Ve · ∇Te = V · ∇Te −
λe
µ0ne
∇ · (B× ∇Te) (2.6.68)

pe∇ ·Ve = pe∇ ·V +
λepe
2µ0e
∇ ·

(
B× ∇n
n2

)
(2.6.69)

For ions, we thus find

Vi · ∇Ti = V · ∇Ti +
λi
µ0ne
∇ · (B× ∇Ti) (2.6.70)

pi∇ ·Vi = pi∇ ·V −
λipi
2µ0e
∇ ·

(
B× ∇n
n2

)
(2.6.71)

We see that
↔
Πi : ∇Vi =

↔
Πi :

[
∇V + ∇λiJ

ne

]
(2.6.72)

↔
Πe : ∇Ve =

↔
Πe :

[
∇V − ∇λeJ

ne

]
(2.6.73)
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Then if we add add electron and ion temperature equations we find

n

γ − 1

[
∂(kBT )

∂t
+ V · ∇(kBT ) +

λi
µ0ne
∇ · (B× ∇(kBTi))−

λe
µ0ne
∇ · (B× ∇(kBTe))

]
+ p∇ ·V +

λepe
2µ0e
∇ ·

(
B× ∇n
n2

)
− λipi

2µ0e
∇ ·

(
B× ∇n
n2

)
= −∇ · q−

↔
Π : ∇V +

(
λe
↔
Πe + λi

↔
Πi

)
: ∇ J

ne
+Q

(2.6.74)

Now if we use zeroth order mass ratio we find

n

γ − 1

[
∂(kBT )

∂t
+ V · ∇(kBT )− 1

2µ0ne
∇ · (B× ∇(kBTe))

]
= −p∇ ·V − pe

2µ0e
∇ ·

(
B× ∇n
n2

)
−∇ · q−

↔
Π : ∇V +

↔
Πe : ∇ J

ne
+Q

(2.6.75)

Note that I have not taken into account any mass ratio dependencies in pressure or the stress
tensor, though, so

↔
Πe may still be quite small. This also shows that we still require Te for the

equation for T . we are losing information by only following T as we have to either find Te explicitly
or enforce a relation between T and Te rather than calculating Ti and Te separately.

2.6.1 MHD Validity

You may wonder about the actual requirements for MHD validity. There are four criteria that
are typically used for determining the (formal) applicability of ideal MHD. These are given by
low frequency behavior, quasineutrality, an isotropic distribution function,44 and coupling between
electrons and ions. It should be emphasized that these are not independent criteria. Often satis-
fying one will have implications for how the other criteria can be satisfied.

The low frequency behavior allows the displacement current and some polarization effects to be
ignored. This means that the flow velocity is dominated by a parallel portion and the E×B drift.
The frequency we then care about is the ion gyrofrequency. This is because the ion gyrofrequency
is the smallest of relevant frequencies for most fusion parameter regimes and we do not want our
frequency to be large enough that we have to deal with the gyromotion of any of the particles.
Thus for a frequency f , we desire any frequency that we care about in our system has f < Ωi.

The equation ∇ ·E = ρq/ε0 is eliminated in MHD by assuming “quasineutrality”. Quasineutrality
is usually stated as ni ≈ ne so that ρq = q(ni−ne) ≈ 0 and so∇·E ' 0. It is important to realize
that this is not equivalent to saying ∇·E = 0. Instead we are saying that the charge difference is
very small, but not necessarily zero and that over regions larger than a Debye sphere, charges are
balanced. A clear way of thinking about this is to consider the contribution of |ρE| to the force
density equation. When quasineutrality holds |ρE| is a small contribution to force balance and so
is ignored in MHD. This also is consistent with ∇ · J = 0 so that there are no sources or sinks of
current density in an MHD plasma. This last comment is elucidated by writing

µ0J =∇×B− µ0ε0
∂E

∂t
(2.6.76)

44In reality isotropic is too restrictive. What is actually needed is that kinetic effects can be represented as a
simple closure, although it is no longer necessarily “ideal MHD” then.
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By taking ∇ · E ≈ 0 via quasineutrality then it seems reasonable to write

µ0J =∇×B (2.6.77)
∇ · (µ0J) =((((

(((hhhhhhh∇ · (∇×B) ≡ 0 (2.6.78)

where the last equality comes from general vector identities (B.30). We will show that the dis-
placement current ε0∂E/∂t is small via other means, but it is reassuring that quasineutrality seems
to imply the divergence of J is zero, as well.

The isotropic distribution function is in fact where MHD has most of its problems formally, though
it is often possible to retain important kinetic effects from simple closure schemes. An isotropic
distribution function implies that all directions are treated equally, and this is clearly something
that magnetic confinement does not usually satisfy. Fortunately, the perpendicular directions are
indistinguishable because we are on time scales where the random phase of particles gyrating in
gyroorbits means it is essentially random and no perpendicular direction is preferred. Along the
parallel direction we have no such guarantee, and kinetic effects are usually important for getting
parallel dynamics accurately. It is also possible for collisional plasmas to have enough collisions to
isotropize the distribution, but this would be ruinous from a plasma confinement perspective, as
the magnetic field is no longer confining the plasma. However, there are cases where one can get
nearly isotropic distributions through fast pitch-angle scattering in the plasma due to collisions
while still having a strong enough magnetic field to get magnetic confinement effects. This is just
to say that the isotropic distribution function requirement is more flexible than it may at first
seem. If we were to actually write out the isotropic condition, then we require the mean free path
to be less than a device size, or Lmfp/L� 1 or vth

νL
� 1 with ν the collision frequency.

We also need electron and ions to be coupled. Quasineutrality and low frequency behavior are
necessary but insufficient conditions for this. This is so that the plasma can be treated as a single
fluid, and this requires that ρLi/`⊥≪ 1 with ρLi the ion Larmor radius and `⊥ is a characteristic
length in a direction perpendicular to B. For ρLi/`⊥ � 1 two-fluid effects can be covered through
the Hall terms. Another required coupling would be that the temperatures must be coupled, which
essentially just means that Lmfp/L� 1 again.

As an example of looking at relevant terms, we can examine the displacement current. First,
let’s normalize our equations by first letting τ be a characteristic time, ` a characteristic length,
and then E0, B0 and J0 are characteristic electric fields, magnetic fields, and current densities,
respectively. Then from Faraday’s law we have the scaling

E0

`
∼ B0

τ
(2.6.79)

which yields E0/B0 ∼ `/τ ≡ VE where VE is a characteristic velocity of the system. Thus, the
Maxwell-Ampère equation when scaled reads (µ0ε0 = 1/c2)

∇×B = µ0J +
1

c2

∂E

∂t
(2.6.80)

B0

`
∼ µ0J0 +

E0

c2
(2.6.81)

comparing terms, we see

∇×B

µ0J
∼ B0

`µ0J0

(2.6.82)
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which has no clear scaling whereas

1
c2
∂E
∂t

∇×B
∼ `E0

c2τB0

∼ V 2
E

c2
� 1 (2.6.83)

so that the displacement current term is negligible so long as VE � c which we require so that our
equations are non-relativistic.

As a quick example showing how approximations lead to MHD equations, let’s use the MHD
ordering to get an idea of which terms are applicable. An MHD ordering means that, VE/vth ∼ 1
and ω/Ωi ∼ ρL/`. So the E × B drift is approximately the thermal speed, and the frequency is
(small) and on the same order as the FLR effects.

Then in the generalized Ohm’s law we find for rough scaling that

E

V ×B
∼ E0

vthB0

∼ 1 (2.6.84)

E

ηJ
∼ µ0`vth

η
(2.6.85)

J×B
neq

E
∼ p

neqLE0

∼ ρ

`
(2.6.86)

∇pe
neq

E
∼ p

neq`E0

∼ ρ

`
(2.6.87)

The µ0`vth/η measures how important resistive diffusion is for the problem, and is not included
in ideal MHD. The two-fluid terms then are the two terms that become unimportant as the ion
Larmor radius vth

Ωi
= mivth

eB0
becomes quite small. The electron inertia term, ∂J/∂t, drops out in

single fluid MHD because we ignore electron inertia completely.

Note that this ordering would in fact show that the ion stress tensor should not be included, as it
is a higher order effect, as well.

We can see how well these approximations hold by using a fairly typical modern tokamak’s pa-
rameters

B0 ∼ 1 T R0 ∼ 3 m a ∼ 0.8 m

n0 ∼ 1× 1020 m−3 T0 ∼ 10 keV mi ∼ 3.34× 10−27 kg
(2.6.88)

Then we find

vth
c
≈ 9.8× 105 m/s

3× 108 m/s
≈ 0.003� 1 (2.6.89)

vA
c

=
B

c
√
minµ0

≈ 1.5× 106 m/s

3× 108 m/s
≈ 0.005� 1 (2.6.90)

ρL ≈ 2× 10−2 m� a� R0 (2.6.91)

Ωi =
eB0

mi

≈ 5× 107 s−1 � vth
a
≈ 1.2× 106 s−1 (2.6.92)

Ωi =
eB0

mi

≈ 5× 107 s−1 � vA
a
≈ 1.9× 106 s−1 (2.6.93)
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Criterion Approximation
Low Frequency f � Ωi

Quasineutrality |ρqE| � FMHD

Isotropic Distribution Function Lmfp/L� 1
Coupling of Ions and Electrons ρL/`⊥≪ 1

Table 2.2: The four ideal MHD criteria. Here f is a frequency, Ωi is the ion gyrofrequency, ρqE
is the electric force FMHD are forces considered in MHD, ρL is the ion Larmor radius, and `⊥ is a
characteristic length perpendicular to B.

So then we see that the displacement current and the Alfvénic activity can easily be dismissed in
terms of frequency, as desired by our orderings. In addition, the length scales are definitely in the
correct limit with the ion Larmor radius quite a bit smaller than length scales of interest for MHD.

The four criteria are summarized in Table 2.2.

2.6.2 Extended MHD

Extended MHD can be thought of as using our previous equations with me/mi = 0. Two fluid
MHD is another type of MHD,45 but I will consider this essentially the same as extended MHD.
In some sense, everything is an extended MHD model besides ideal MHD, and my nomenclature
is mainly driven by computational distinctions. Using energy conservation arguments, one can
show that if certain terms are retained in the definition of the electric field, then the temperature
equation must be of a certain form, with extended MHD being one consistent formulation.

Again, we restrict ourselves to a two component plasma, singly ionized ions and electrons. It
is possible to consider generalizations, but this is outside conventional MHD models. Usually a
two-species plasma is used, and we shall continue that tradition here. Thus the two-fluid extended
MHD equations can be written as

∂n

∂t
+∇ · (nV) = 0 (2.6.94)

nmi
∂V

∂t
+ nmiV · ∇V = J×B− ∇p−∇ ·

↔
Π (2.6.95)

ns
γ − 1

(
∂(kBTs)

∂t
+ Vs · ∇(kBTs)

)
+ ps∇ ·Vs = −∇ · qs −

↔
Πs : ∇Vs +Qs (2.6.96)

E + V ×B = ηJ +
J×B

ne
− ∇pe +∇ ·

↔
Πe

ne
(2.6.97)

∇ ·B = 0 (2.6.98)
∇×B = µ0J (2.6.99)

∂B

∂t
= −∇× E (2.6.100)

Ve = V − J

ne
(2.6.101)

Notice that I have left out what exactly
↔
Πs, qs and Qs actually are. They are problem depen-

dent, and can be changed depending on the specific model being used with extended MHD. For
45Besides Ideal and Resistive MHD, there are a zoo of names. Some do not have a standard form.
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example, when using a Braginskii closure model (remember, this model is not rigorously justified

at temperature ranges of fusion interest), then we can find the form of
↔
Πs and qs using kinetics

and an asymptotic closure.

These equations have proven to be very useful for extending our understanding of plasmas beyond
the ideal MHD model which I will cover below. For example, the generalized Ohm’s Law, which
is just a way of saying what is the relationship of E to the other variables contains a lot of new
physics. The ηJ term allows electrical resistivity and so allows magnetic field lines to “break”
and “reconnect”, thus allowing the process of magnetic reconnection. The electron pressure and
stress terms tend not to have any exciting names, whereas the J × B is called the Hall term
which lets the electron flow velocity to carry magnetic field lines rather than the center-of-mass
velocity, and generally allows electron flow to affect important physical processes. Sometimes the
electron pressure and stress terms are considered to be part of the Hall terms. Last, I completely
ignored electron inertia. Sometimes people retain an extra term corresponding to electron inertia,
me
e2

d(J/ne)
dt

which comes from the dVe/dt term we ignored above. This term turns out to be useful
computationally, even though it is small, because it helps make the resulting matrix to be solved
more diagonally dominant with a smaller condition number.46

2.6.3 Resistive MHD

Another popular version of the MHD equations is resistive MHD. This is usually a single fluid,
with a single temperature. Thus, we ignore the electron specific terms in the Ohm’s law and get

∂n

∂t
+∇ · (nV) = 0 (2.6.102)

nmi
∂V

∂t
+ nmiV · ∇V = J×B− ∇p−∇ ·

↔
Π (2.6.103)

n

γ − 1

(
∂(kBT )

∂t
+ V · ∇(kBT )

)
+ p∇ ·V = −∇ · q−

↔
Π : ∇V +Q (2.6.104)

E = ηJ−V ×B (2.6.105)
∇ ·B = 0 (2.6.106)
∇×B = µ0J (2.6.107)

∂B

∂t
= −∇× E (2.6.108)

This allows magnetic reconnection, and is a simplification upon extended MHD that is often useful.
The separate temperatures and separate fluid treatment is more expensive to solve on computers
and often not of interest, so this model is often used. The question of what T actually is in
these cases is a bit unobvious, but it can be viewed as electrons and ions having similar enough
temperatures to be considered the same. This is often not very true experimentally, but so long as
the temperature does not vary differently between electrons and ions too much, it is not usually
too terrible of an approximation for getting computational results.

46The smaller the condition number, the more accurately one can invert a matrix. This is essentially saying that
we can accurately solve the problem even if we have a little bit of error in our calculations.
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2.7 Ideal MHD
How are we to look for functions that will do what we want? In such cases, it is usually
wise to take the simplest possible example and examine it carefully for hints of what
happens in the more complicated cases. This is a rule of general value; if you cannot
solve some problem, make up for yourself the simplest problem of the same kind that
you can devise, and see if it suggests anything.

— W. W. Sawyer[17, p. 51]

This is perhaps one of the most lauded and useful set of equations for gaining insight into plasma
phenomena with a fluid model. In this case, we ignore the resistivity of the plasma. Plasma
resistivity scales as T−3/2 and so for sufficiently hot plasmas the resistivity becomes essentially
zero, giving some justification for the approximation. The equations are essentially identical from
before but I will list them anyway.

∂n

∂t
+∇ · (nV) = 0 (2.7.1)

nmi
∂V

∂t
+ nmiV · ∇V = J×B− ∇p−∇ ·

↔
Π (2.7.2)

n

γ − 1

(
∂(kBT )

∂t
+ V · ∇(kBT )

)
+ p∇ ·V = −∇ · q−

↔
Π : ∇V +Q (2.7.3)

E = −V ×B (2.7.4)
∇ ·B = 0 (2.7.5)
∇×B = µ0J (2.7.6)

∂B

∂t
= −∇× E (2.7.7)

The E is the electric field as seen from the “lab”, that is if you are standing in place unaffected by
the flow velocity from the plasma fluid. If you consider the electric field in the frame of reference
moving with the fluid, then we will find that E′ = 0 and so our equation for E is in fact just a fancy
way of saying that when moving with the flow velocity, you see no electric field (another reason for
“ideal” as a moniker). We have an ideal perfect conductor,47 which can be seen as another reason
this is a good name.

2.7.1 Frozen Flux Theorem

Now let’s prove the frozen flux theorem and hence that E′ = 0. This theorem says that magnetic
flux is frozen into the fluid, so that as the fluid moves, the magnetic field in that fluid moves with
it. We can begin by writing Faraday’s Law in a lab frame

∂B

∂t
= −∇× E (2.7.8)

We start with the magnetic flux for a surface defined as

ψB =

¨
S

dS n̂ ·B (2.7.9)

47a perfect conductor is not the same as a superconductor, which expels magnetic fields when it is formed
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Suppose we consider the change of ψB now for that surface through time

dψB

dt
=

d

dt

¨
S

dS n̂ ·B (2.7.10)

Note that many proofs of this principle omit an important part of the derivation. We need a
generalization of the Leibniz rule for differentiation under the integral sign. For three dimensions
and flux integrals this is usually called the Helmholtz transport theorem. The correct equation is

d

dt

¨
S

dS n̂ ·B =

¨
S

dS n̂ ·V∇ ·B−
˛
C

d` · (V ×B) +

¨
S

dS n̂ · ∂B

∂t
(2.7.11)

where C = ∂S is a bounding curve for the surface S. Many frozen flux derivations leave out
the first term on the right hand side as it is not apparent when thinking about how the surface
changing would affect the flux. Because ∇ ·B = 0 our form then becomes

dψB

dt
= −
˛
C

d` · (V ×B) +

¨
S

dS n̂ · ∂B

∂t
=

¨
S

n̂ ·
[
∂B

∂t
−∇× (V ×B)

]
(2.7.12)

Most proofs do not explain the origin of this equation except through an argument that the change
in the surface must be of the form given by

´
d` term. We will give a rigorous proof later.

We can substitute our form for ∂B/∂t to find

dψB

dt
= −
˛
C

d` · (V ×B) +

¨
S

dS n̂ · ∇× E (2.7.13)

dψB

dt
= −
˛
C

d` · [(V ×B) + E] = −
˛
C

d` · [E′] = 0 (2.7.14)

Thus, our flux does not change in time, and it is frozen into the plasma. If we wish to go with
the plasma flow then we will find E′ = 0 since then there is no velocity changes to move magnetic
field around.

To elaborate on the weaknesses of many proofs for the above relation (2.7.12), what I mean is
that they do not actually explicitly mention the ∇ · B = 0 requirement and so seem like proofs
for any field instead of only divergenceless ones. For the frozen flux theorem, they are true, but
misleading.

We will fix this with a completely general proof for any vector field g.48 This is most clearly
accomplished by first looking at a vector field that has no explicit time dependence and then
considering an explicitly time dependent vector field.

So first consider a general flux from an arbitrary vector field g = g(x). When the velocity field
moves the surface and changes it, we evalute g at a different position which is handled through
the surface we are evaluating on. Because g does not change with time we do not need to worry
about g(x) changing, just what it is integrated over. Then we can write

Ψg(r, t) =

¨
S1(t)

dS1(t) n̂1(t) · g(x) (2.7.15)

with r representing the remaining spatial variation and where S1(t)n̂1(t) defines the time dependent
surface and normal vector. We can consider a time ∆t later, and the volume formed by forming
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Figure 2.11: This shows the volume over which we apply Gauss’s Law to derive the generalized
Leibniz rule for integration. Note that we use simple ovals to show how the integration works, but
the shape can be much more complicated.

a surface S2(∆t ) that covers S1(t) and S3 = S1(t + ∆t ) with straight lines (see Figure 2.11).49
We will apply Gauss’s law over the volume defined by the cylindrical-like volume defined by S1(t),
S1(t+ ∆t ) and the sides S2(∆t ). Usually we have n̂ point normally outward, but we can use n̂ as
pointing inward with a negative sign on the S1(t) surface and leave the n̂ on S1(t + ∆t ) = S3(t)
positive to write the integrals over the surfaces as

¨
S1(t)

dS1(t) (−n̂1(t)) · g(x) +

¨
S1(t+∆t )

dS1(t+ ∆t ) n̂1(t+ ∆t ) · g(x)

+

¨
S2(∆t )

dS2(∆t ) n̂2 · g(x)

(2.7.16)

because we have now formed a closed volume, we can use the divergence theorem for g(x) = g.
If you are disturbed by a volume extending through “time”, remember we’re using the velocity
and time as a parameterization and that we are therefore still actually dealing with a 3D position
space, but where one of the coordinate directions happens to correspond to time in a specific way.

¨
S1(t)

dS1(t) [−n̂1(t) · g] +

¨
S1(t+∆t )

dS1(t+ ∆t ) n̂1(t+ ∆t ) · g

+

¨
S2(∆t )

dS2(∆t ) n̂2 · g =

˚
V

dV ∇ · g =

¨
S1(t)

dS1(t) n̂1(t) ·
ˆ

ds ∇ · g
(2.7.17)

where ds can point at parts of the volume by using for our short time we have
´

ds = V∆t where

48This somewhat follows a proof from a recent paper[1].
49An eagle-eyed reader will notice that this image is not the most general case. It assumes n̂1(t)·V is positive over

the entire surface S1(t). If n̂1(t) ·V changes sign over S1(t), we would have an unphysical volume. In these cases,
split S1(t) into subsurfaces Si1(t) where n̂1(t) ·V is either completely non-negative or completely negative. Each
volume is now well-defined, and contributes either positive or negative correctly because of our use of dS1(t) · ds
and d` × ds. We can apply the exact same arguments given for each Si1(t) as we do for S1(t) with n ·V > 0. We
will get the same equation as (2.7.24) for each Si1(t) and so if we sum all the surfaces we will get (2.7.24) exactly.
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we are considering the time so short we can ignore O([∆t ]2) corrections. Thus¨
S1(t+∆t )

dS1(t+ ∆t ) n̂1(t+ ∆t ) · g −
¨
S1(t)

dS1(t) (n̂1(t)) · g

+

¨
S2(∆t )

dS2(∆t ) n̂2 · g = ∆t

¨
S

dS1(t) n̂1 ·V∇ · g
(2.7.18)

The dS2(∆t ) term can be converted since we have a bounding curve C = ∂S at time t with
differential element d` along the bounding curve so that

¨
S2

dS2n̂2 · g =

˛
C

d`×

≈∆tV︷ ︸︸ ︷ˆ
ds · [g] =

˛
C

d`×
[
V∆t +O([∆t ]2) · g

]
(2.7.19)

where we are using that dS2n2 = d`×∆tV. And so to accuracy O(∆t ) we find¨
S2

dS2n̂2 · g =

˛
C

d` ×V · g =

˛
C

d` ·V × g (2.7.20)

Remember that we have by definition that¨
S1(t+∆t )

dS1(t+ ∆t ) n̂1(t+ ∆t ) · g(x)−
¨
S1(t)

dS1(t) n̂1(t) · g(x(t))

= Ψg(r, t+ ∆t )−Ψg(r, t)

(2.7.21)

And so

Ψ(r, t+ ∆t )−Ψ(r, t) = ∆t

[
−
˛
C

d` ·V × g +

¨
S1(t)

dS1 n̂1 ·V(∇ · g)

]
+O([∆t ]2) (2.7.22)

We can then write
dΨg
dt︷ ︸︸ ︷

lim
∆t→0

Ψ(r, t+ ∆t )−Ψ(r, t)

∆t
= lim

∆t→0

[
−
˛
C

d` ·V × g +

¨
S1(t)

dS1 n̂1 ·V(∇ · g)

]
+O([∆t ]2)

(2.7.23)

and so
dΨg

dt
= −
˛
C

d` ·V × g +

¨
S1(t)

dS1 n̂1 ·V(∇ · g) (2.7.24)

for g(x(t)) with no explicit time dependence. We could also use Stokes’ theorem to rewrite this as

dΨg

dt
=

¨
S1(t)

dS1 n̂1 · [V(∇ · g)−∇× (V × g)] (2.7.25)

Now we consider G = G(x, t) such that at exactly time τ it is the time invariant g(x) that we
considered above. We use

G(x, t) =

G(x,τ)︷︸︸︷
g(x) +

=t−τ︷︸︸︷
∆t

∂G

∂t

∣∣∣∣
fixed x

+O([∆t ]2)

= g(x(t)) + ∆t
∂G

∂t

∣∣∣∣
fixed x

+O([∆t ]2)

(2.7.26)
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and that for g explicitly time independent we have already found the answer. So we find

dΨG

dt
= lim

∆t→0

Ψ(r, τ + ∆t )−Ψ(r, τ)

∆t
= (2.7.27)

= lim
∆t→0

˜
S1(τ+∆t )

dS1(τ + ∆t ) n̂1(τ + ∆t ) ·G(x, τ + ∆t)−
˜
S1(τ)

dS1(τ) n̂1(τ) ·
=g︷ ︸︸ ︷

G(x, τ)

∆t
(2.7.28)

= lim
∆t→0

(2.7.21)︷ ︸︸ ︷¨
S1(τ+∆t )

dS1(τ + ∆t ) n̂1(τ + ∆t ) ·
(

g +∆t ∂G
∂t

) (2.7.21)︷ ︸︸ ︷
−
¨
S1(τ)

dS1(τ) n̂1(τ) · g

∆t
+O([∆t ])2

(2.7.29)

=

(2.7.21)︷︸︸︷
dΨg

dt
+ lim

∆t→0

¨
S1(τ+∆t )

dS1(τ + ∆T ) n̂1(τ + ∆t ) · ∂G

∂t
(2.7.30)

This can then be rewritten as

dΨG

dt
=

dΨg
dt︷ ︸︸ ︷

−
˛
C

d` ·V × g +

¨
S1(t)

n̂1 ·V(∇ · g) + lim
∆t→0

¨
S1(τ+∆t )

dS1(τ + ∆t ) n̂1(τ + ∆t ) · ∂G

∂t

(2.7.31)

with ∆t → 0, we know that g = G and so

dΨG

dt
=

˛
C

d` ·V ×G +

¨
S1(t)

n̂1 ·V(∇ ·G) +

¨
S1(t)

dS1(t) n̂1 ·
∂G

∂t
(2.7.32)

=

¨
S1(t)

dS1(t) n̂1 ·
[
∂G

∂t
−∇ · (V ×G) + V∇ ·G)

]
(2.7.33)

as it must be. A more general proof using differential forms (and for multiple dimensions) can be
done[10].

2.7.2 Variational Methods

It is common to consider perturbations and then find the “minimum” energy situation. Once again,
minimum energy really means maximum entropy and corresponds to a minimum potential energy
situation. Still, this concept allows us to learn a great deal. The variational energy method has
been used in plasmas for many years beginning with Hain[12] and Bernstein[2].

We begin with finding the fluid potential energy of the plasma in an Ideal MHD situation. The idea
is simple. We first find the force density find the potential energy by looking at the work done over
a small displacement and then extremize the potential energy to learn about stability. We begin
by assuming that Ṽ1 = ∂ξ

∂t
, so that the perturbed velocity is completely due to the perturbation

ξ. This means that V0 = 0 (no background flow) which hugely simplifies our analysis. We can
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then say (assuming q = q0 + δq1 +O(δ2) for all quantities)

nmi
dV

dt
= F = nmi

[
∂V

∂t
+ V · ∇V

]
(2.7.34)

Then we find at zeroth order that

F0 = n0mi

(
∂V0

∂t
+ V0 · ∇V0

)
= 0 (2.7.35)

the O(δ) terms are

F̃1 = n1mi

[
��

���
���

��∂V0

∂t
+ V0 · ∇V0

]
+ n0mi

(
∂V1

∂t
+((((

((((
((((

V0 · ∇Ṽ1 + Ṽ1 · ∇V0

)
= n0mi

∂V1

∂t
= n0mi

∂

∂t

∂ξ

∂t
= n0mi

∂2ξ

∂t2

(2.7.36)

Now we remember that

F = −∇p+ J×B (2.7.37)
F0 = 0 = −∇p0 + J0 ×B0 (2.7.38)
∇p0 = J0 ×B0 (2.7.39)

F̃1 = −∇p̃1 + J0 × B̃1 + J̃1 ×B0 (2.7.40)

We then use Ampère’s Law

∇×B = µ0J (2.7.41)
∇×B0 = µ0J0 (2.7.42)
∇×B1 = µ0J1 (2.7.43)

to write

F̃1 = −∇p̃1 + J0 × B̃1 +
∇×B1

µ0

×B0 (2.7.44)

We now need a connection between p̃1, B̃1 and ξ to write our force density’s dependence on a
perturbation. We use E = −V ×B so

E0 = V0 ×B0 = 0 (2.7.45)

Ẽ1 = Ṽ1 ×B0 +���
��

V0 × B̃1 =
∂ξ

∂t
×B0 (2.7.46)

Ẽ1 = Ṽ1 ×B0 +���
��

V0 × B̃1 =
∂ξ

∂t
×B0 (2.7.47)

and so Faraday’s law relays

∂B

∂t
= −∇× E (2.7.48)

∂B0

∂t
= −∇× E0 = 0 (2.7.49)

∂B1

∂t
= −∇× Ẽ1 =∇×

(
∂ξ

∂t
×B0

)
=

∂

∂t
[ξ ×B0] (2.7.50)
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This implies

B̃1 = ξ ×B0 + C(x) (2.7.51)

where C is a time independent constant. We’d like B̃1 = 0 when ξ = 0 which then implies C = 0
and we get

B̃1 = ξ ×B0 (2.7.52)

We will use the continuity equation to find a relation for pressure.

∂n0

∂t
= −∇ · (n0V0) = 0 (2.7.53)

∂ñ1

∂t
= −∇ · (n0Ṽ1) = −∇n0 · Ṽ1 − n0∇ ·

∂ξ

∂t
= − ∂

∂t
(∇n0 · ξ + n0∇ · ξ) (2.7.54)

ñ1 = −∇n0 · ξ − n0∇ · ξ + C(x) (2.7.55)

where C = 0 because we desire ñ1 = 0 when ξ = 0. We have

n
d(kBT )

dt
= −(γ − 1)p∇ ·V (2.7.56)

dp

dt
− kBT

dn

dt
= −(γ − 1)p∇ ·V (2.7.57)

dp

dt
− kBT

(
∂n

∂t
+ V · ∇n

)
= −(γ − 1)p∇ ·V (2.7.58)

∂p

∂t
+ V · ∇p− kBT

(
∂n

∂t
+ V · ∇n

)
= −(γ − 1)p∇ ·V (2.7.59)

and so

∂p0

∂t
+���

��V0 · ∇p0 −
XXXXXXXXXXXXX

kBT0

(
∂n0

∂t
+ V0 · ∇n0

)
=((((

((((
((hhhhhhhhhh−(γ − 1)p0∇ ·V0 (2.7.60)

∂p0

∂t
= 0 (2.7.61)

and so

∂p̃1

∂t
+���

��V0 · ∇p̃1 + Ṽ1 · ∇p0 −
XXXXXXXXXXXXX

kBT1

(
∂n0

∂t
+ V0 · ∇n0

)
− kBT0

(
∂ñ1

∂t
+���

��XXXXXV0 · ∇ñ1 + Ṽ1 · ∇n0

)
= −(γ − 1)p0∇ · Ṽ1 −(((((

(((((γ − 1)p̃1∇ ·V0

(2.7.62)
∂p̃1

∂t
+
∂ξ

∂t
· ∇p0 − kBT0

∂ñ1

∂t
− kBT0

∂ξ

∂t
· ∇n0 = −(γ − 1)p0∇ ·

∂ξ

∂t
(2.7.63)

Remember that

∂p0

∂t
=
�
�
�∂n0

∂t
kBT0 + n0kB

∂T0

∂t
= n0kB

∂T0

∂t
= 0 (2.7.64)
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so

∂p̃1

∂t
+
∂

∂t
[ξ · ∇p0] +

∂

∂t
[kBT0∇n0 · ξ + p0∇ · ξ]− ∂

∂t
[ξ · kBT0∇n0] = − ∂

∂t
[(γ − 1)p0∇ · ξ]

(2.7.65)
∂p̃1

∂t
+
∂

∂t
[ξ · ∇p0 + p0∇ · ξ] = − ∂

∂t
[(γ − 1)p0∇ · ξ] +

∂

∂t
[p0∇ · ξ] (2.7.66)

p̃1 = −ξ · ∇p0 − (γ − �A1)p0∇ · ξ −����XXXXp0∇ · ξ + C(x) (2.7.67)
p̃1 = −ξ · ∇p0 − γp0∇ · ξ + C(x) (2.7.68)

(2.7.69)

which with p̃1 = 0 at ξ = 0 yields

p̃1 = −ξ · ∇p0 − γp0∇ · ξ (2.7.70)

We can then write

F̃1 = −∇p̃1 + J0 × B̃1 + J̃1 ×B0 (2.7.71)

B̃1 = ξ ×B0 (2.7.72)

J̃1 =
∇×B1

µ0

=
∇× (ξ ×B0)

µ0

(2.7.73)

p̃1 = −ξ · ∇p0 − γp0∇ · ξ (2.7.74)

This expands to

F̃1 = ∇(ξ · ∇p0) + γ∇(p0∇ · ξ) +
(∇×B0)× (ξ ×B0)

µ0

+
[∇× (ξ ×B0)]×B0

µ0

(2.7.75)

It is fairly typical to keep B̃1 simply as B̃1 in many applications, however.

Now because all of the above may be allowed to be complex valued, when we perform a displacement
and wish to find the work done (by the linearized force), we need to work with either the real portion
or imaginary portions carefully. This is because we have a quadratic now. Thus the work done D
can be thought of as

D =

ˆ
V

d3x <[ξ] · <[F̃1(ξ)] =

ˆ
V

d3x

(
ξ + ξ∗

2
· F̃1(ξ) + F̃1(ξ∗)

2

)
(2.7.76)

=
1

2

ˆ
V

d3x
[
<[ξ · F̃1(ξ)] + <[ξ∗ · F̃1(ξ)]

]
(2.7.77)

The other solution should also work

D =

ˆ
V

d3x =[ξ]=[F̃1(ξ)] =

ˆ
V

d3x

(
ξ − ξ∗

2i
· F̃1(ξ)− F̃1(ξ∗)

2i

)
(2.7.78)

= −1

2

ˆ
V

d3x
[
<[ξ · F̃1(ξ)]−<[ξ∗ · F̃1(ξ)]

]
(2.7.79)
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If we add these two solutions50 we find

2D =
1

2

ˆ
V

d3x
[
��

���
��

<[ξ · F̃1(ξ)] + <[ξ∗ · F̃1(ξ)]
]

+−1

2

ˆ
V

d3x
[
��

���
��

<[ξ · F̃1(ξ)]−<[ξ∗ · F̃1(ξ)]
]

(2.7.80)

2D = <
[ˆ

V

d3x ξ∗ · F̃1(ξ)

]
(2.7.81)

and so it is sensible to think of the D as related to the real part of the complex conjugate of the
displacement multiplied by the force. That is, we write the work done for a general displacement
is given by (reminding ourselves that we care only about the real part in the end)

D(η) =
1

2

ˆ
V

d3x η∗ · F̃1(η) (2.7.82)

where one must implicitly require that the real part is taken when we want the actual solution.

The negative of this can then be viewed as the potential energy, because this is the energy required
by the linear forces to enact a displacement η. In our case we let η = ξ and so the potential energy
W is given by51

W (ξ∗, ξ) = −1

2

ˆ
V

d3x ξ∗ · F̃1(ξ) = −1

2
D(ξ) (2.7.83)

The above is second order in δ because ξ is O(δ). The kinetic energy T is given by

T (
∂ξ∗

∂t
,
∂ξ

∂t
) =

ˆ
V

d3x
n0mi

2

∂ξ∗

∂t
· ∂ξ
∂t

(2.7.84)

We write both T and W as functions of two variables, because an important property is that of
being self-adjoint. This means that the operator is Hermitian, so that given an inner product and
operator A that can act on objects v and w, we have 〈Av,w〉 = 〈v, Aw〉. For complex cases, it
is usually true that 〈v, w〉 = v∗w where the object in the left of the inner product has used in its
dual, that is complex conjugate, form. In our case, the operator is the integration and the objects
are ξ and its complex conjugate. Thus to be self-adjoint we require (it is only self-adjoint with
certain chocies of η and ξ)

W (η∗, ξ) = W (ξ∗,η) (2.7.85)

Proving this is not so difficult for the ξ and η we are required to use. We have to remember that we
are taking the real part at the end, though so that we can immediately see that <[η∗ ·ξ] = <[ξ∗ ·η]
and so we can switch the complex conjugate from one linear in ξ to η and vice versa without altering
our actual final answer. When we take the ξ = η case, then the above is trivial. We assume energy
conservation so that

∂T (η∗, ξ)

∂t
+
∂W (η∗, ξ)

∂t
= 0 (2.7.86)

50This is not a mathematically rigorous proof unless we require that our solution be equally weighted by the two
solutions. Can you think of why they must be equally weighted?

51Many texts call this potential energy from the linearized force δW . I avoid this use for two reasons. First, if we
are going to extremize it then we would have to speak of δδW which is very confusing notation. Second, the δW
seems to indicate variation from the calculus of variations, which is also unnecessarily confusing. Just be warned
that my W is often called δW .
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and use

∂T

∂t
=

1

2
<
[ˆ

V

d3x
∂

∂t

(
∂η∗

∂t
· ∂ξ
∂t

)]
=

1

2
<
[ˆ

V

d3x
∂2η∗

∂t2
· ∂ξ
∂t

+
∂η∗

∂t
· ∂

2ξ

∂t2

]
(2.7.87)

Since T is self-adjoint, ∂T
∂t

is as well. We can then note that

∂T

∂t
= W (

∂ξ

∂t
,η∗) +W (

∂η∗

∂t
, ξ) = W (

∂ξ∗

∂t
,η) +W (

∂η∗

∂t
, ξ) (2.7.88)

Then

∂W

∂t
=

1

2
<
[
∂

∂t

ˆ
V

d3x η∗ · ∂
2ξ

∂t2

]
(2.7.89)

=
1

2
<
[ˆ

V

d3x
∂η∗

∂t
· ∂

2ξ

∂t2

]
+

1

2
<
[ˆ

V

d3x η∗ · ∂
3ξ

∂t3

]
(2.7.90)

= W (
∂η∗

∂t
, ξ) +W (η∗,

∂ξ

∂t
) (2.7.91)

And so we must have

W (
∂ξ∗

∂t
,η) +

��
��

��

W (
∂η∗

∂t
, ξ) =

��
��

��

W (
∂η∗

∂t
, ξ) +W (η∗,

∂ξ

∂t
) (2.7.92)

which means

W (
∂ξ∗

∂t
,η) = W (η∗,

∂ξ

∂t
) (2.7.93)

which is the exact property we desired. All that we need to recognize is that there is nothing
special about ∂ξ

∂t
(we could have started our proof with

´
dt ξ instead, if this bothers you) so long

as they satisfy the correct conditions imposed for the problem to be physically relevant [that is,
boundary conditions and the function is a permissible function, in the space of functions we care
about].

One should note that T is self-evidently self-adjoint. Once we have self-adjointness, then we know
the eigenvalues of the operator are real, which makes the job much easier. In our case this means
that the frequencies squared (ω2) are real and so the frequencies are either purely real or purely
imaginary. If we imagine that the total energy is unchanged during our displacement process, then
we can state

E = W + T (2.7.94)

for E some constant number. We can then see that if we allow W < 0, then T can become
arbitrarily large. We view such a situation as likely to be unstable since this means that ∂ξ/∂t is
becoming enormous which means we can have explosive growth of the perturbation. On the other
hand, if W ≥ 0 this implies that T can only get so large and is thus bounded. This means that
we are possibly in a stable configuration. To prove it is stable, would require a lot more analysis,
but it is reasonable to suspect that W ≥ 0 is necessary and sufficient for stability. Certainly in
physical situations where we expect energy conservation, then we can argue it is sufficient because
T ≥ 0 so when W ≥ 0 we have E > 0 and so T can only get so large, preventing unstable growth.
To prove it is necessary, we can consider a displacement W (ξ∗, ξ) < 0 exists. We can then solve
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the problem where the initial displacement is ξ and ∂ξ/∂t = 0 at t = 0. In this case E < 0
initially, but still a constant. Then using that T is self-adjoint so that T (ξ∗,η) = T (η∗, ξ) we find
(we found this above)

∂T (ξ∗, ξ)

∂t
= <

{ˆ
V

d3x
∂

∂t
[ξ∗ · ξ]

}
= T (

∂ξ∗

∂t
, ξ) + T (ξ∗,

∂ξ

∂t
) (2.7.95)

We have forced T to be real in this instance. Since it is defined as the real part of an integral.
Thus we notice that ∂

∂t
distributes on the ξ for T (ξ∗, ξ). And so (let a prime denote ∂

∂t
so ∂ξ

∂t
≡ ξ′)

∂2T (ξ∗, ξ)

∂t2
= T (ξ∗′′, ξ) + T (ξ∗′, ξ′) + T (ξ∗′, ξ′) + T (ξ∗, ξ′′) (2.7.96)

Using the self-adjointness of T with η∗ → ξ∗′ and ξ → ξ′′ we see that we get

∂2T (ξ∗′, ξ′)

∂t2
= 2T (ξ∗′′, ξ′′) + 2T (ξ∗′, ξ′′′) (2.7.97)

Now we use

E = T (ξ∗′, ξ′) +W (ξ∗, ξ) (2.7.98)

We can then note that

T (ξ∗, ξ′′) = <
[ˆ

V

d3x ξ∗ · F̃1(ξ)

]
= −W (ξ∗, ξ) (2.7.99)

Then we find

∂2T (ξ∗, ξ)

∂t2
= 2T (ξ∗′, ξ′)− 2<[W (ξ∗, ξ)]

= 2T (ξ∗′, ξ′)− 2<[H − T (ξ∗′, ξ′)]

= 4T (ξ∗′, ξ′)− 2H

(2.7.100)

Remember that H < 0 and so T (ξ∗′, ξ′) ≥ 0 so

∂2T (ξ∗, ξ)

∂t2
= 4T (ξ∗′, ξ′)− 2H ≥ −2H ≥ 0 (2.7.101)

which implies that T (ξ∗, ξ) is growing in time even if initially we have T (ξ∗′, ξ′) = 0. Even if
the T (ξ∗′, ξ′) contribution remains small in comparison to the H contribution, we’d initially have
growth for a given W of at least −2H = −2W > 0. If we look at min(W ) (over all possible W
with permissible ξ in our configuration) then if min(W ) < 0 this implies we could have −2W > 0
and the growth. Thus we require min(W ) ≥ 0 so that −2W ≤ 0 to ensure that there is no such
instability.

If we accept that minW ≥ 0 for stability then we are left with a variational calculus problem once
we are given a configuration. All we need to do is calculate δW to find an extrema, check ifW > 0
at the extrema if it is a minimum, and then if W > 0 and we are at a minimum we are stable. If
W < 0, then we are unstable.
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Finally, we calculate (using that W is self-adjoint)

δW = W (ξ∗ + δξ∗ , ξ + δξ )−W (ξ∗, ξ) +O(δ2) (2.7.102)

= <
[ˆ

V

d3x
(
ξ∗ · F̃1(δξ ) + δξ∗ · F̃1(ξ)

)]
(2.7.103)

= W (ξ∗, δξ ) +W (δξ∗ , ξ) = 2W (ξ∗, δξ ) (2.7.104)

And so at δW = 0 we need W (ξ∗, δξ ) = 0. Thus if we can find a δξ that gives W = 0, that δξ
is the maximizing or minimizing function. We can also use that W = <

[´
V

d3x L(ξ∗, ξ)
]
to find

the minimum via52

δξ · ∂L
∂ξ

+ δξ∗ · ∂L
∂ξ∗

(2.7.105)

with ∂L
∂ξ∗

= 1 · F̃1(ξ) = F̃1(ξ). We can then use we are looking at real values to switch the complex
conjugation off of the δξ∗ . Then we have(

∂L

∂ξ
+ F̃(ξ∗)

)
· δξ (2.7.106)

as the integrand and so we must have ∂L
∂ξ

= −F̃(ξ∗) to have a minimum. That is

∂F̃1(ξ)

∂ξ
· ξ∗ = −F̃(ξ∗) (2.7.107)

In fact, we only require the real part to satisfy the above equation. One can then extend to other
cases where the plasma is surrounded by a vacuum and conducting wall, but the machinery is
similar. We simply have more integrals of energy to consider.

Finally, we come back to ξ∗ · F̃1(ξ). We can write this as

ξ∗ ·

∇(ξ · ∇p0) + ∇(γp0∇ · ξ) +

J0︷ ︸︸ ︷
∇×B0

µ0

×B̃1 +
∇× B̃1

µ0

×B0

 (2.7.108)

We can use ξ∗ = ξ∗⊥ + ξ∗‖ with ξ
∗
‖ = b̂0ξ

∗
‖ where b̂0 = B0/|B0|. Then

ξ∗‖b̂0 ·
∇× B̃1

µ0

×B0 = 0 (2.7.109)

via the vector identity A·(A×B) = 0 (with B0 = B0b̂0 being employed). Second we use∇·B0 = 0
and so

B0 · ∇(ξ · ∇p0) =∇ · (B0[ξ · ∇p0])− ξ · ∇p0��
��∇ ·B0 (2.7.110)

52We are formally regarding ξ∗ and ξ as independent functions for this derivation. In reality, they are of course
related, just like with derivatives.
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with J0 ×B0 = ∇p0

B0 · J0 × [∇× B̃1] = −[∇× B̃1] · J0 ×B0 = −∇× B̃1 · ∇p0 (2.7.111)

Then

∇ ·
[
∇p0 × B̃1

]
= B̃1 ·����

�∇× ∇p0 − ∇p0 · ∇× B̃1 (2.7.112)

Then we combine

B0 ·
[
J0 × [∇× B̃1] + ∇(ξ · ∇p0)

]
=∇ ·

(
B0[ξ · ∇p0] + ∇p0 × B̃1

)
(2.7.113)

=∇ · (B0[ξ · ∇p0] + ∇p0 × (ξ ×B0)) (2.7.114)
=∇ ·

(
��

���
�

B0[ξ · ∇p0] + ξ(∇p0 ·B0)−(((((
((

B0(ξ · ∇p0)
)

= 0 (2.7.115)
(2.7.116)

where we used ∇p0 ·B0 = 0. The last step here is to recognize

ξ∗ · ∇(γp0∇ · ξ) =∇ · (ξ∗γp0∇ · ξ)− γp0∇ · ξ∇ · ξ∗ =∇ · (ξ∗γp0∇ · ξ)− γp0|∇ · ξ|2
(2.7.117)

We then have for the integrand (ignoring divergences, which we will incorporate into a surface
integral via Stokes’ theorem)

ξ∗⊥ ·
(
∇(ξ · ∇p0) + J0 × B̃1 +

∇× B̃1

µ0

×B0

)
− γp0|∇ · ξ|2 (2.7.118)

We can perform the same ritual on ξ∗⊥ · ∇(ξ · ∇p0) to get

ξ∗⊥ · ∇(ξ · ∇p0) =∇ · (ξ∗⊥ξ · ∇p0)− (ξ · ∇p0)∇ · ξ∗⊥ (2.7.119)

Then we have (ignoring the divergences again for now)

ξ∗⊥ ·
(

J0 × B̃1 +
∇× B̃1

µ0

×B0

)
− γp0|∇ · ξ|2 − (ξ · ∇p0)(∇ · ξ∗⊥) (2.7.120)

One last ritual is to convert the ∇× B̃1 term.

ξ∗⊥ · (∇× B̃1)×B0 = (∇× B̃1) · (B0 × ξ∗⊥)

=∇ · (B̃1 × [B0 × ξ∗⊥]) + B̃1 · ∇× (B0 × ξ∗⊥)

=∇ · (B0(B̃1 · ξ∗⊥)− ξ∗⊥[B̃1 ·B0]) + B̃1 · ∇× (B0 × ξ∗⊥)

(2.7.121)

We then use B0 × ξ∗⊥ = B0 × ξ∗ = −B̃
∗
1. Thus

ξ∗⊥ · (∇× B̃1)×B0 =∇ · (B0(B̃1 · ξ∗⊥)− ξ∗⊥[B̃1 ·B0])−

=|B̃1|2︷ ︸︸ ︷
B̃1 · B̃

∗
1 (2.7.122)
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Then if we gather all of the terms we find

ξ∗ ·
(
∇(ξ · ∇p0) + ∇(γp0∇ · ξ) + J0 × B̃1 +

∇× B̃1

µ0

×B0

)
=∇ ·

(
ξ∗γp0∇ · ξ + ξ∗⊥γp0∇ · ξ + B0(B̃1 · ξ∗⊥)− ξ∗⊥[B̃1 ·B0]

)
+ ξ∗⊥ · J0 × B̃1 −

|B̃1|2

µ0

− γp0|∇ · ξ|2 − (ξ · ∇p0)(∇ · ξ∗⊥)

(2.7.123)

If we then integrate over a volume V with surface S = ∂V and n̂·B0 = 0 we see thatW = W (ξ∗, ξ)
is given by (remember that ξ · ∇p0 = ξ⊥ · ∇p0 since ∇p0 ·B0 = 0)

W = −
ˆ
V

d3x ξ∗ · F̃1(ξ)

=

ˆ
V

d3x

[
|B̃1|2

µ0

− ξ∗⊥ · J0 × B̃1 + γp0|∇ · ξ|2 + (ξ · ∇p0)(∇ · ξ∗⊥)

]

+

ˆ
∂V

dS n̂ ·
[
ξ∗⊥[B̃1 ·B0]− ξ∗⊥ξ · ∇p0 −

n̂·ξ∗=n̂·ξ∗⊥︷︸︸︷
ξ∗ γp0∇ · ξ −��B0(B̃1 · ξ∗⊥)

]
=

ˆ
V

d3x

[
|B̃1|2

µ0

− ξ∗⊥ · J0 × B̃1 + γp0|∇ · ξ|2 + (ξ⊥ · ∇p0)(∇ · ξ∗⊥)

]
+

ˆ
∂V

dS n̂ · ξ∗⊥
[
B̃1 ·B0 − ξ⊥ · ∇p0 − γp0∇ · ξ

]

(2.7.124)

Remember that thisW is really just the plasma or fluid portion of the energy. There can be energy
from the plasma surface and surrounding vacuum as well. Finally, a more “intuitive” form is often
used for the integrand. Instead of

|B̃1|2

µ0

− ξ∗⊥ · J0 × B̃1 + γp0|∇ · ξ|2 + (ξ⊥ · ∇p0)(∇ · ξ∗⊥) (2.7.125)

one uses[11]

|B̃1⊥|2

µ0

+
B2

0

µ0

|∇ · ξ⊥ + 2κ · ξ⊥|2 + γp0|∇ · ξ|2 − 2(ξ⊥ · ∇p0)(κ · ξ∗⊥)− λ(ξ∗⊥ ×B0) · B̃1⊥

(2.7.126)

with

κ = b̂0 · ∇b̂0 (2.7.127)

λ =
J0 ·B0

B2
0

(2.7.128)

This is more intuitive because many of the terms are squares and hence cannot contribute to
instability. Only the last two terms can be negative, and they can be interpreted as representing
curvature (ξ⊥ · ∇p0)(κ · ξ∗⊥) and current instabilities λ(ξ∗⊥ ×B0) · B̃1⊥.

Proving this is a job best done once in one’s life. It convinces you that there is no magic going on,
but exhausts you with getting the details correct.
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2.7.3 Non-Ideal MHD

Our arguments were entirely general before. Yet, if one looks up information on the resistive MHD
force operator, you will see people immediately saying that the resistive MHD force operator is
not self-adjoint. Does such a thing come into conflict with our derivation above? (The answer is
no, it does not.)

In fact, the matter is more subtle than one thinks. The first thing we used above was that the
total energy is conserved. You might think that this solves the conundrum. In fact, it does not. It
is true that resistive MHD has energy being “lost” via ohmic heating, but we can add such a term
into our temperature equation, and so no energy is lost. Indeed, consider Problem 2.6.3. and the
following problem in the problem set. We see we can have energy conservation if we deposit the
ohmic heating into the temperature of the plasma.

The second thing that was important for our calculations was the property

∂

∂t
W (ξ∗, ξ) = W (

∂ξ∗

∂t
, ξ) +W (ξ∗,

∂ξ

∂t
) (2.7.129)

This means that no other quantity but ξ is time dependent. That is all of our zeroth order terms
are time independent. This is a statement that if our expansion is around a steady-state, then
the only time dependent quantity will be ξ. This is what turns out to be crucial. We saw before
that in Ideal MHD such a statement is trivial. For resistive MHD, the steady-state zeroth order
restricts us to only certain situations. Consider

E = ηJ−V ×B (2.7.130)
∂B

∂t
= −∇× E (2.7.131)

at zeroth order with no background flow V0 = 0. We then have

∂B0

∂t
= −∇× (η0J0) (2.7.132)

This means that for ∂B0

∂t
= 0 we must have

∇× (η0J0) = ∇η0 ×
∇×B0

µ0

+ η0∇×
(
∇×B0

µ0

)
= 0 (2.7.133)

This highly restricts the possible η0 and B0 that are possible. Otherwise, we lose the property
that ∂W

∂t
has the time derivative only distribute to the arguments of W .

This also brings up the importance of V0 = 0. With background flow, if we desire a steady-state
in Ideal MHD, then only certain V0 are possible.

This is simply to say that if you find a steady-state zeroth order and construct the potential
energy from displacements of the linearized force, then by construction you will have a self-adjoint
potential energy. This as true in resistive MHD as it is in Ideal MHD. The real difference is in
whether such a steady state is a useful state for physics analysis. In most resistive MHD situations,
there is no steady-state near the state we are interested in, and so, were we to construct a linearized
force, it would have time dependence outside of the displacements and so would not be self-adjoint.
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2.8 Types of Plasma Instabilities
One must watch the convergence of a numerical code as carefully as a father watching
his four-year-old play near a busy road.

— J. P. Boyd[3, p. 109]

Much of plasma physics theory and experiment for the past 70 years has been an increasing
understanding of the various ways that plasmas display unstable behavior, and what can be done
to mitigate or prevent these instabilities.53 In this time, there have been numerous instabilities
found, so that instability analysis often fills multiple chapters of textbooks.

We begin with the MHD model itself, such as in the set of equations in Section 2.6. In a perfect
world, one could analytically analyze a set of equations for various initial or boundary conditions
and determine their behavior over time. That is, the equations simply could be solved for all
conditions that are consistent. Unfortunately, most equations of interest in the physical world
cannot be so analyzed. The next hope would be that one could look at the equations and determine
properties of the solution such as does it grow quickly, or come to a steady state solution. Again,
most equations representing physical phenomena are nonlinear and so are difficult to analyze. So
one is often left with looking at linear analysis, where the nonlinear equations are linearized by
imagining conditions near an equilibrium and only keeping linear contributions to deviations from
this equilibrium. Even with just a linear stability analysis, the full model is usually simplified to
gain a better understanding of how different terms impact the overall stability of the system. Linear
stability is usually investigated because linearly unstable configurations tend to be unstable non-
linearly, or at the very least, unstable enough to prevent plasma confinement. A linearly unstable
set of equations could be non-linearly stable and so linearly unstable does not automatically entail
poor plasma confinement and performance, but, in practice, linear instabilities tend to arise and
be destructive. The only way to know for sure, is to do some type of non-linear analysis (or
experiment or computation).

Even with this caveat, linear analysis is useful in categorizing the types of instabilities available
to plasmas. As an example we can consider the ideal MHD system, and construct an energy
integral[12][2] to determine linear stability. The variational principles used in Section 2.7.2 for W
are especially useful in this respect.

W =
1

2

ˆ
d3x

{
|Q⊥|2 +B2

0 |∇ · ξ̃⊥ + 2ξ̃⊥ · κ|2 + γp0|∇ · ξ̃|2

− 2(ξ̃⊥ · ∇p0)(κ · ξ̃
∗
⊥)− J0 ·B0

B2
0

(ξ̃
∗
⊥ ×B0) ·Q⊥

} (2.8.1)

with

Q = B̃1 =∇× (ξ̃ ×B0) (2.8.2)

b̂ = B0/B0 (2.8.3)

κ = b̂ · ∇b̂ (2.8.4)

The first term represents energy for bending field lines (or it can be thought of as energy in shear
Alfvén waves), the second term is energy in compressional Alvén waves, and the third term is the

53The Boyd quote applies to plasmas as well as it does to numerical codes. Think of the fun when you combine
them!
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energy in compressing the plasma. These three terms are always non-negative, and so the last two
terms are the possibly destabilizing terms. The fourth term is −(ξ̃⊥ · ∇p0)(κ · ξ⊥). Thus, if κ, the
magnetic curvature vector,54 and the pressure gradient, ∇p, point in the same direction, this term
is destabilizing. Note this is a term where the pressure gradient (related to perpendicular current
by J0 ×B0 = ∇p0) is causing instabilities. The final term is destabilizing and driven by parallel
current J0 ·B0.

With these ideas in mind, MHD instabilities are usually divided into useful categories, some of
which overlap. In addition, while instabilities are usually able to be differentiated from an exper-
imental standpoint, they are usually not rigid categories with precise mathematical definitions,
so that an instability can have multiple valid descriptions that emphasize different aspects of the
instability. As hinted at before, one way of discriminating between instabilities (which are often
called “modes”, because the instabilities are usually linear eigenmodes of the equations) is looking
at where the energy driving the instability is coming from. Thus, there are (parallel) current in-
stabilities and pressure (gradient) instabilities. It is worth remembering that pressure instabilities
can be viewed as perpendicular current instabilities, but that when the literature refers to current
instabilities it almost always means parallel current instabilities.

A further classification is between internal and external instabilities. Here external instability
simply means that the surface of the plasma is perturbed. If the plasma surface is unperturbed,
then it is considered an internal instability.

In addition, there are a couple of instabilities that are common and physically apparent so that
we can classify them as kink modes, interchange modes, and ballooning modes. A kink mode
can be either internal or external, and is current driven. External kinks are well-named, as the
plasma column appears to kink or twist into a braid-like or helical shape. Visualizations of the
external perturbation for various mode numbers in a cylinder are shown in Figures 1.6 and 1.7.
An intuitive reminder of the drive of this mode is that as the plasma kinks and forms an elbow
(think of circular rings on a straight arm and then forming your arm into an elbow), the magnetic
field on the outside of the elbow is rarefied (on the outside of your elbow the rings are now further
apart) while the magnetic field on the inside of the elbow is compressed (on the inside of your arm
the rings are bunched together). This compressed magnetic field tries to push itself apart (here
the arm metaphor breaks down as your bones and tendons prevent your arm for spreading apart,
though you should feel pressure on your elbow from the rings) and in so doing makes the elbow
larger, reinforcing the kink. Internal kinks are not as clearly visible because they do not affect the
external boundary, but are also current driven.

Interchange instabilities are an internal instability and pressure driven. They depend on the
pressure gradient and magnetic curvature, and cause a fluted like structure to the plasma. They
are “interchange” because if you imagine flux tubes (they can be thought of as the volume around a
magnetic field line) next to each other, with the configuration being energetically favorable for the
flux tubes to switch locations, you get interchange instabilities. This is analogous to the Rayleigh-
Taylor instability[16][20] where under the force of gravity, a dense fluid above a less dense fluid is
unstable and so the two fluids try to interchange locations to get to a more energetically favorable
configuration. In plasmas, this often brings colder, less dense plasma nearer to the center of the
plasma, affecting the main plasma properties. This can be seen in Figure 2.6. It is worth taking an

54Remember that the magnetic curvature vector points toward the center of the circle that would fit the magnetic
field line locally. It is perpendicular to the local magnetic field, as can easily be seen via the identity κ = b̂ · ∇b̂ =
−b̂× (∇× b̂).
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Figure 2.12: The magnetic field lines “break” and “reconnect” to form a new magnetic topology.

extended look at the fluted nature of interchange modes as it offers a geometric understanding of
the importance of the safety factor and why having magnetic shear (when the helicity of field lines
is changing) is useful for stabilizing interchange modes. Consider a plasma column in a cylindrical
system, and then a perturbation of the cylindrical column ξ. We can then consider a Fourier
decomposition in the poloidal and toroidal angles of this perturbation of multiple wavenumbers
defined in (r, θ, ζ) where ζ is the toroidal “angle” along the Z direction (for example, take ζ = Z/L
for L some distance along the Z axis)

kmn = m∇θ − n∇ζ (2.8.5)

Then m is the poloidal mode number and n is the toroidal mode number of the wavevector. In
many cases, a specific (m,n) combination is dominant and so we can speak of an (m,n) mode,
which will have a helicity of m/n. Also recall that the safety factor q is related to the helicity
of magnetic field lines. So when q and m/n are the same, that is, the perturbations ξ align with
the magnetic field, then interchange instabilities can occur because the field lines can go past each
other without getting entangled with each other because they are of the same “shape”. When there
is shear, this means that q is changing and so the field lines cannot easily slip past each other
because they are of different helicities and are more easily entangled. These interchange modes are
often called flute modes because they often create a fluted structure to the plasma column, like
the classical fluted Roman pillars, but with helicity like the stripes on a barber’s pole.

There are also ballooning instabilities which are also pressure driven and can be internal or external
instabilities. They are manifest on the bad curvature region (the outboard side of the tokamak)
and have balloon-like protrusions on the outboard side. They are driven in a similar way as an
interchange instability, but because of the tokamak toroidal geometry, no single helicity is dominant
leading to distinct behavior from regular interchange modes.

In addition, tearing modes should be mentioned as a type of instability that does not arise in
ideal MHD. These instabilities occur when magnetic diffusion (due to electrical resistivity) causes
the magnetic field topology to change on small scales by breaking and reconnecting magnetic field
lines. On large scales, this process is typically called magnetic diffusion. The topology change can
turn closed field lines into open field lines, and thus leads to worse confinement. The breaking of
field lines (which is at a current sheet via µ0J =∇×B) can be visualized as in Figure 2.12.

There are of course far more instabilities than this. There is a whole zoo of instabilities that occur
from plasma wave interactions, but the above analysis is a good introduction to the majority of
MHD related instabilities.
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2.9 Plasma Waves and Instabilities

In view of the bewildering number of parameters and the confusion that could result, a
remarkable amount of organization and sanity is regained by using the dielectric tensor.
The difficult problems of plasma waves in a homogeneous medium become, for the most
part, just difficult problems in algebra. The algebra is not trivial. . .The human qualities
that are required to carry out these remaining calculations are, in small proportion,
insight, and in large proportion, stamina.

— T. H. Stix[18, pp. 265–266]

It is worth going over the procedures used to find linear waves and instabilities from equations
because this is a time-honored tradition in plasma theory. The usefulness of linearization and an-
alyzing plasmas with these methods has been crucial to designing and understanding experiments.
If you would like to get more into the details of a variety of plasmas, you should consult a textbook
on the subject such as Stix[18] or Swanson[19].

One of the most important things to derive for any wave, is the dispersion relation, which tells
us how the frequency (ν) of a wave depends on the wavelength (λ). As physicists we usually deal
with the angular frequency ω = 2πν and the wavenumber k = 2π/λ instead. So the dispersion
relation is ω = f(k) for some function of k. This relation determines many properties of the wave,
such as the phase velocity given by ω/k, and the group velocity dω/dk. This is then generalized
to dω/dk for three dimensions with k a wavenumber vector. Once you have a dispersion relation,
you can calculate how a wave will propagate in a system, hence its importance.

Let’s first deal with ideal MHD waves. We begin by assuming that there is a dimensionless param-
eter δ � 1 that exists that separates “equilibrium” or the steady-state55 from a small perturbation
from that state. We write this as for all quantities q they go to q = q0 + δq1e

i(k·x−ωt) = q0 + δq̃1.
The signs on k · x and ω terms is conventional for plasmas and means ω/k goes in the positive
spatial direction. This could be called the cheap Fourier transform, as we simply assume the form
of a plane wave. Then, we begin with constant in space and time B0, no steady state flow V0 = 0,
a spatially and temporally constant T0. This means that J0 = 0. As a reminder, our ideal MHD
equations are at (2.7.7) to (2.7.1). Also, note that I am making stronger assumptions than simple
linearization by assuming a plane wave like dependence in addition to a simple steady-state. This
formulation also avoids the problems of saying q1 � q0 when q0 = 0 because we invoke an ordering
parameter instead.

We begin with the number density equation

∂(HHn0 + δñ1)

∂t
+∇ ·

(
[n0 + ñ1][��V0 + Ṽ1]

)
= 0 (2.9.1)

δ

(
∂ñ1

∂t
+ n0∇ · Ṽ1

)
+ δ2

(
∇ · (ñ1Ṽ1)

)
= 0 (2.9.2)

Now we ignore O(δ2) terms because we are looking only at the first order terms in a linearization.

55The word equilibrium in plasma should really be understood as a steady state. It does not mean thermodynamic
equilibrium, just that if we wait long enough without changing sources and sinks, what state do we get. Steady
state is then, perhaps, a better term.
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Thus, our continuity equation states

−iωn1 + in0k ·V1 = 0 (2.9.3)
n1

n0

=
k ·V1

ω
(2.9.4)

Next we look at the momentum balance equation

nmi
dV

dt
= nmi

∂V

∂t
+ nmiV ·V = J×B− ∇p (2.9.5)

We will replace p = nT . Thus p = p0 +δp1 = n0kBT0 +δñ1kBT0 +δn0kBT̃1 +δ2ñ1kBT̃1. Expanding,
this becomes

(n0 + δn1)

[
∂

∂t
+ (��V0 + δṼ1) · ∇

](
�
�V0 + δṼ1

)
= (��J0 + δJ̃1)× (B0 + δB̃1)

− ∇(n0kBT0 + δ[ñ1kBT0 + n0kBT̃1] + δ2ñ1kBT̃1)

(2.9.6)

mi

[
δ

(
n0
∂Ṽ1

∂t

)
+ δ2

(
n1
∂Ṽ1

∂t
+ n0Ṽ1 · ∇Ṽ1

)
+ δ3

(
n1Ṽ1 · ∇Ṽ1

)]
= −kB∇(n0T0) + δ

(
−kB∇(ñ1T0 + n0T̃1) + J̃1 ×B0

)
+ δ2

(
J̃1 × B̃1 − kB∇(ñ1T̃1)

) (2.9.7)

These can then be grouped in orders of δ. Again, for linearization we can ignore O(δ2).

0 = kB∇(n0T0) (2.9.8)

n0mi
∂Ṽ1

∂t
= −kB∇(ñ1T0 + n0T̃1) + J̃1 ×B0 (2.9.9)

We have

∇×B = µ0J (2.9.10)

∇× (B0 + B̃1) = µ0

(
J0 + J̃1

)
(2.9.11)

∇× (B0 + δB̃1) = µ0

(
J0 + δJ̃1

)
(2.9.12)

0 + δ∇× B̃1 = 0 + δµ0J̃1 (2.9.13)

Thus (2.9.9) will say

n0mi
∂Ṽ1

∂t
= −kB∇(ñ1T0 + n0T̃1) +

∇× B̃1

µ0

×B0 (2.9.14)

−iωn0miV1 = −ikBk(T0n1 − n0T1) +
ik×B1

µ0

×B0 (2.9.15)

−iωn0miV1 = −ikBk(T0n1 + n0T1) + i
B1

µ0

(B0 · k)− ik
(

B0 ·
B1

µ0

)
(2.9.16)

ωn0miV1 = k

(
kBT0n1 + n0kBT1 + B0 ·

B1

µ0

)
− B1

µ0

(B0 · k) (2.9.17)
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It is important to note that k ·B0 6= 0. k ·B1 = 0 due to ∇·B1 = 0, but there is no such relation
for B0 and k. For the temperature equation we have

n

γ − 1

[
∂

∂t
+ V · ∇

]
T = −nT∇ ·V (2.9.18)

n0 + δñ1

γ − 1

[
∂

∂t
+ [��V0 + δṼ1] · ∇

]
[kBT0 + δkBT̃1] = −(n0 + δñ1)[kBT0 + δkBT̃1]∇ · [��V0 + δṼ1]

(2.9.19)

Which translates into (we can ignore O(δ2) terms)

δ

(
n0

γ − 1

∂kBT̃1

∂t

)
+ δ2

(
ñ1
∂kBT̃1

∂t
+ n0Ṽ1 · ∇kBT̃1

)
+ δ3

(
ñ1

γ − 1
Ṽ1 · ∇kBT̃1

)
= −δ

(
n0kBT0∇ · Ṽ1

)
− δ2

(
[ñ1kBT0 + n0kBT̃1]∇ · Ṽ1

)
− δ3

(
ñ1kBT̃1∇ · Ṽ1

) (2.9.20)

So that we find up at O(δ) that

n0

γ − 1

∂kBT̃1

∂t
= −n0kBT0∇ · Ṽ1 (2.9.21)

−iωkBT1

γ − 1
= −ikBT0k ·V1 (2.9.22)

T1

T0

=
(γ − 1)k ·V1

ω
(2.9.23)

We can find

E = −V ×B (2.9.24)

E0 + δẼ1 = −(��V0 + δṼ1)× (B0 + δB̃1) (2.9.25)

E0 + δẼ1 = −δ(Ṽ1 ×B0)− δ2(Ṽ1 × B̃1) (2.9.26)

so

E0 = 0 (2.9.27)

Ẽ1 = −Ṽ1 ×B0 (2.9.28)

and then

∂B

∂t
= −∇× E (2.9.29)

∂

∂t

[
B0 + δB̃1

]
= −∇×

[
��E0 + δẼ1

]
(2.9.30)

δ
∂B̃1

∂t
= δ∇×

[
Ṽ1 ×B0

]
(2.9.31)

−iωB1 = ik× (V1 ×B0) = i [V1(k ·B0)−B0(k ·V1)] (2.9.32)

B1 =
B0(k ·V1)−V1(k ·B0)

ω
(2.9.33)
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So we now have
n1

n0

=
k ·V1

ω
(2.9.34)

T1

T0

=
(γ − 1)k ·V1

ω
(2.9.35)

B1 =
B0(k ·V1)−V1(k ·B0)

ω
(2.9.36)

ωn0miV1 = k

(
kBT0n1 + n0kBT1 + B0 ·

B1

µ0

)
− B1

µ0

(B0 · k) ((2.9.17))

We can substitute everything into the momentum equation

ωn0miV1 = k

(
kBT0

n0k ·V1

ω
+ n0

(γ − 1)kBT0k ·V1

ω
+

B0

µ0

·
[

B0(k ·V1)−V1(k ·B0)

ω

])
−
[

B0(k ·V1)−V1(k ·B0)

µ0ω

]
(B0 · k)

(2.9.37)

We can factor this into three vector components, V1, k and B0. We find[
ω2 − (k ·B0)2

n0miµ0

]
V1 = k

[
γkBT0(k ·V1)

mi

+
|B0|2(k ·V1)− (B0 ·V1)(k ·B0)

n0miµ0

]
−B0

(k ·B0)(k ·V1)

n0miµ0

(2.9.38)

We can make another simplification with v2
A = B2

0/(nmiµ0) the Alfvén speed and b̂ = B0/|B0| as
well as v2

S = γkBT0/mi the sound speed56 so that[
ω2 − (k · b̂)2v2

A

]
V1 = k

[
v2
S(k ·V1) + v2

A[(k ·V1)− (b̂ ·V1)(k̂ · b̂)]
]
− b̂v2

A(k · b̂)(k ·V1)

(2.9.39)

Every wave in ideal MHD is summarized in this equation. When we assume a certain form for any
of the vectors B0, V1, and k then we get the conventional waves. For example, for sound waves,
we take k = k‖b̂ and V1 = V‖b̂ we get an extreme simplification. Thus we find[

ω2 − k2
‖v

2
A

]
V‖b̂ = k‖b̂

[
v2
Sk‖V‖ + v2

A[��
�k‖V‖ −���k‖V‖]

]
− b̂v2

Ak
2
‖V‖ (2.9.40)

ω2 −
�
��k2
‖v

2
A = k2

‖v
2
S −��

�k2
‖v

2
A (2.9.41)

ω2 = k2
‖v

2
S (2.9.42)

which are sound waves since vS is a sound speed.

One can also investigate shear Alfvén waves with k = k‖ and V‖ = 0

ω2 − k2
‖v

2
A = 0 (2.9.43)

and compressional Alfvén waves with k‖ = 0 and v‖ = 0

ω2(ω2 − k2
⊥v

2
A) = 0 (2.9.44)

56or ion acoustic speed
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2.9.1 Discontinuities

In order to look at an interesting instability case we need to consider interface relations across
surfaces. This will require us to derive relations using discontinuities across surfaces.

We should derive the Leibniz integral rule for a 3D integral and vector, as we will use it to find
interface relations for a small control volume57 for our boundary conditions in general.

2.9.1.1 Generalized Leibniz Rule

We begin with wanting to know how to calculate

d

dt

˚
V (t)

d3x F (2.9.45)

We will derive what is usually called the Reynolds transport theorem. We can begin by translating
into a coordinate system where the volume V (t) goes to a fixed volume in time V . The Jacobian
determinant for this transformation is given by ∂x

∂ξ1 · ∂x∂ξ2 × ∂x
∂ξ3 . Then we can write

d

dt

˚
V (t)

d3x F =
d

dt

˚
V

d3ξ
∂x

∂ξ1
· ∂x

∂ξ2
× ∂x

∂ξ3
F (2.9.46)

Now it is obvious that the d
dt

can pass through the integral, and so

d

dt

˚
V (t)

d3x F =

˚
V

d3ξ
d

dt

[
∂x

∂ξ1
· ∂x

∂ξ2
× ∂x

∂ξ3
F

]
(2.9.47)

Now we can transform back into the original coordinate system to find

d

dt

˚
V (t)

d3x F =

˚
V (t)

d3x
∂ξ1

∂x
· ∂ξ

2

∂x
× ∂ξ3

∂x

d

dt

[
∂x

∂ξ1
· ∂x

∂ξ2
× ∂x

∂ξ3
F

]
(2.9.48)

We can begin with

d

dt

[
∂x

∂ξ1
· ∂x

∂ξ2
× ∂x

∂ξ3

]
=
∂V

∂ξ1
· ∂x

∂ξ2
× ∂x

∂ξ3
+
∂x

∂ξ1
· ∂V

∂ξ2
× ∂x

∂ξ3
+
∂x

∂ξ1
· ∂x

∂ξ2
× ∂V

∂ξ3

=
∂V

∂ξ1
· ∂x

∂ξ2
× ∂x

∂ξ3
+
∂V

∂ξ2
· ∂x

∂ξ3
× ∂x

∂ξ1
+
∂V

∂ξ3
· ∂x

∂ξ1
× ∂x

∂ξ2

(2.9.49)

Now we can use that [remember (i′, j′, k′) are even cyclic permutation of (1, 2, 3)]

∂ξ1

∂x
· ∂ξ

2

∂x
× ∂ξ3

∂x
=

1
∂x
∂ξ1 · ∂x∂ξ2 × ∂x

∂ξ3

=
1

J
(2.9.50)

∂x

∂ξj′
× ∂x

∂ξk′
= J ∇ξi′ (2.9.51)

So for example(
∂ξ1

∂x
· ∂ξ

2

∂x
× ∂ξ3

∂x

)(
∂V

∂ξi′
· ∂x

∂ξj′
× ∂x

∂ξk′

)
=

∂V
∂ξi′
· J ∇ξi′

J
=
∂V

∂ξi′
· ∂ξ

i′

∂x
(2.9.52)

57If you have not heard of the term control volume, it is simply a set volume where we consider things going in
and out and the differential equations within this specified volume.
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so that we get(
∂ξ1

∂x
· ∂ξ

2

∂x
× ∂ξ3

∂x

)
d

dt

[
∂x

∂ξ1
· ∂x

∂ξ2
× ∂x

∂ξ3

]
=

3∑
i=1

∂V

∂ξi
· ∂ξ

i

∂x
= 1 : ∇V =∇ ·V (2.9.53)

where I used

∇V =
∂V

∂x
=

3∑
i=1

∂ξi

∂x

∂V

∂ξi
(2.9.54)

1 : ∇V = 1 :
∂V

∂x
=

3∑
i=1

∂ξi

∂x
· ∂V

∂ξi
(2.9.55)

and the identity 1 : ∇V =∇ ·V from (1.2.235).

This means that

d

dt

˚
V (t)

d3x F =

˚
V (t)

d3x

[
(∇ ·V)F +

dF

dt

]
=

˚
V (t)

d3x

[
(∇ ·V)F +

∂F

∂t
+ V · ∇F

]
(2.9.56)

We can then use that

∇ · (VF) = (∇ ·V)F + V · ∇F (2.9.57)

and so we recover the usual Reynolds transport theorem form where we can use Gauss’s Law

d

dt

˚
V (t)

d3x F =

˚
V (t)

d3x

[
∇ · (VF) +

∂F

∂t

]
=

˚
V (t)

d3x
∂F

∂t
+

‹
∂V (t)

dS n̂ ·VF (2.9.58)

with ∂V (t) the surface bounding V (t) and outward unit normal n.

It is instructive to consider why this method encounters difficulties when we are doing a time
derivative of a flux surface integral.

2.9.1.2 Interface Relations

The general form of a conservation law is given by

∂u

∂t
+∇ · (

↔
F) = S (2.9.59)

which is usually called the conservative form, where u is a vector (or scalar) and
↔
F is a second

rank tensor (or vector) and S is a volumetric vector (or scalar) source that is non-singular.

We can consider a control volume across the interface between the two regions we are interested in
with width across the interface of h (see Figure 2.13). We can also consider a small enough surface
in the other directions such that this becomes a rectangular prism. Let’s assume the interface is
moving at velocity Vi at the time of interest, which may vary in time and space. We have for our
volume for the total change in u over time that

d

dt

˚
V (t)

d3x u =

˚
V (t)

d3x
∂u

∂t
+

‹
∂V (t)

dS n̂ ·Viu (2.9.60)
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Figure 2.13: This shows the volume encompassing the interface in black. If we consider a small
enough part of the interface surface we can make our volume a rectangular prism with vanishing
width h.
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We then can substitute in our form for ∂u/∂t and so

d

dt

˚
V (t)

d3x u =

˚
V (t)

d3x [−∇ ·
↔
F + S] +

‹
∂V (t)

dS n̂ ·Viu (2.9.61)

=

˚
V (t)

d3x S +

‹
∂V (t)

dS n̂ · [Viu−
↔
F] (2.9.62)

If we now consider that h, the width normally, going to zero, then any volume terms with non-
singular integrands (both u and S are non-singular because they don’t blow up [go to ±∞]at our
interface) must vanish. Thus, the two volume integrals must go to zero, and we must have

‹
∂V (t)

dS n̂ · [Viu−
↔
F] = 0 (2.9.63)

Because this is for any surface across the interface, then the integrand itself must satisfy this
relation. Call one side of the volume + and the other side −. Then we must have(

n̂ · [Viu−
↔
F]

)
+

+

(
n̂ · [Viu−

↔
F]

)
−

= 0 (2.9.64)

Because n̂+ = −n̂− we can define n̂− = n̂ and then write this as

n̂ ·
s
↔
F −Viu

{
≡ n̂ ·

{[
↔
F+ −Viu+

]
−
[
↔
F− −Viu−

]}
= 0 (2.9.65)

Note because this equals zero we could use n̂ in either n̂− or n̂+ as long as we are consistent, we
could also write

n̂ ·
s

Viu−
↔
F

{
= 0 (2.9.66)

This relation is sometimes called the Rankine-Hugoniot condition.

Thus we have that for quantities across an interface (possibly discontinuous) we find

∂u

∂t
+∇ ·

↔
F = S (2.9.67)

⇒ n̂ ·
s
↔
F −Viu

{
= 0 (2.9.68)

2.9.2 Lagrangian and Eulerian Specifications

Leonhard Euler and Joseph-Louis Lagrange are two quite justifiably famous mathematician-physicists,
and so they have an enormous number of things named after them. In fact, they are the ones for
which the Euler-Lagrange equations are named. It is therefore somewhat amusing to note that
Lagrangian and Eulerian were chosen for two different perspectives on observing fluid dynamics.

Consider the water in a river. Suppose you put a cork in the water. One can then consider the
motion of the cork relative to the river water or relative to the banks of the river. When relative
to the river water, it is as if you were in a boat on the river and dropped the cork into the water.
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This is the Lagrangian specification of a flow field.58 The other perspective, where the cork’s
movement is compared to a fixed location, such as if you stood on the bank and dropped the cork
in, is called the Eulerian specification of a flow field59 These two perspectives are equivalent, of
course, as the cork’s motion does not actually change depending on these perspectives. The cork
here simply represents a small fluid parcel. Some calculations are much easier in one specification
versus another, or a combination of both. Thus these two perspectives are often combined or the
simpler perspective is used to do a calculation.

The importance of choosing a perspective can easily be illustrated. Consider the famous problem
of the bottle and boat in the river.60 Suppose a river has a constant velocity with respect to
the land. A motorboat is going upstream at a constant velocity with respect to the water and
when passing under a bridge a bottle falls out of it. Thirty minutes pass and the person in the
motorboat realizes the bottle has fallen out. The motorboat is turned around (ignore the time it
takes to do this) and goes downstream at the same constant velocity with respect to the water.
The motorboat meets the bottle one kilometer downstream from the bridge. What is the velocity
of the river with respect to the ground?

The difficult method of solution is to try and consider the motorboat’s velocity solely relative to
the land or solely in the frame of the river. Instead consider the motion relative to the bottle in
the river. The motorboat moves away from it for 30 minutes, and so it will take it a further 30
minutes for it to return. We can then use that the bottle has moved 1 kilometer in that time.
Therefore the river speed must be 1 km/h.

Now let’s consider a specific coordinate system where R(t) specifies a location in space of a fluid
parcel at time t. Then for any quantity q we can consider it at later time as at qE(R(t), t) which
is the Eulerian specification. Instead we could label the fluid parcel at t = 0 with R0 = R(0), and
the change since then given by X(R0, t) so that qL(R0, t). We can use that R = R0 + X(R0, t).
Because these are equivalent we know that

qL(R0, t) = qE(R(t), t) = qE(R0 + X(R0, t), t) (2.9.69)

This may seem confusing but remember in the Lagrangian specification we just need to know the
initial location of a fluid parcel and then we can find its location at a later time by following the
fluid flow. In the Eulerian perspective, we are not following any fluid parcels, but just says a parcel
is at a particular location at a particular time. We can then consider over a small amount of time
what the change would be when fixing the original location R0. This is easy in the Lagrangian
specification, and fairly simple in the Eulerian perspective as well. It would be given by a Taylor
Series approximation.

dqL
dt

∣∣∣∣
R0

=

=
∂qE
∂t
|R0︷ ︸︸ ︷

∂qL
∂t

∣∣∣∣
R0

+
�
�
�∂R0

∂t
· ∇qL + · · · (2.9.70)

dqE
dt

∣∣∣∣
R0

=

=
∂qL
∂t
|R0︷ ︸︸ ︷

∂qE
∂t

∣∣∣∣
R0

+
∂X

∂t
· ∇qE + · · · (2.9.71)

58Often shortened to Lagrangian frame, though this is somewhat imprecise as frame of reference usually refers to
the coordinate system for an observer, as well.

59Often shortened to Eulerian frame.
60I first heard of it in George Gamow’s book.
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Here I have emphasized that the first terms are interchangeable as
(
∂qL
∂t

)
R0

=
(
∂qE
∂t

)
R0

if these

two specifications are to match at the initial time. The fluid velocity must be given by ∂X
∂t

= VE.61
Now if we consider small changes we can use that q = q0 + δq1 with δ � 1. Then we can write

dqL
dt

∣∣∣∣
R0

=

=
∂q0E
∂t
|R0︷ ︸︸ ︷

∂q0L

∂t

∣∣∣∣
R0

+δ

=
∂q1E
∂t
|R0︷ ︸︸ ︷

∂q1L

∂t

∣∣∣∣
R0

+O(δ2) (2.9.72)

dqE
dt

∣∣∣∣
R0

=

=
∂q0L
∂t
|R0︷ ︸︸ ︷

∂q0E

∂t

∣∣∣∣
R0

+δ

=
∂q0L
∂t
|R0︷ ︸︸ ︷

∂q1E

∂t

∣∣∣∣
R0

+
∂X

∂t
· ∇(q0E + δq1E) +O(δ2)

=
∂q0L

∂t
+ δ

∂q1L

∂t
+ V0E · ∇q0E + δV0E · ∇q1E + δVE1 · ∇q0E +O(δ2)

=
∂q0L

∂t
+ V0E · ∇q0E + δ

[
∂q1L

∂t
+ V0E · ∇q1E + VE1 · ∇q0E

]
+O(δ2)

(2.9.73)

Thus, we find that when solving in a Lagrangian specification we consider dqL
dt

= ∂qL
∂t

and so we
can write

dq0E

dt

∣∣∣∣
R0

=
∂q0L

∂t

∣∣∣∣
R0

+ V0E · ∇q0E (2.9.74)

dq1E

dt

∣∣∣∣
R0

=
∂q1L

∂t

∣∣∣∣
R0

+ V0E · ∇q1E + V1E · ∇qE0 (2.9.75)

Now, we can use that VE1 = ∂ξ
∂t

= ωξ for a linearization with dq1

dt
= ωq1 so that

ωq1E = ωq1L + V0E · ∇q1E + ωξ · ∇qE0 (2.9.76)

q1E = q1L +
V0E

ω
· ∇q1E + ξ · ∇qE0 (2.9.77)

When there is no background flow, this is a simple prescription and we find

q1E = q1L + ξ · ∇q0E (2.9.78)

2.9.3 Kruskal-Schwarzchild Problem

Let’s assume that we make a small perturbation to a surface separating a more dense fluid ρ+ on
top and smaller density ρ− at equilibrium. Let’s assume the perturbation is of the form ξ and
then we say that ∂ξ/∂t = V1. We can further assume that the ∇· ξ = 0, that is the perturbation
is divergenceless and so ∇ · V1 = 0, as well. Compression is usually stabilizing, so ignoring it
gives us a worst-case situation. We will also consider no background flow V0 = 0. Let’s put the
interface at y = 0 and assume

ρ0 =

{
ρ− y < 0

ρ+ y ≥ 0
(2.9.79)

B0 =

{
B [sinαx̂ + cosαẑ] y < 0

Bẑ y ≥ 0
(2.9.80)

61This is the fluid velocity measured in an Eulerian specification, so VE .
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where ρ = nm with a constant gravitational force g = −gŷ.

Thus, the steady-state momentum balance equation states (V0 = 0)

0 = −∇p0 + ρg (2.9.81)
∇p0 = −ρgŷ (2.9.82)
∂p0

∂y
= −ρg (2.9.83)

∂p0

∂x
=
∂p0

∂y
= 0 (2.9.84)

Now, let’s solve in the Lagrangian specification, which means that the interface velocity will not
need to be specified yet. We will use the ideal MHD equations. The linearized momentum equation
says

ρ0
∂2ξ

∂t2
= −∇p1 +

∇×B1

µ0

×B0 (2.9.85)

We also have for the magnetic equation that

∂B1

∂t
= −∇×

[
∂ξ

∂t
×B0

]
(2.9.86)

Because ∂B0/∂t = 0 we know that we can then write

∂B1

∂t
=
∂∇× [ξ ×B0]

∂t
(2.9.87)

B1 =∇× [ξ ×B0] + C0 (2.9.88)

where C0 is time-independent. It must be zero since we desire B1 = 0 when ξ = 0. We note that
we can use the vector calculus identity with our assumptions of divergenceless B0 and ξ so that

∇× (ξ ×B0) = ξ���
��(∇ ·B0)−B0

XXXX(∇ · ξ) + B0 · ∇ξ − ξ · ∇B0 = B0 · ∇ξ − ξ · ∇B0 (2.9.89)

Because B0 has no spatial dependence ∇B0 =
↔
0 everywhere except across y = 0. We will consider

each side separately, so

B1 = B0 · ∇ξ (2.9.90)

We can then use

(∇×A)×B = B · ∇A− ∇(A ·B) + ∇B ·A = B · ∇A− ∇A ·B (2.9.91)

Thus

(∇×B1)×B0 = B0 · ∇B1 − ∇B1 ·B0 = B0 · ∇[B0 · ∇ξ]− ∇[B0 · ∇ξ] ·B0

= (B0 · ∇)2ξ − ∇[B0 · ∇ξ] ·B0

(2.9.92)

and so we find

ρ0
∂2ξ

∂t2
= −∇p1 +

(B0 · ∇)2

µ0

ξ − ∇
B0·∇ξ︷︸︸︷
[B1] ·B0

µ0

(2.9.93)
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It is worth noting that the total pressure can now be employed

pT = p+
B2

2µ0

(2.9.94)

pT1 = p1 +
B0 ·B1

µ0

(2.9.95)

∇pT1 = ∇p1 +
∇B1

µ0

·B0 (2.9.96)

Thus we can rewrite this as

ρ0
∂2ξ

∂t2
= −∇p1T +

(B0 · ∇)2

µ0

ξ (2.9.97)

Because there is no background gradients in the x̂ and ẑ direction, we can assume a form of eikxx+ikzz

for ξ (equivalent to taking Fourier transforms). We will also assume e−iωt time dependence on ξ.
Define k = kxx̂ + kzẑ for ease of notation. Then

−ω2ρ0ξ = −ikp1T −
∂p1T

∂y
ŷ +

(B0 · ik)2

µ0

ξ (2.9.98)

where we have used that ŷ ·B0 = 0. Then we can rewrite this as

([B0 · k]2 − µ0ρ0ω
2)ξ = −ikµ0pT1 − µ0

∂pT1

∂y
ŷ (2.9.99)

This shows that if B0 · k =
√
µ0ρ0ω or

ω =
B0 · k
µ0ρ0

(2.9.100)

are solutions. This would be when shear Alfvén waves are excited. This leads simply to wave
propagation and so is stable.

We can then multiply by k· removing the y component and look at the final y component separately

([B0 · k]2 − µ0ρ0ω
2)k · ξ = −ik2µ0p1T (2.9.101)

([B0 · k]2 − µ0ω
2ρ0)ξy = −µ0

∂p1T

∂y
(2.9.102)

Remember we used ∇ · ξ = 0 and with our assumptions this says

ik · ξ +
∂ξy
∂y

= 0 (2.9.103)

Thus, we can replace k · ξ and find

([B0 · k]2 − µ0ρ0ω
2)i
∂ξy
∂y

= −ik2µ0p1T (2.9.104)

([B0 · k]2 − µ0ρ0ω
2)
∂ξy
∂y

= −k2µ0p1T (2.9.105)

([B0 · k]2 − µ0ω
2ρ0)ξy = −µ0

∂p1T

∂y
(2.9.106)
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We can take ∂
∂y

on (2.9.105) to find (using pre-factors are constants)

([B0 · k]2 − µ0ρ0ω
2)
∂2ξy
∂y2

= −k2µ0
∂p1T

∂y
= k2([B0 · k]2 − µ0ω

2ρ0)ξy (2.9.107)

∂2ξy
∂y

= k2

��
���

���
���XXXXXXXXXXX

([B0 · k]2 − µ0ω
2ρ0)

[B0 · k]2 − µ0ρ0ω2
ξy = k2ξy (2.9.108)

Thus

ξy = A+e
ky + A−e

−ky (2.9.109)

for constants A+ and A−. At y = 0 we need the value to just be ξy0. We desire ξy → 0 as y → ±∞
and thus we can write that the y dependence of ξy must be

ξy = ξy0e
−k|y| (2.9.110)

Thus, by our assumption of ξ ∼ e−i(ωt−k·x) we have

ξy = ξ0e
i(ωt−k·x)−k|y| (2.9.111)

We can now consider our momentum balance interface relation. We will consider it in our original
Eulerian specification, so that the interface now is no longer simply a plane. We need to use that
momentum balance can be written as

∂(ρV)

∂t
+∇ ·

(
ρVV +

[
p+

B2

2µ0

]
1− BB

µ0

)
= 0 (2.9.112)

Thus using our interface relation (2.9.58) yields

n̂ ·
s
ρVV +

[
p+

B2

2µ0

]
1− BB

µ0

− ρViV

{
= 0 (2.9.113)

For our case VV and ViV terms go to zero to first order. We also have n̂ ·B = 0 on either side
due to no divergence of the magnetic field. Thus this simplifies to

n̂ ·
s
���ρVV +

[
p+

B2

2µ0

]
1− SS

S

BB

µ0

−����ρViV

{
= 0 (2.9.114)

s[
p+

B2

2µ0

]
n̂

{
= 0 (2.9.115)

(2.9.116)

which must be true for each component of n̂ thus
s
p+

B2

2µ0

{
= 0 (2.9.117)

The crossed out term is zero via

n̂ · JBBK = J(n̂ ·B)BK (2.9.118)
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For the steady-state quantities n̂ = ŷ and so n̂0 ·B0 = 0. Thus we need only compute Jn1 ·B0B0 +
n̂0 ·B1B0K. We will find that

n1 ·B0 + n̂0 ·B1 = 0 (2.9.119)

and so this term does not contribute in our case.

We need a relation for n1 the perturbed normal. The way to find this is by thinking about the
change of the y = 0 surface. It will get pushed by ξ and so we need to find the perturbation to n̂0

that leads to n̂0 + n1 = n̂. As a vector relation, we then have

n1 = n̂− n̂0 (2.9.120)

For n0 we can use that we fix y = 0 and let x and z vary. Thus ∇y is clearly the correct n̂0.

We have that the contour in space defining our new interface is given by adding the ξ(y = 0) to
our previous surface. We can find n̂ by fixing y = 0 and using x and z as parameterizations of the
surface through r = xx̂ + ξy(x, y = 0, z)ŷ + zẑ. We don’t care about the ξx and ξz components
because they are not changing the normal direction from the steady state value in any way. The
normal is then given by

n̂ =
∂r

∂z
× ∂r

∂x
=

[
∂ξy
∂z

ŷ + ẑ

]
×
[
x̂ +

∂ξy
∂x

ŷ

]
= −∂ξy

∂z
ẑ + ŷ − ∂ξy

∂x
x̂ (2.9.121)

So

n1 =

(
−∂ξy
∂z

ẑ + ŷ − ∂ξy
∂x

x̂

)
− ŷ = −∂ξy

∂x
x̂− ∂ξy

∂z
ẑ (2.9.122)

In general, if we have a surface parameterized by r = x(s, t)x̂ + y(s, t)ŷ + z(s, t)ẑ and perturb it
with vector ξ = ξx(s, t)x̂ + ξy(s, t)ŷ + ξz(s, t)ẑ then the normal is given by

n̂0 =
∂r

∂s
× ∂r

∂t
(2.9.123)

n̂ =
∂r + ξ

∂s
× ∂r + ξ

∂s
=

n̂0︷ ︸︸ ︷
∂r

∂s
× ∂r

∂s
+
∂ξ

∂s
× ∂r

∂t
+
∂r

∂s
× ∂ξ

∂t
+

O(|ξ|2)→0︷ ︸︸ ︷
∂ξ

∂s
× ∂ξ

∂t
(2.9.124)

One then must remove from ξ any parts that simply translate along the original surface if the
problem has a symmetry on the original surface.

The general relation usually given for a perturbation of a surface by ξ is62

n1 =

rotation tangent
to surface︷ ︸︸ ︷

−n̂0 × (∇× ξ)

removes tangential
displacement along surface︷ ︸︸ ︷

−n̂0 · ∇ξ + n̂0[n̂0n̂0 : ∇ξ] = (n̂0n̂0 − 1) · ∇ξ · n̂0 (2.9.125)

One can find this via assuming we have the equation for the surface f(x) = 0 and so the normal is
n = ±∇f . We can always redefine f (multiply by −1) so that it points in the direction we desire,

62I have never found a formal proof of this statement. There almost certainly is one somewhere, but not in any
textbooks I have seen. So the following is my reconstruction of what I believe the proof must be. I actually find a
more general relation.
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so n̂ = ∇f/| ∇f |. We can also imagine we redefine f such that | ∇f | = 1. Then we consider the
expansion f(x− ξ)63 and Taylor expand

f(x− ξ) = f(x)− ξ · ∇f
∣∣
ξ=0

+O(ξ2) (2.9.126)

∇f(x− ξ) = ∇f(x)− ∇
[
ξ · ∇f

∣∣
ξ=0

]
+O(ξ2) (2.9.127)

n̂ = n0 − ∇
[
ξ · n̂

∣∣
ξ=0

]
+O(ξ2) (2.9.128)

Now n0 is not necessarily a unit vector in this notation. We can replace it with n0 = n̂0 +C(ξ)n̂0

with a term C(ξ) = O(ξ).64

n̂ = n0 + C(ξ)n̂0 − ∇
[
ξ · n̂

∣∣
ξ=0

]
+O(ξ2)

= n0 + C(ξ)n̂0 − ∇[ξ · n0] +O(ξ2)

= n0 + C(ξ)n̂0 − ξ · ∇n0 − n0 · ∇ξ − ξ ×�����∇× n0 − n0 ×∇× ξ +O(ξ2)

= n0 + C(ξ)n̂0 − ∇ξ · n̂0 − ∇n̂0 · ξ +O(ξ2)

(2.9.129)

where I have used ∇ × n0 = ∇ × n̂0 + O(ξ) = ∇ × ∇f + O(ξ) = 0 + O(ξ). All of the terms
coming form ∇[ξ · n0] can replace n0 with n̂0 because these terms are already O(ξ) and so the
C(ξ) term goes into the O(ξ2) terms. Because ξ ×∇ × n̂0 = 0, we also have ∇n̂0 · ξ = ξ · ∇n̂0

from A ×∇ × B = ∇B · A − A · ∇B. We see we have basically already derived the previous
relation but with an extra term ξ · ∇n̂0 and a missing term with the double dot product. To find
the double dot product, remember we have n0 = n̂0 + C(ξ)n̂0 and so we need to find C(ξ).

For convenience define the term N which contains all O(ξ) terms

N = C(ξ)n̂0 − ∇ξ · n̂0 − ∇n̂0 · ξ (2.9.130)
n̂ = n̂0 + N (2.9.131)

Now, remember we have n̂ · n̂ = 1, full stop. This means we need our approximation to satisfy
this to all orders of ξ. So we write

n̂ · n̂ = (n̂0 + N) · (n̂0 + N) +O(ξ2) = n̂0 · n̂0 + 2N · n̂0 +O(ξ2) = 1 + 2N · n̂0 +O(ξ2)
(2.9.132)

Thus we require 2n̂0 ·N = 0 or more simply ignore the factor of 2, and we require n̂0 ·N = 0. So

n̂0 ·N = C(ξ)− n̂0 · ∇ξ · n̂0 − n̂0 · ∇n̂0 · ξ = 0 (2.9.133)

We use

n̂0 · [∇n̂0 · ξ] = n̂0 · [ξ · ∇n̂0] = ξ · [∇n̂0 · n̂0] = ξ ·
[

1

2
∇(n̂0 · n̂0)

]
= 0 (2.9.134)

using n̂0 · n̂0 = 1 so ∇1 = 0. Thus, we have

0 = C(ξ)− n̂0 · ∇ξ · n̂0 (2.9.135)
C(ξ) = n̂0 · ∇ξ · n̂0 (2.9.136)

63It should be a minus sign. Consider the plane y = 0. If we perturb to y = ξy then the new equation is y−ξy = 0.
64A priori, we do not know that it is proportional to ξ, so we are being conservative.

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



348 Plasma Waves and Instabilities

So if we now define n1 such that

n̂ = n̂0 + n1 +O(ξ2) (2.9.137)

we have found that

n1 = C(ξ)n̂0 − ∇ξ · n̂0 − ∇n̂0 · ξ
= [n̂0 · ∇ξ · n̂0]n̂0 − ∇ξ · n̂0 − ∇n̂0 · ξ

(2.9.138)

or we can write

n1 = n̂0[n̂0n̂0 : ∇ξ]− ∇ξ · n̂0 − ξ · ∇n̂0 (2.9.139)

which using ∇ξ = 1 · ∇ξ can be rewritten as

n̂1 = (n̂0n̂0 − 1) · ∇ξ · n̂0 − ξ · ∇n̂0 (2.9.140)

which is the correct formula for the new normal up to O(ξ2) terms. When ∇n̂0 =
↔
0 or more

generally ξ · ∇n̂0 = 0 then we recover the previous formula.

Using this formula we find

n̂1 = (ŷŷ − 1) · ∇ξ · ŷ = (−x̂x̂− ẑẑ)∇ξy = −∂ξy
∂x

x̂− ∂ξy
∂z

ẑ (2.9.141)

agreeing with our previous result.

Thus we find for our jump condition that

n1 ·B0 + n̂0 ·B1 = −ik ·B0ξy + i(B0 · k)ξy = 0 (2.9.142)

and n̂ · JBBK = 0.

Thus we need only look at the “total pressure” being continuous across the surface. But we have
been using a Lagrangian specification. So to convert back into our lab Eulerian frame pE we note
that p1E = p1L + ξ · ∇p0E. We have previously calculated the background pressure p0E. We can
note that for B1L = B1E +���

��ξ · ∇B0E. Then
s
p+

B2

2µ0

{
= 0 (2.9.143)

p+ +
B2

+

2µ0

= p− +
B2
−

2µ0

(2.9.144)

HHp0+ + p1+ +�
��B2
0+ + 2B0+ ·B1+

2µ0

=HHp0− + p1− +�
��B2
0− + 2B0− ·B1−

2µ0

(2.9.145)

p1E+ + ξ · ∇p0E+ +
B0+ ·B1+

µ0

= p1E− + ξ · ∇p0E− +
B0− ·B1−

µ0

(2.9.146)

Here I have canceled steady-state terms which match since P0 = C0−ρ±gy with P0 = C0 at y = 0,
the interface we care about. We can rewrite this as

p1E+ +
B0+ ·B1+

µ0︸ ︷︷ ︸
p1T+

−ρ+gξy︸ ︷︷ ︸
ξ·∇p0E+

= p1E− +
B0− ·B1−

µ0︸ ︷︷ ︸
p1T−

−ρ−gξy︸ ︷︷ ︸
ξ·∇p0E−

(2.9.147)
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We note that

p1T± =
[B0± · k]2 − µ0ρ±ω

2

−k2µ0

(∓k)ξy (2.9.148)

p1T+ =
B2k2

z − µ0ρ+ω
2

kµ0

ξy (2.9.149)

p1T− = −B
2[kz cosα + kx sinα]2 − µ0ρ−ω

2

kµ0

ξy (2.9.150)

Thus
−(ρ+ + ρ−)ω2

k
ξy − (ρ+ − ρ−)gξy +

B2[k2
z + (kz cosα + kx sinα)2]

kµ0

ξy = 0 (2.9.151)

(ρ+ + ρ−)ω2

k
+ (ρ+ − ρ−)g =

B2[k2
z + (kz cosα + kx sinα)2]

kµ0

(2.9.152)

which we can write as a dispersion relation as

ω2 =
B2

µ0(ρ+ + ρ−)
[k2
z + (kz cosα + kx sinα)2]− ρ+ − ρ−

ρ+ + ρ−
kg (2.9.153)

It is clear that we have an instability if the kg term is larger than the B2/µ0 term.

2.10 Drifts
To study, and when the occasion arises to put what one has learned into practice — is
that not deeply satisfying?

— Confucius in the Analects

This section goes over various types of drifts for particle or particle species due to forces. Single
particle drifts are really only useful when considering guiding center approaches, where motion
is divided into the motion of the center of a gyroorbit and the motion of the gyroorbit. One
can find fluid analogues if you are considering an additional test particle being injected into a
predetermined E and B to see how that particle’s species acts. Thus, for gyrokinetics and similar
other approaches, the particle drifts are required to determine what the V is for the guiding
centers. We have “drifts” that appear as the guiding center perpendicular to the magnetic field.
From an MHD point of view, where the gyroradius is ignored, many of these particle drifts are
unimportant. Their inclusion in textbooks without giving their major motivation is somewhat
curious. Single particle motions do not tell us much about plasma dynamics unless we include the
magnetic and electric fields (and all forces) due to all the particles in the configuration already.
Thus, given all the forces and assuming that a test particle doesn’t alter things, single particle
drifts can be useful for seeing what any particle of the test particle’s species would be doing. But
you must be careful not to infer that if you add a test particle to a configuration, that the test
particle trajectory would be the same as if you injected large amounts of test particles into the
same configuration. In addition, if you only consider a single test particle, you may be misled if you
care about an entire species’ behavior (fluid drifts would appear quite strange) because in a fluid
you care about the net particle motion rather than the motion of any single particle. So long as
one deals with time-independent forces, it is fairly easy to find the drifts that would occur. There
are often comments or excuses of the trajectories becoming complicated beyond spatially uniform
forces, but we will find that calculating time-independent particle trajectories is fairly simple.
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2.10.1 Particle Drifts

We begin with the motion of a particle in a steady state magnetic field. This just means we
choose B(x, t) = B0(x) to be independent of time. Often, this is chosen in analysis to be spatially
constant even though such a magnetic field is of course unphysical. If we think simply of a large
region of space, it is often true that the magnetic field is constant over the region of interest, and
so this approximation is sometimes helpful. We will see when we talk of fluid drifts that a single
particle drift with uniform fields is the same as a single particle drift, which appears to be the
motivation in some texts for teaching single particle drifts.

In any case, we will allow B0 to vary spatially. We use the second law of Newton with the Lorentz
force law to write (for a particle of species s, of constant mass ms)

ms
dvs
dt

= Fother + qsE + qsvs ×B0 (2.10.1)

It is worth dwelling on what this equation actually says. This is for a single test particle trajectory.
Thus, when I write the total time derivative, it does not imply there is an advective part. This
can be explained physically and mathematically. Physically, if we were to adopt an Eulerian
specification, we ask what is the change at a particular point x. But, we are solving for the
trajectory of a single particle, so if x isn’t on the trajectory, nothing will change. In other words,
when we talk of what vs even is, we are talking about the velocity along the trajectory following
the particle (a Lagrangian specification).65 Mathematically, we are saying that vs has no spatial
dependence, but only depends on time, so ∇vs is simply zero. This says that changing x doesn’t
change the trajectory, which is true. If we change where we look in x it has no effect on what the
trajectory does.

Now, let’s resume an analysis for single particle drifts. For now, we will say there is neither an
electric force, nor any other force on the particle. Thus

ms
dvs
dt

= qsvs ×B0 (2.10.2)

We can note that no work is done via msvs · dvs
dt

= ms
2

dv2
s

dt
= dK

dt
where K is the kinetic energy.

Thus,

dK

dt
= qsvs · (vs ×B0) = 0 (2.10.3)

via the vector identity A · (A×B) = 0. This is a general instantiation of the rule “magnetic forces
perform no work”. Let’s now solve the equation for vs. Because B0 ≡ B0b̂ is constant in time
we can use the trick of projecting into perpendicular and parallel components with respect to the
magnetic field at every point in space. Thus for the parallel portion we find

ms
d(vs · b̂)

dt
= b̂ · qsvs ×B0 = 0 (2.10.4)

ms

dvs‖
dt

= 0⇒ vs‖ = vs‖0 (2.10.5)

xs‖ = vs‖0t+ xs‖0 (2.10.6)

65Note that particle physicists often use the phrase “on shell” to indicate that quantities are along physical
trajectories, rather than being evaluated in a general phase space.
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which simply says the particle continues at its original velocity in the parallel (to the magnetic
field) direction for all time.

The perpendicular projection implies

ms
d

dt

[
−b̂× (b̂× vs)

]
= −qsb̂× (b̂× (vs ×B)) (2.10.7)

ms
dvs⊥

dt
= −B0qsb̂× (b̂× (vs × b̂)) = −qsB0b̂× vs⊥ (2.10.8)

We also have

ms
d

dt

[
b̂× vs

]
= b̂× (qsvs ×B) (2.10.9)

ms
d

dt

[
b̂× vs

]
= qsB0vs⊥ (2.10.10)

This means we can summarize our equations as

ms
d2vs⊥

dt2
= −qsB0

d[b̂× vs⊥]

dt
= −qsB0

[
qsB0

ms

vs⊥

]
= −q

2
sB

2
0

ms

vs⊥ (2.10.11)

d2vs⊥
dt2

= −q
2
sB

2
0

m2
s

vs⊥ ≡ −Ω2vs⊥ (2.10.12)

dvs⊥
dt

= −Ωb̂× vs⊥ (2.10.13)

with the definition Ω2 = q2
sB

2
0/m

2
s and Ω = |qs|B0/ms being the gyrofrequency. In some textbooks,

and in some situations it is convenient to use the definition Ω = qsB0/ms so that Ω can be negative
for electrons, but I find this definition more often leads to confusion. It is usually better to keep
frequencies positive and just write out separate equations for electrons and ions.

We can easily find the solution to (2.10.12) as it is for simple harmonic motion. Then (2.10.13)
provides the second initial condition relation for finding vs⊥, in general. It is worth mentioning
that it is convenient that |vs⊥| = |vs⊥0| = vs⊥0. That is, the magnitude of the velocity vector
never changes. The general solution can be written in many ways such as

vs⊥ = v+e
iΩt + v−e

−iΩt = vC cos(Ωt) + vS sin(Ωt) = vC0 cos(Ωt+ δ) (2.10.14)

where the relations between the various coefficients can easily be derived. The initial conditions
determine which form is most useful. Thus, if we are given vs⊥0 we can use that with our generic
solution and then use the generic solution with relation (2.10.13) at t = 0 to fully specify vs⊥.
Thus, given vs⊥0 at t = 0 we can write

vs⊥0 = v+ + v− = vC = vC0 cos δ (2.10.15)
dvs⊥

dt

∣∣∣∣
t=0

= −Ωb̂× vs⊥0

iv+ − iv− = −b̂× (v+ + v−)

vS = −b̂× vC

−vC0 sin δ = −b̂× vC0 cos δ

(2.10.16)
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For example, if we assume B0 = B0ẑ with initial velocity vector vs⊥0 = vsm(x̂ + ŷ) at t = 0 then
the above equations state

vz = vz0 z = vz0t+ z0 (2.10.17)
vC = vsm(x̂ + ŷ) (2.10.18)

vS = −b̂× vC = −ẑ× vsm(x̂ + ŷ) = vsm(x̂− ŷ) (2.10.19)

Thus, we find

vs⊥ = vsm [(x̂ + ŷ) cos(Ωt) + (x̂− ŷ) sin(Ωt)]

= vsm [x̂ (cos(Ωt) + sin(Ωt)) + ŷ (cos(Ωt)− sin(Ωt))]
(2.10.20)

In an even simpler case where we consider vs⊥0 = vsmx̂ with B0 = B0ẑ then vC = vsmx̂ and
vs = b̂× vC = ẑ× vsmx̂ = −vsmŷ and we write

vx = vsm cos(Ωt) , x = −vsm
Ω

sin(Ωt) + x0 (2.10.21)

vy = −vsm sin(Ωt) , y =
vsm
Ω

cos(Ωt) + y0 (2.10.22)

vz = vz0 , z = vz0t+ z0 (2.10.23)

Note that the only important assumption was a time independent magnetic field for this calculation.
When B is time dependent, the examples are far more complicated because the projection operation
can no longer pass through the time derivatives leading to much messier expressions.

We can now consider the presence of some other time-independent force (we’ll just call it F) in
addition to the time independent magnetic field. Then our initial vector equation becomes

ms
dvs
dt

= F + qsvs ×B0 (2.10.24)

We again project parallel and perpendicular to B0 and write

dvs‖
dt

=
F‖
ms

+ 0 (2.10.25)

dvs⊥
dt

=
F⊥
ms

− Ωb̂× vs⊥ (2.10.26)

We see that once again this was a good choice as the parallel equation shows no influence from the
magnetic field. Of course F‖ may be fairly complicated depending on the magnetic field structure,
but it is constant in time. Thus

vs‖ =
F‖
ms

t+ vs‖0 (2.10.27)

The perpendicular component is where there is a new twist. However, we can use tricks again to
simplify. First, let’s write (2.10.26) as

d

dt

[
vs⊥ −

F⊥ × b̂

Ωms

]
=

F⊥
ms

− Ωb̂× vs⊥ (2.10.28)
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where we use the time independence of F and b̂. We define vT = vs⊥ − F⊥
Ωms
× b̂ = vs⊥ + b̂×F⊥

Ωms
which means that this is

dvT
dt

=
F⊥
ms

− Ωb̂×

[
vT −

b̂× F⊥
Ωms

]
=
S
S
S

F⊥
ms

− Ωb̂× vT −
S
S
S

F⊥
ms

(2.10.29)

dvT
dt

= −Ωb̂× vT (2.10.30)

It’s fairly clear then that (2.10.30) for vT is of the same form as (2.10.8) for vs⊥. This means that
we have the same solutions for vT as we did for vs⊥. Thus

vT = v+e
iΩt + v−e

−iΩt = vC cos(Ωt) + vS sin(Ωt) = vC0 cos(Ωt+ δ) (2.10.31)

with a given vT0 at t = 0 we can write

vT0 = v+ + v− = vC = vC0 cos δ (2.10.32)
dvT
dt

∣∣∣∣
t=0

= −Ωb̂× vD0

iv+ − iv− = −b̂× (v+ + v−)

vS = −b̂× vC

−vC0 sin δ = −b̂× vC0 cos δ

(2.10.33)

which we translate into our current solution

vs⊥ −
F⊥ × b̂

Ωms

= vs⊥ −
F⊥ × b̂

qsB0

=

= v+e
iΩt + v−e

−iΩt

= vC cos(Ωt) + vS sin(Ωt)

= vC0 cos(Ωt+ δ)

(2.10.34)

so

vs⊥0 = v+ + v− +
F⊥ × b̂

qsB0

= vC +
F⊥ × b̂

qsB0

= vC0 cos δ +
F⊥ × b̂

qsB0

(2.10.35)

dvD
dt

∣∣∣∣
t=0

= −Ωb̂× vs⊥0

iv+ − iv− = −b̂× (v+ + v− +
F⊥ × b̂

qsB0

)

vS = −b̂× (vC +
F⊥ × b̂

qsB0

)

−vC0 sin δ = −b̂× (vC0 cos δ +
F⊥ × b̂

qsB0

)

(2.10.36)

which along with (2.10.27) gives the general solution. Again, note we made no assumptions on the
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spatial structure of F or B0. We see that we can write

vs⊥ = vno F
s⊥ +

−b̂×(b̂×vD)=vD⊥︷ ︸︸ ︷
F⊥ × b̂

qsB0

(2.10.37)

vs‖ = vno F
s‖ +

vD‖︷︸︸︷
F‖
ms

t (2.10.38)

which is simply the solution with no other forces but translated via the “drift” term vD. Note also
that we can write

vD⊥ =
F⊥ × b̂

qsB0

=
F× b̂

qsB0

(2.10.39)

via F‖× b̂ = 0. Many times the parallel drift is not considered because it is small or zero for many
of the most common drifts.

Thus, we get the names of various drifts. The most famous is perhaps the E×B drift given by

vE×B =
qsE× b̂

qsB0

=
E×B0

B2
0

(2.10.40)

which is unique in being independent of the charge of the species. Thus it is in the same direction
for both ions and electrons.

Another common drift is the gravity one (at least near Earth) where F = −msg and so

vg =
−msg × b̂

qsB0

(2.10.41)

I would like to emphasize again that the time-independent forces are not difficult, but some text-
books make claims like non-constant (spatially) fields are too complicated. I believe what the
textbooks are trying to say is that the trajectory is no longer a simple helical trajectory (or
circular if there is no parallel velocity component).

If we use a helical trajectory as our base, then we can find what a spatially varying magnetic field
does to alter the trajectory approximately. We can, of course, calculate such a trajectory explicitly,
but it is often useful to find drift terms that approximates our more complicated trajectory if the
magnetic field is not rapidly changing. We will look at this in Section 2.10.3.

Finally, it is worth exploring the results of a time varying force and magnetic field very briefly
(and incompletely). We then have (I will drop the s species so the notation is less cluttered)

m
dv

dt
= F + qv ×B (2.10.42)

m
d(v‖b̂)

dt
+m

dv⊥
dt

= F‖b̂ + F⊥ + qv⊥ ×B (2.10.43)
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Now we use

d(v‖b̂)

dt
=

dv‖
dt

b̂ + v‖
∂b̂

∂t
(2.10.44)

b̂ · dv⊥
dt

=
d���

��
(b̂ · v⊥)

dt
− ∂b̂

∂t
· v⊥ (2.10.45)

where I have used that along the particle trajectory we have db̂
dt

= ∂b̂
∂t
. We note

b̂ · ∂b̂

∂t
=

1

2

∂b̂ · b̂
∂t

=
1

2

∂1

∂t
= 0 (2.10.46)

Thus v‖ ∂b̂∂t is purely in the perpendicular direction. We subtract off the parallel components from
the full equation to look at purely perpendicular portions and find

dv‖
dt

=
F‖
m
− ∂b̂

∂t
· v⊥ (2.10.47)

dv⊥
dt

+ b̂
∂b̂

∂t
· v⊥ =

F⊥
m

+ Ωv⊥ × b̂− v‖
∂b̂

∂t
(2.10.48)

Further solution is difficult, and the above equations illustrate the difficulty of time-dependent
forces and magnetic fields.

2.10.2 Fluid Drifts

We can now get to the more applicable drifts in most plasma applications (MHD). Now we consider
a flow velocity for a species of particles s and write the equation of motion with negligible friction
force between species and ignorable viscous stress.

nsms
dVs

dt
= qsnsE + qsnsVs ×B− ∇ps (2.10.49)

Now this is a nonlinear equation because Vs is a flow velocity and so this is equivalent to

nsms

(
∂Vs

∂t
+ Vs · ∇Vs

)
= qsE + qsVs ×B− ∇ps (2.10.50)

If Vs · ∇Vs = 0 then our equations reduce to the single particle motion. This means that Vs must
not change in the direction along Vs for all space. The same amount must leave a region of space
as enters, and along the same route. If we think of our solution before

Vs‖0 =
qsE‖
ms

− ∇ps
nsms

(2.10.51)

Vs⊥0 = VC cos(Ωt) + b̂×VC sin(Ωt) +
E× b̂

B
+
−∇ps × b̂

qsnsmsB
(2.10.52)

The simplest way for this to be true is if all the terms are no longer spatially dependent. That is
VC , E, B, ∇ps and ns are all constants in space. Thus, for spatially uniform cases the drifts are
again given by

VDF =
F× b̂

qsB
(2.10.53)
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but remember F must be spatially uniform.

It is sometimes commented upon that the diamagnetic drift (the ∇ps × b̂ term) is a purely fluid
phenomenon. This is true, but if we are talking about the fluid velocity, then essentially all drifts
are fluid. It’s true there is no analog of the diamagnetic drift for single particles, however. This is
not all that surprising since plasmas require collective behavior, so that you cannot just analyze
the particles one at a time in general. Note if we consider the motion of a single particle making
up the fluid, our trajectories become simple to calculate again, but we no longer know if a single
particle trajectory will translate into a fluid drift, or if we will miss some important fluid drifts by
only considering particles one at a time.

We can also use that for a fluid equation of species s in general and find that the perpendicular
fluid velocity must be small in MHD. We have

nsms

(
∂Vs

∂t
+ Vs · ∇Vs

)
= qsnsE + qsnsVs ×B− ∇ps (2.10.54)

If we take the parallel component we find

msns

(
b̂ · ∂Vs

∂t
+ b̂Vs : ∇Vs

)
= qsnsE‖ − ∇‖ps (2.10.55)

and taking b̂× the same equation we can find Vs⊥ as

msnsb̂×
(
∂Vs

∂t
Vs · ∇Vs

)
= qsnsb̂× E + qsnsBVs⊥ − b̂× ∇ps (2.10.56)

Vs⊥ =
b̂

B
×
(
ms

qs

∂Vs

∂t
+
ms

qs
Vs · ∇Vs − E +

∇ps
qsns

)
(2.10.57)

Vs⊥ =
b̂

Ω
×
(
∂Vs

∂t
+ Vs · ∇Vs −

qs
ms

E +
∇ps
msns

)
(2.10.58)

(2.10.59)

We use ε = ω
Ω
where ω is the angular frequency of calculations we care about (for MHD, ω � Ω)

as an ordering parameter with an expansion q =
∑

n ε
nqn. First we rewrite the above as

Vs⊥ = ε
b̂

ω
×
(
∂Vs

∂t
+ Vs · ∇Vs −

qs
ms

E +
∇ps
msns

)
(2.10.60)

This means that Vs⊥0 = 0 in MHD unless some of the terms are proportional to ε−1. We can find
Vs⊥1 via taking the zeroth order for all of those terms inside the parentheses. One other thing to
consider is what order Vs is in terms of ε. Naively, we might expect Vs0 6= 0, but we must first
consider what that actually means. The pressure is related to the thermal speeds of the particles
making up the fluid, and so if Vs0 is to be of the same order, it must be approximately the thermal
speed as well. However, in conventional MHD we need the flow speed to be smaller than the
thermal particle speed, and usually have Vs = O(εvth) for vth the thermal speed. Thus we assume
that the background flow velocity is essentially zero in comparison to the thermal speed, Vs0 = 0.
This means that

Vs⊥1 =
b̂0

Ω
×
(
− qs
ms

E0 +
∇ps0
msns0

)
=

E0 × b̂0

B0

+
∇ps0 × b̂0

qsns0B0

(2.10.61)
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We recover our two fluid drifts and see that they must be small in the sense of our ordering
parameter scheme.

2.10.3 Drifts for Guiding Centers

You will undoubtedly hear of curvature and grad-B drifts. These drifts really only make sense if
you average out the gyromotion of particles, but also desire that the Larmor radius not be zero.
For most fluid approximations, the Larmor radius must be very small, or else you get poor results,
and so it does not always make sense to look at these drifts for a fluid approximation.66

The gyrokinetic equation is really where these drifts make the most sense. They are typically
derived for students as single particle drifts, but this is a poor explanation for why they are
important. Especially because the general statement is only for forces that are uniform, and so
the derivation only tells you the form of the drifts in a particular situation that isn’t guaranteed
to tell you what you want.67 I will now explain how to get the other single particle drifts, but as
a means to get a good approximation for the gyrokinetic equation. It relies on the variation of B
not being large, so that we can use approximations that will yield the grad-B and curvature drifts.
I will not derive the gyrokinetic equation, instead it is worth just explaining where the drifts come
from. We first use a guiding center variable X defined by

X(x,v) = x− ρ(x,v) (2.10.62)

ρ =
b̂(x)× v

Ω(x)
(2.10.63)

This looks much simpler than it is. We need to find ρ(X,v) which is in general not easy since we
defined ρ as a function of x rather than X. Fix in your mind very clearly the difference between
X, the gyrocenter position, and x a generic position coordinate. For us, with only first order
corrections in ρ/L � 1 where L is a characteristic lenght of our system much longer than the
Larmor radius ρ, we can use that x = X + O(ρ/L). Thus ρ = b̂ × v⊥/Ω evaluated at X. Then
we just need to calculate

dX

dt
=

dx

dt
· ∂X

∂x
+

dv

dt
· ∂X

∂v
+
∂X

∂t
(2.10.64)

We then use dx
dt

= v and use the total E and B (so I write ET to emphasize it is not linearized).
We find (note how carefully we must put the order of things so that all operators act immediately
to their right)68

∂X

∂v
=
�
�
�∂x

∂v
− ∂

∂v

[
b̂

Ω
× v⊥

]
=

∂

∂v

[
v⊥ ×

b̂

Ω

]
=
∂v

∂v
× b̂

Ω
= 1× b̂

Ω
(2.10.65)

66There are gyrofluids, so it is not impossible to retain these effects in a fluid model. For these one would need
to think of curvature and grad-B drifts.

67Especially because in a fluid perspective you do not want to know the single particle trajectories, but the net
movement of particles as a fluid.

68Also note I used b̂× v⊥ = b̂× v to make the ∂
∂v derivatives easier to evaluate. I also kept the ∂

∂v components
to the farthest left so dv

dt ·
dX
dv dots into the correct components.
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∂X

∂x
=
�
�
���
1

∂x

∂x
− 1

Ω

∂b̂

∂x
× v⊥ +

∂Ω

∂x

b̂× v⊥
Ω2

= 1− 1

Ω2

(
Ω
∂b̂

∂x
− ∂Ω

∂x
b̂

)
× v⊥ = 1− 1

Ω2

(
Ω
∂b̂

∂x
− ∂Ω

∂x
b̂

)
× v

(2.10.66)

dv

dt
=

q

m
ET − Ω2ρ (2.10.67)

Where (2.10.67) is simply the Lorentz equation in our new variables. Then

v · ∂X

∂x
= v − v

Ω2
·
(

Ω
∂b̂

∂x
− ∂Ω

∂x
b̂

)
× v = v − 1

Ω
(v · ∇b̂)× v +

1

Ω2
(v · ∇Ω)(b̂× v)

= v − 1

Ω
(v · ∇b̂)× v +

m2

q2B2

q

m
(v · ∇B)(b̂× v)

= v − 1

Ω

[
(v · ∇b̂)× v − 1

B
(v · ∇B)(b̂× v)

]
= v − 1

Ω
(v · ∇b̂)× v +

ρ

B
(v · ∇B)

(2.10.68)

We then use A · (1×B) = A×B to find

dv

dt
· ∂X

∂v
=
( q
m

ET − Ω2ρ
)
·
(
1× b̂

Ω

)

=
q

m
ET ×

b̂

Ω
− Ωρ× b̂

=
1

B
ET × b̂− v⊥

= vE − v⊥

(2.10.69)

Now we can consider (remember ∂
∂t

holds x and v constant)

∂X

∂t
=
�
�
�∂x

∂t
− ∂ρ

∂t
= − 1

Ω

∂b̂

∂t
× v − b̂× v

∂

∂t

1

Ω
−
�
�
�
��b̂

Ω
× ∂v

∂t
(2.10.70)

Thus, the only new term is 1
Ω
∂b̂
∂t
× v⊥.

We care only about the zeroth order (in ρ/L) quantities, which are given by

dX

dt
= v − v⊥ + vE −

1

Ω
(v · ∇b̂)× v +

ρ

B
v · ∇B − 1

Ω

∂b̂

∂t
× v − b̂× v

∂

∂t

1

Ω
(2.10.71)

Now, we use an average of the gyrophase γ(t) which to lowest order is just Ωt, with v⊥ given by

v⊥ = v⊥[ê2 sin(γ) + ê3 cos(γ)] (2.10.72)

with ê2 and ê3 forming the local right-handed coordinate system (b̂, ê2, ê3). This can be con-
structed by choosing ê3 as the direction of the perpendicular velocity at γ = 0 and ê2 at γ = π/2.
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In general, it is always possible to find a local right-handed coordinate system based on the magnetic
field (other than where the field goes to zero) by using the magnetic field lines and Frenet-Serret
formulas [see Section 1.11].

We define a gyrophase average as

〈A〉γ =

˛
dγ

2π
A(x, . . . , γ) (2.10.73)

where all dependencies but γ are fixed in A. That is we go over a single period in γ. This is
equivalent to assuming a period T = 2π via

〈A〉γ =

´ T
0

dγ A(γ)´ T
0

dγ
=

1

2π

ˆ 2π

0

dγ A(γ) (2.10.74)

We then take〈
dX

dt

〉
γ

=

〈
v · ∂X

∂x

〉
γ

+

〈
dv

dt
· ∂X

∂v

〉
γ

(2.10.75)

= 〈v − v⊥〉γ + 〈vE〉γ −
1

Ω

〈
v · ∇b̂× v

〉
γ

+
1

B

〈
(v · ∇b̂)ρ

〉
γ

− 1

Ω

〈
∂b̂

∂t
× v

〉
γ

− b̂×
�
��〈v〉γ

∂

∂t

1

Ω

(2.10.76)

Note that

v = v‖ + v⊥ = v‖b̂ + v⊥[ê2 sin γ + ê3 cos γ] (2.10.77)

so then we need to calculate gyrophase averages.

It is convenient to use the cross-dot product

AB
×· CD = (A× [B ·C]D) (2.10.78)

AB
×· ∇C = A× (B · ∇C) = −B · ∇C×A (2.10.79)

and we then see

〈v − v⊥〉γ = v‖ = v‖b̂ (2.10.80)

We can find

〈v⊥v⊥〉γ = v2
⊥
〈
ê2ê2 sin2 γ + ê2ê3 sin γ cos γ + ê3ê2 cos γ sin γ + ê3ê3 cos2 γ

〉
γ

(2.10.81)

=
v2
⊥
2

(ê2ê2 + ê3ê3) =
v2
⊥
2

(1− b̂b̂) (2.10.82)

where the last is simply using that 1 = b̂b̂ + ê2ê2 + ê3ê3 for our right-handed system. Thus, we
find 〈

−v · ∇b̂× v
〉
γ

= 〈vv〉γ
×· ∇b̂ = v2

‖b̂b̂
×· ∇b̂ +

v2
⊥
2

(1− b̂b̂)
×· ∇b̂

= v2
‖b̂× (b̂ · ∇b̂) +

v2
⊥
2
1
×· ∇b̂− v2

⊥
2

b̂× (b̂ · ∇b̂)

(2.10.83)
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We find

1
×· ∇b̂ = εijlδjk∂kbl = εikl∂kbl =∇× b̂ (2.10.84)

In addition we use

0 = b̂ · ∇(1)/2 = b̂ · ∇(b̂ · b̂)/2 = b̂ · (b̂ · ∇b̂) (2.10.85)

and so we can write

b̂ · ∇b̂ = −b̂× (∇× b̂) (2.10.86)

via the identity

∇(A ·A)/2 = A · ∇A + A× (∇×A) (2.10.87)

Thus we can write

b̂× (b̂ · ∇b̂) = b̂× (−b̂× (∇× b̂)) = −b̂(b̂ · ∇× b̂) +∇× b̂ (2.10.88)

We can use κ = b̂ · ∇b̂ as a definition of the magnetic curvature vector and so〈
−v · ∇b̂× v

〉
γ

= v2
‖b̂× κ+

v2
⊥
2

b̂(b̂ · ∇× b̂) (2.10.89)

We then find (using Ωρ = b̂× v)

〈Ωρv〉γ = b̂× 〈vv〉γ = b̂×
[
�
��v2
‖b̂b̂ +

v2
⊥
2

(1− ��̂bb̂)

]
=
v2
⊥
2

b̂× 1 (2.10.90)

So that

1

B
〈ρv〉γ · ∇B =

v2
⊥

ΩB
b̂×

(
1− b̂b̂

)
· ∇B =

v2
⊥

ΩB
b̂× 1 · ∇B −(((((

((((v2
⊥b̂× b̂b̂ · ∇B (2.10.91)

=
v2
⊥

ΩB
b̂× ∇B =

µ

mΩ
b̂× ∇B (2.10.92)

with µ = mv2
⊥/(2B) defined as the magnetic moment. Thus〈

dX

dt

〉
γ

= v‖ + vE +
v2
‖

Ω
b̂× κ+

v2
⊥

2Ω
b̂(b̂ · ∇× b̂) +

µ

mΩ
b̂× ∇B −

v‖
Ω

∂b̂

∂t
× b̂ (2.10.93)

Thus, the guiding center drifts are given by

vD = vE + b×

(
v2
‖

Ω
κ+

µ

mΩ
∇B +

v‖
Ω

∂b̂

∂t

)
(2.10.94)

and we note that we have a “drift” along the parallel direction given by

v‖D =
v2
⊥

2Ω
b̂ · ∇× b̂ =

µB

Ω
b̂ · ∇× b̂ (2.10.95)
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However, it is important to note that all of the above quantities are evaluated for x and not for
the guiding center position X unless we use the approximation ρ(x) = ρ(X) +O(ρ/L) and ignore
O(ρ/L) contributions.

If we desired, we could solve for ρ via

ρ(x,v) =
b̂

Ω
× v (2.10.96)

and define bΩ = b̂(x)/Ω(x). Then we write (ignoring the v dependence when writing ρ)

ρ(x) = ρ(X + ρ) = ρ(X) + ρ(x) · ∇ρ|x=X +O(ρ3) (2.10.97)
= ρ(X) + (ρ(X) + ρ(x) · ∇ρ|x=X) · ∇ρ|x=X +O(ρ3) (2.10.98)
= ρ(X) + ρ(X) · ∇ρ|x=X +O(ρ3) (2.10.99)

where we can see the iterative way of solving must be done somewhat carefully beyond first order
as we must retain all the Taylor order series to the correct order. However we are still left with
the unfortuante result of needing to calculate ∇ρ(x) with respect to x rather than X. That is

∇ρ =
∂ρ

∂x
(2.10.100)

whereas it would be nice if we could find

∂ρ

∂x

∣∣∣∣
x=X

(2.10.101)

directly in the form of ∂ρ(X)
∂X

. We see that we need ∂ρ
∂x

only to first order in ρ to get our required
accuracy. So

∂ρ

∂x
=
∂X

∂x
· ∂ρ(X + ρ)

∂X
(2.10.102)

Now we need this term only to first order in ρ for our procedure so we can use

∂ρ(X + ρ)

∂X
=
∂ρ(X)

∂X
+

∂

∂X

[
ρ(x) · ∂ρ(x)

∂x

∣∣∣∣
x=X

]
+O(ρ2)

=
∂ρ(X)

∂X
+O(ρ2)

(2.10.103)

∂X

∂x
=

(
1− ∂ρ

∂x

)
=

(
1−

[
1− ∂ρ

∂x

]
· ∂ρ(X)

∂X

)
+O(ρ2)

= 1− ∂ρ(X)

∂X
+O(ρ2)

(2.10.104)

and so

∂ρ

∂x
=

(
1− ∂ρ(X)

∂X

)
· ∂ρ(X)

∂X
+O(ρ2)

=
∂ρ(X)

∂X
+O(ρ2)

(2.10.105)
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which means that

∂ρ

∂x
=
∂ρ(X)

∂X
+O(ρ2) (2.10.106)

and we therefore can write

ρ(x) = ρ(X) + ρ(X) · ∂ρ(X)

∂X
+O(ρ3) (2.10.107)

ρ(x) = bΩ(X)× v + (bΩ(X)× v) · ∂bΩ(X)

∂X
× v +O(ρ3) (2.10.108)

which is what one might naively expect anyway.

2.11 Further Reading
There is a large number of good plasma textbooks. Chen[6] is a popular introductory text. I
have personally found D’haeseleer[9] great for flux coordinates, Hazeltine[13] as a more advanced
introduction to plasma physics in general. It is good for plasma kinetics, deriving fluid equations,
and even turbulence modeling. For a more comprehensive treatment of transport phenomena
(so good plasma kinetics) Helander[14] was excellent. Braginskii’s original paper[4] is a very
readable text on asymptotically closing the MHD equations. And for plasma kinetics in general I
recommend a text I helped edit based on Callen’s notes[5], in addition Montgomery[15] while older
is a great reference. Wesson[22] is a great reference in general, especially for tokamak physics,
and Wakatani[21] is great for stellarators and heliotrons. There is such an abundance of reading
materials, that consulting the bibliographies of any of these books will also provide you with a
wealth of resources. If you are interested in waves in plasmas, a classic is Stix[18]. I would also
recommend Swanson[19]. They cover the vast amount of physics of just understanding all the
possible waves possible in plasmas.

2.12 Problem Set
2.1. For Section 2.1.

2.1.1. Consider the 1D Poisson problem

−ε0
∂2φ

∂x2
= ρq + qT δ(x)

Perform the same calculations as we did for a Debye length. Do you find a screening
length? Do you find the same Debye length?

2.1.2. Find ∇2φ via our formula for a divergence (1.2.234) with spherical coordinates. Does
it match our derivation in the text?

2.1.3. In our solution we used a solution for rφ. Why do we care about rφ? What happens to
this quantity as r → 0? Do you think we should approach φr = qT/(4πε0), as r → 0?

2.1.4. What is a typical Debye length for a fusion reactor and fusion device? Consider electrons
and a single ion species with n = 1020 m−3 and kBT = 10 keV. Is it larger than a Bohr
radius?
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2.1.5. What is the typical number of particles in a Debye sphere for the same fusion parameters
as the previous problem?

2.1.6. With atmospheric pressure at sea level is given by the definition 1 atm = 1.013 25 bar =
101 325 Pa = 101.325 kPa, what is the number density of an ideal gas at sea level at a
temperature of 20 °C? This is sometimes called Loschmidt’s constant or Loschmidt’s
constant.

2.1.7. Vacuum pressures are almost always quoted in Torr, 760 Torr = 1 atm. Suppose a given
experiment is at around a 1 mTorr and 20 °C. Now what is the number density?

2.1.8. The plasma species neutral collision frequency can be calculated via νsn = nnσn 〈v〉 with
nn the neutral number density, σn the neutral cross section, and 〈v〉 the average relative
velocity between the plasma species and a neutral. We can take 〈v〉 = vths for thermal
motions of the plasma species and use σn = πR2

n where Rn is the size of the atomic
radius of the neutral particle. What is its value when the neutral is approximately a
Bohr radius, with number density at Locschmidt’s constant and at room temperature,
20 °C?

2.1.9. Consider a fusion device with n = 1020 m−3 and kBT = 10 keV. Estimate the collision
frequency between neutrals and ions from the previous problem. Assume neutral number
density are 0.1, 0.01 and 0.001times n.

2.1.10. Consider fusion experiments of today. Now n = 1019 m−3 with kBT = 100 eV. Try the
various neutral number density assumptions from the previous problem.

2.1.11. Consider interplanetary space. n = 106 m−3 and kBT = 200 meV. Try the various
neutral number density fractions again.

2.1.12. Consider a flame. What sort of number density do you think seems reasonable? What
temperatures? It is probably simpler to consider an extreme range of values and try
both extremes. Are flames clearly a plasma or not?

2.2. For Section 2.2.

2.2.1. Consider a magnetic field of 10−3 T to 10 T. What is the gyroradius and gyrofrequency
associated with these values for fusion parameters: n = 1020 m−3 and kBT = 10 keV?
The ion collision frequency is given by

νi = 4.80× 10−14 Z
4

√
µ

ln Λni(kBTi)
−3/2Hz

for n in SI units, kBT in eV, Z the ion charge and µ the factor the ion mass is larger
than a proton mass, µmp = mi. Are δm and δc small?

2.2.2. Consider the relationship between the Boozer coordinate Jacobian determinant and
other flux coordinates Jacobian determinants. This should explain the connection in
general. Given θf and ζf , what G0 = GB can be chosen to change the flux coordinates
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into the Boozer representation? Use

θB = θf +
dΦr

p

dr
GB(r, θf , ζf )

φB = φf +
dΦt

dr
GB(r, θf , ζf )

JB = ∇r · ∇θB × ∇φB
Jf = ∇r · ∇θf × ∇φf

2πB =
dΦt

dr
∇r × ∇θf −

dΦr
p

dr
∇r × ∇φf

2.2.3. Can one write Jf in terms of B in general? Use

2πB =
dΦt

dr
∇r × ∇θf −

dΦr
p

dr
∇r × ∇φf

and compute B ·B. Find the contravariant and covariant components of this equation
to do so.

2.3. For Section 2.4.

2.3.1. Summarize the differences between the major approaches in terms of linear or closed,
and the topology of the magnetic field.

2.4. For Section 2.5.

2.4.1. Show that taking the energy moment msv
2/2 yields the equation

3

2
ns

ds(kBTs)

dt
+ ps∇ ·Vs = −∇ · qs −

↔
Πs : ∇Vs +Qs

This is much more difficult than it looks. First just take the moments and find

∂

∂t

[
3

2
nskBTs +

msns
2

V 2
s

]
+∇ ·

[
qs +

5

2
nskBTsVs +

nsms

2
V 2
s + Vs ·

↔
Πs

]
− nsqsVs · E = Qs + Vs ·Rs

Then plug in values for ∂n
∂t

and mn∂Vs

∂t
from number density continuity and momentum

density equations we previously derived. Use the identities

Vs · ∇Vs =
1

2
∇V 2

s −Vs × (∇×Vs)

∇ · (Vs ·
↔
Πs) = ∇Vs :

↔
Πs + V · ∇ ·

↔
Π
ᵀ

s

and use that
↔
Πs is symmetric. Finally combine like terms and change ∂

∂t
into ds

dt
.

2.5. For Section 2.6.

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



Plasma Physics 365

2.5.1. Explain why there is no simple form for the center-of-mass momentum density equation
like (2.6.50) when there are three species: two ions and an electron. Consider

V =

∑
s nsVs∑
s nsms

J =
∑
s

qsnsVs

0 =
∑
s

qsns

With two species there are two vector equations and a scalar equation relating V, Vi,
Ve, and J. When there are three species we now have Vi1, Vi2, and Ve, but the same
two vector equations and a scalar relating with V and J.

2.5.2. Explain why even with (2.6.50) for an arbitrary mass ratio, that a system of equations
would still be complicated by the need to calculate E [when using an arbitrary mass
ratio].

2.5.3. Consider the MHD criteria for a fusion experiment with B0 = 0.1 T, R0 = 1 m, a =
0.2 m, n = 1× 1018 m−3, T0 = 100 eV and mi = 3.34× 10−27 kg.

2.6. For Section 2.9.

2.6.1. Derive the dispersion relation for sound waves, shear Alfvén waves and compressional
Alfvén waves directly by using the appropriate approximations before solving for the
dispersion relation.

2.6.2. Show that (2.9.39) reproduces the correct dispersion relations for shear Alfvén waves
and compressional Alfvén waves.

2.6.3. Consider energy-density conservation in Ideal MHD. The energy density is given by

ε = εf + εB + εp =
nm

2
|V|2 +

|B|2

2µ0

+
p

γ − 1

where εf is the fluid energy density, εB is the magnetic energy density, and εp is the
internal energy. Using 1

2
∂|q|2
∂t

= q · ∂q
∂t

find the conservative form for ε as

∂ε

∂t
+∇ · Γ = S

where S is an energy-density source. For Ideal MHD, you should find

Γ =

[
nm|V|2

2
+

γp

γ − 1

]
V +

E×B

µ0

S = 0

2.6.4. Consider energy-density conservation in general. To do so, put δ tags onto terms in
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only certain types of MHD. Thus,

E = −V ×B + δηηJ +
δh
ne

[J×B− ∇pe] + δe
me

ne2

∂J

∂t

εp =
∑
s

ps
γ − 1

kBn

γ − 1

(
∂Ts
∂t

+ Vs · ∇Ts
)

= −nkBTs∇ ·Vs −∇ · qs −Qs

Ve = V − δse
J

ne(1 + me
mi

)

Vi = V + δsi

me
mi

J

ne(1 + me
mi

)

nmi
dV

dt
= −∇p+ J×B− δΠ∇ ·

↔
Π

The conservative form with me/mi = 0 should now have

Γ =

[
nm|V|2

2
+

γp

γ − 1

]
V + δΠ

↔
Π ·V + q +

E×B

µ0

+
δsγ∇Te ×B

µ0e(γ − 1)

S = (δh − δs)
∇pe
ne
· J− δe

me

2ne2

∂|J|2

∂t
−Q+ δΠ

↔
Π : ∇V − δηη|J|2

2.6.5. Consider the last problem’s conservative form. What must Q balance to not have
energy injected into the system? Note that η|J|2 is often called Ohmic heating and
↔
Π : ∇V is called viscous heating. If we include Hall terms δh, must we include separate
temperatures δs? Are there any balancing terms for the electron inertia (δe)? If you
were using a computational scheme, do you think it would be good to have S = 0? If
so, why? If not, why not?

2.6.6. Finally, consider deriving the Helmholtz transport theorem [see (2.7.11)] in the same
manner as we did for the Reynolds transport theorem [see (2.9.58)]. What difficulties
do you encounter? Do you prefer my derivation method?

2.7. For Section 2.9.1.

2.7.1. Find the dispersion relation for the Rayleigh-Taylor instability. That is, consider an
interface at y = 0 with fluid ρ+ > ρ− where ρ+ is above the interface (y ≥ 0) and
ρ− is below the interface y < 0. We have gravity as g = −gŷ. Consider the fluid
incompressible. Then our equations for either side of the interface are given by

∂V

∂t
+ V · ∇V = g − ∇p

Linearize this assuming that the interface is perturbed with ξ = ξyŷ+ξx0 exp(−ikxx)x̂+

ξz0 exp(−ikzz)ẑ where k = kxx̂ + kzẑ and ∂ξ
∂t

= Ṽ with no background flow. Use our
interface relations with no magnetic field to match across the interface. Solve the entire
system and find

ω2 =
ρ− − ρ+

ρ+ + ρ−
kg
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2.7.2. Now consider the Kelvin-Helmholtz equation. Use the same analysis as for the Rayleigh-
Taylor analysis but with

V0 =

{
V+x y ≥ 0

V−x y < 0

Find the dispersion relation.

2.7.3. The dispersion relation we found for the Kruskal-Schwarzchild problem was

ω2 =
B2

(ρ+ + ρ−)

[
k2
z + (kz cosα + kx sinα)2

]
− ρ+ − ρ−
ρ+ + ρ−

kg

For 0 < α < π, which orientation of k leads to the fastest growing mode? How much
faster is it than when α = 0 with the same k value?

2.7.4. Consider the Kruskal-Schwarzchild problem within a bounded box. This time let the top
be a fluid with ρ+ and the bottom a vacuum with ρ− = 0. Let B0 = 0 on top and B =
B0ẑ with the interface again at y = 0 and g = −gŷ. Consider the box to have bounds at
y = ±h. Use ξ = ξ0(y) exp(ikxx+ ikzz− iωt) and p = p0(y) exp(ikxx+ ikzz− iωt) with
k = kxx̂ + kyŷ. Use that the bottom is a vacuum solution so ∇Φ = B0ẑ and ∇2Φ = 0
in a vacuum. Use interface relations and sinh and cosh to simplify the expressions of
your solutions. Find the dispersion relation

ω2 =
B2

0

µ0ρ0

k2
z − kg tanh(kz)

What do you find when kz � 1?

2.7.5. Use the Rankine-Hugoniot relation

n̂ ·
s

Viu−
↔
F

{
= 0

n̂ · JViu− FK = 0

for conservative forms
∂u

∂t
+∇ ·

↔
F = S

∂u

∂t
+∇ · F = S

considering S or S singular with all of Maxwell’s equations. Singular S or S means that
we have to include a contribution on the right from S or S that is a surface quantity
that doesn’t disappear as the volume goes to zero. That is the right hand side is not 0
or 0. Use a stationary interface, Vi = 0.

∂B

∂t
+∇× E = 0

µ0ε0
∂E

∂t
−∇×B = −µ0J

∇ ·B = 0

∇ · E =
ρq
ε
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You should recover the normal interface relations for electromagnetic theory.

n̂ · JBK = 0

n̂× JBK = µ0K

n̂ · JEK =
σq
ε0

n̂× JEK = 0

where n̂ points from the − to + side and JqK = q+ − q−, σq is a surface charge and
K is a surface current. You may find ∇ · (1 ×A) = ∇ ×A useful. You can try the
non-singular forms first, so that σq = 0 and K = 0 if you have trouble with the singular
S or S forms.

2.8. For Section 2.10.

2.8.1. We found vD = F×b̂
qsB0

. How large would the E⊥ field have to be to compete with the
Alfvén velocity generically (find vA/vD)?

2.8.2. For a 1 kV m−1 electric field and a 100 mT magnetic field, what is the velocity of the
E×B drift? What if the magnetic field is 1 T?

2.8.3. For a 100 mT magnetic field, what is the gravitational drift near Earth’s surface where
F = −msg. Consider the worst case where the magnetic field is completely perpendic-
ular to the direction of gravity.

2.8.4. What would a diamagnetic drift be for ∇p ≈ p/L with n = 1020 m−3, B0 = 1 T, and
kBT = 10 keV?

2.8.5. Calculate the grad B drift and curvature drift for representative parameters as given
above.

2.8.6. Suppose you wanted to find O(ρ3) corrections to finding ρ(x). What would the new
terms look like?
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Chapter 3

Nuclear Fusion

It is no good trying to stop knowledge from going forward. Whatever nature has in
store for mankind, unpleasant as it may be, men must accept, for ignorance is never
better than knowledge.

— Enrico Fermi

Few plasma textbooks actually get into the details of how nuclear fusion works. This is because,
strictly speaking, plasma physics doesn’t really matter for nuclear fusion. That is, nuclear fusion
is a nuclear physics problem, and not a plasma physics problem. Plasma physics yields very little
information about the processes of nuclear decay or fission. When we view plasma physics through
the lens of magnetic confinement for fusion, then ignorance of nuclear processes no longer makes
sense. The plasma physics in this case is actually for promoting nuclear fusion. Thus, it is worth
going through what we know in this arena and explaining how it could be used to produce electrical
energy.

This chapter first goes over nuclear physics terminology, explains nuclear decay, and cross sections.1
We then get what fusion reactions are important. We first study stellar fusion. This will show
that we cannot do anything like stellar fusion on Earth, and so we will then study the reactions
of interest for terrestrial fusion. It is called terrestrial fusion simply to make it clear that it is
feasible on Earth. Then I will explain why beam fusion and muon catalyzed fusion cannot be done
efficiently.

3.1 Nuclear Terminology
Many of the units of nuclear science have a whimsical sound, in direct proportion to
their incomprehensibility.

— Herbert Arthur Klein[11, p. 691]

We may as well begin with what a nucleus is. It is where the word nuclear comes from. A nucleus
is the center of an atom, made up of neutrons (neutral particles) and protons (positive particles)
which are often called nucleons so that we do not have to say protons and neutrons. Under our
current theories, protons and neutrons are further made up of quarks. Quarks are unimportant for

1To be clear, I mean nuclear cross sections, and not generic cross sections.
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372 Nuclear Terminology

our level of analysis, so I will not mention them again.2 The important thing about the nucleus is
that it is held together very tightly by the strong nuclear force. This means that we can exploit
the energy of nuclei3 in various ways. If some configurations of protons and neutrons are at a lower
(potential) energy level4 than other configurations, then we can release energy by rearranging
the higher energy configuration to the lower (potential) energy configuration. However, it may
sometimes take some initial energy to allow this transition to a lower (potential) energy state to
occur. It is sometimes helpful to think of this in analogy to normal chemistry, which is mostly due
to the electrons orbiting5 the nucleus. For some types of elements, it is energetically (in reality
entropically) favorable to combine multiple atoms (including sharing their electrons), while for
some molecules it is more energetically (again, technically entropically) favorable to separate the
constituents.

For nuclear physics, splitting a nucleus is called nuclear fission (usually shortened to fission), named
after the biological fissioning of cells. In this process, a nucleus splits into two or more new nuclei.
Combining two nuclei6 into one nucleus is called nuclear fusion (again, usually shortened to fusion).
The determination of whether two nuclei fusing or a single nuclei fissioning will release energy7 is
determined by the type of nuclei, that is the configuration of protons and neutrons. In general,
heavier nuclei split and release potential energy while the lightest nuclei combine and release
potential energy. The “most stable”8 element is at 56

26Fe30, with 56 the mass number (sometimes
called nucleon mass number or atomic mass number and usually denoted A), 26 the number of
protons, or atomic number (often denoted Z), Fe the chemical symbol, and 30 the number of
neutrons (equal to A − Z). The neutron number (sometimes called N) is often omitted in this
notation because it is determined by A and Z and so one sees 56

26Fe. Because Z is technically
encoded in the chemical element symbol, this often gets further shortened to 56Fe. That is for
chemical symbol X with proton/atomic number Z, and mass number A, the representation is
given by A

ZXA−Z or A
ZX or AX.

The theory of whether a specific combination of protons and neutrons is stable is not complete in the
sense that most equations have both theoretical and empirical aspects. This is simply to say that
if you were given a proton and neutron configuration, determining whether that configuration is
stable through purely theoretical techniques is not currently possible in general. Instead, theoretical
techniques offer clues, and empirical observations allow one to fine tune parameters to make the
guesses more accurate.

Chemical elements with a different number of neutrons are called isotopes. It is often claimed
that different isotopes of elements are chemically identical, but this is actually false. Generally

2Consult a particle physics book for more on quarks.
3plural of nucleus
4Once again, we usually hear “lower energy state”, but realize that we are either considering only the atom so

that the energy of the atom can actually change, as the energy that leaves, completely leaves the system. If we
consider the entire system (atom and elsewhere) then the energy remains constant, but the lowest potential energy
state of the atom becomes the most entropically favorable state.

5Of course, orbits is not really the right concept. This is classical usage in a quantum world. Electrons do not
orbit nuclei in the way planets orbit the sun, but it is useful to use this language to at least assert that the electrons
are associated with a certain nucleus.

6Technically more than two nuclei is possible, but it is very unlikely since it requires three particles to get near
each other at the right time.

7Again, this is typical (somewhat sloppy) wording. What we mean is that potential energy from the nucleus is
released.

8We will define this as most binding energy per nucleon (proton or neutron) later.
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speaking, the chemistry is similar, but chemical differences can be important for processes that
separate desired isotopes from the rest. For example, heavy water is not safe for drinking because it
acts differently than regular water.9 Another terminology is to use nuclides instead of isotopes. A
nuclide is a nucleus with a specific number of protons and neutrons. If you think this sounds pretty
much the same as an isotope, you are fairly correct. The difference in use is that nuclides usually
refer to nuclides for every chemical element, whereas isotopes are usually isotopes of a specific
element.10 Thus, when we are speaking from a nuclear perspective, nuclides is usually preferred
because we are not necessarily limiting ourselves to any particular element. This terminology
difference is not universally held, so do not be surprised if someone talks of isotopes and means
isotopes of several elements (what I have called nuclides).

The table of nuclides is like the periodic table, but for nuclear properties. It is a gigantic chart of
all the nuclides with proton number as the y-axis (vertically) and neutron (rarely mass number)
on the x-axis (horizontally). It also usually includes stability information and half-life times if
applicable for each nuclide type. Many charts online include a great deal more information, with
exact atomic masses, binding energies, and the nuclear decays that are possible. I suggest looking
at one online, as the amount of information is a bit overwhelming unless you zoom in.11

Finally, nuclear reactions use a notation similar to chemistry for denoting reactions. For simple
reactions the style is usually

target + projectile→ final nucleus + ejected particles + (Energy) (3.1.1)

where the target is a nucleus, the “projectile” is whatever hits the target nucleus inducing a nuclear
reaction, the final particle is the nucleus that results, the ejected particles are smaller nuclei (than
the “final nucleus”), and the energy is the excess or needed energy for the particles. Technically, the
reaction could go either way so that the arrow should be double-headed, but usually one process
is much more likely and so it is usually written with a single arrow. In addition, it is not strictly
necessary to have all the components of the equation. For example, some elements spontaneously
decay and so no projectile is needed. Because this notation is not as compact as physicists desire,
you will sometimes see a reaction written as

A(b, c)D ←→ A+ b→ c+D (3.1.2)

for target A, projectile b, ejected particle c and final nucleus D. The lower versus upper case letters
is conventional for some objects, but it should not be taken too seriously. In addition, you should
be aware that A and b and c and D are exchangeable without changing the reaction since we can
always change our frame of reference such that the target becomes the projectile and vice versa. I
won’t use that notation here because we won’t have to deal with that many nuclear reactions and
I think that the notation can often be a bit too terse. If there is no need for a projectile or no
ejected particles, these are just omitted in the above equations. Remember that the prescription
of labeling things on both sides of the equation should not be taken too seriously. We can always
just think of the left side as the beginning particles with whatever energies, and the right side as
the resulting particles and energy after a nuclear reaction.

9The more neutrons and protons for an isotope, however, the less it matters for chemistry generically speaking.
10That is you have isotopes of carbon. If you had only two pure elements such as 14

6C and 4
2He you generally

would not say we have two isotopes, but would say we have two nuclides.
11Some good charts are available from the IAEA and the NNDC and Brookhaven National Labs.
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Some other notation that is usually employed is for commonly seen particles during radioactive
reactions. They will be further explained later in the text. Alpha particles [which are nuclei of
4He] are often abbreviated to α, beta particles to β, gamma particles (i.e., gamma photons or
gamma rays) to γ, protons to p, neutrons to n, electrons to e− (often just e), and positrons to e+.
Because beta particles are just electrons or positrons, you hear β+ (beta plus or beta plus particle)
for positron emission and β− (beta minus or beta minus particle) for electron emission. In fusion
it is typical to refer to deuterons as D = 2

1H (sometimes d) and tritons as T = 3
1H (sometimes t).

The excess or needed energy is often given as Q. This is defined by

Q = Kinetic Energyafter reaction −Kinetic Energybefore reaction

= (mi −mf )c
2 (3.1.3)

with mi the initial rest mass energy of the particles and mf is the final rest mass energy of the
particles. The reason these two expressions are equal is that any excess kinetic energy must come
from mass-energy equivalence. Positive Q values indicate the reaction is “exothermic” or releases
energy whereas negative Q means that the reaction is “endothermic” or requires energy. Thus,
when giving a Q value it matters which side of the equation it is put on, and what way the arrow
points. If the arrow points toward Q then Q > 0 means an exothermic reaction. If the arrow
points away from Q and Q > 0 then an endothermic reaction. Similarly if the arrow points toward
Q and Q < 0 then it is an endothermic reaction and if the arrow points away from Q and Q < 0
then it is an exothermic reaction. Conventionally, Q has the arrow pointing at it so that Q > 0 is
exothermic and Q < 0 is endothermic.12

If we have two initial particles W and X and two resultant particles Y and Z with Q = KF −KI

(the conventional nuclear Q discussed above) and with quantities with a subscript F for final (all
resultant particles) and I for all initial, then we can derive what the distribution of energies among
Y and Z are. The reaction is

W +X → Y + Z +Q (3.1.4)

We will assume Q > 0 for this derivation, because we are interested in exothermic reactions. Say EI
and pI are the initial energy and momentum and EF and pF are the final energy and momentum
of the system with Ei for i ∈ {W,X, Y, Z} representing the total energy for particle i. For this
we’ll use the special relativistic forms so that we see it is correct in general. Then pi = miγivi with
γi = 1/

√
1− |vi|2/c2. Any masses mi refer to the rest mass and Ki = (γi − 1)mic

2 = Ei −mic
2

is the kinetic energy. We will simply use Ei =
√
p2
i c

2 +m2
i c

4. We will consider the calculation
in the center of momentum frame, as is conventional. This simplifies the motion to be along one
dimension and we don’t need to worry about the vector nature of the velocities or momenta. We
use conservation of momentum and energy. We can square the energies to find

(EW + EX)2 = E2
I = (EY + EZ)2 = E2

Y + E2
Z + 2EYEZ (3.1.5)

E2
I = E2

Y + E2
Z + 2EY (EI − EY ) = E2

Y + E2
Z + 2EYEI − 2E2

Y (3.1.6)

EY =
E2
I + E2

Y − E2
Z

2EI
=
E2
I + p2

Y c
2 +m2

Y c
4 − p2

Zc
2 −m2

Zc
4

2EI
(3.1.7)

We can then use pY = −pZ so p2
Y c

2 − p2
Zc

2 = 0 and we can also note that we could perform the

12Do not assume that this is the same convention as used in chemistry.
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same action with Y ↔ Z so that

EY =
E2
I +m2

Y c
4 −m2

Zc
4

2EI
(3.1.8)

EZ =
E2
I +m2

Zc
4 −m2

Y c
4

2EI
(3.1.9)

We can use KF −KI = Q = EF −m2
Y c

4 −m2
Zc

4 −KI = EI −KI −m2
Y c

4 −m2
Zc

4 to find

KY = EY −mY c
2 =

E2
I +m2

Y c
4 −m2

Zc
4 − 2mYEIc

2

2EI
=

(EI −mY c
2)2 −m2

Zc
4

2Ei

=
(mZc

2 +Q+KI)
2 −m2

Zc
4

2EI
=

2(Q+KI)mZc
2 + (Q+KI)

2

2EI

(3.1.10)

KZ =
2(Q+KI)mY c

2 + (Q+KI)
2

2EI
(3.1.11)

This is probably the most useful fully relativistic result. However, if we are in a limit where
KI � mic

2 and KI � Q, it is useful to write EI = EF = KF +mY c
2 +mZc

2 so that

KY =
2(Q+KI)mZc

2 + (Q+KI)
2

2(KF +mY c2 +mZc2)
(3.1.12)

KZ =
2(Q+KI)mY c

2 + (Q+KI)
2

2(KF +mY c2 +mZc2)
(3.1.13)

We can then use that KF � mic
2 with KF � KI (consistent with KF − KI = Q � KI) so

Q = KF −KI � mic
2 and we then find

KY ≈
2QmZc

2

2(mY c2 +mZc2)
= Q

mZ

mY +mZ

(3.1.14)

KZ ≈
2QmY c

2

2(mY c2 +mZc2)
= Q

mY

mY +mZ

(3.1.15)

As we are in this limit for most of our nuclear reactions, then this is why one finds the given
quoted kinetic energies for DT (deuterium and tritium) or DD (deuterium and deuterium) reac-
tions. These reactions are often just shortened to DT and DD and mean processes using only
the two named constituents. We find that it is simply Q weighted by the other reactant’s mass in
comparison to the total mass of the reactants.

It is worth mentioning that we could have derived our previous results quickly with momentum
four-vectors because for a single particle’s momentum four-vector we have in our sign convention
that P · P = −m0c

2 with m0 the particle’s rest mass.

3.2 Nuclear Decay
In some sense, nuclear fission is not one of those developments in physics which arose
logically and systematically in the course of progress. There was a great deal of accident
and surprise in the process.

— John von Neumann
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376 Nuclear Decay

One of the achievements of physics in the late 1800’s to early 1900’s is the discovery of transmuta-
tion of elements through nuclear decay. There are three main processes through which an element
can undergo (nuclear) decay. These processes can be generically divided into three categories.
Alpha decay emits an alpha particle (simply a helium nucleus, so two protons and two neutrons).
It is governed by the strong force and electromagnetic force. Beta decay releases an electron or
positron and is governed by the weak force. Gamma decay releases a photon (usually assumed
to be of high energy) and is governed mostly by the electromagnetic force. Alpha particles do
not penetrate shielding well, but cause immense damage if they do interact with biological tissue.
Paper thick materials are typically enough to ameliorate alpha particles. Beta particles also do
not penetrate shielding well either, but better than alpha particles with aluminum foil (or a couple
layers of aluminum foil) usually cited as being thick enough to prevent most beta particle expo-
sure. Gamma rays usually require on the order of 300 mm of lead. Thus, skin is enough for α’s,
heavy clothing for β’s, and bunkers for γ’s. When I say protected, I am saying that we reduce the
incoming radiation by a factor of about a billion or so, and the details always matter (what kinetic
energy the α, β, or γ has and at what angle it hits the shielding).

In retrospect, better naming could have been used had they known what alpha, beta, and gamma
radiation was when they were first discovered. Instead, we are left with the first three letters of
the Greek alphabet, which work well enough. Later, it was learned that neutrons could be used to
break up nuclei, and so are, in effect, another type of nuclear reaction process. By sending neutrons
(which are not affected by electromagnetic fields13) at nuclei, the nuclei would sometimes break
up, and so large nuclei would become multiple smaller ones. Once again, the kinetic energy of
the neutrons is important in determining what occurs, and so a distinction between slow neutrons
(low kinetic energy) and fast neutrons (high kinetic energy) developed. Fast neutrons are those
with kinetic energies greater than about 0.1 MeV.14 Slow neutrons are generally those with kinetic
energies closer to thermal temperatures (usually 1 meV to 1 eV levels).15

There are in fact two other common types of spontaneous radiation events, but they are sensibly
named. The first is neutron emission, where, you guessed it, a nucleus emits a neutron or neutrons.
The second is electron capture. In this case, (you might have guessed) a nucleus absorbs an electron.
In electron capture, the electron combines with a proton to create a neutron in the nucleus and so
can be written as

p+ e− → n+ νe (3.2.1)

where νe is an electron neutrino. You do not need to worry about neutrinos if you are not curious,
because neutrinos barely ever interact with other particles.

Let’s look at typical processes for each type of nuclear decay. We can remember that on the nuclide
table, an alpha decay removes two protons and two neutrons. Therefore, from the original location
on the nuclide table you move left two places, and down two places to find the new nuclide created.
For example, a typical alpha decay is one like radon.

226
88Ra138 → 222

86Rn136 + α + 4.87 MeV (3.2.2)

13Technically there are interactions since a neutron has a magnetic moment, but for us, they are basically immune
to electromagnetic fields.

14I will not use SI units in favor of the ubiquitous electron volt, because it is how most nuclear physics references
state results. Remember |e| ≈ 1.60× 10−19 is the conversion factor from 1 eV to 1 J.

15Remember 1 eV ∼ 11 605 K = 11 300 °C so 9 meV ≈ 100 °C.
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For beta decay, we need to know if it is a minus or plus decay. A minus decay results in a neutron
decaying into a proton, an electron and an electron antineutrino.16 A plus decay result in the
conversion of a proton into a neutron, a positron, and an electron neutrino. Note that the total
number of protons and neutrons remains the same in a beta decay process.

So a beta minus decay decreases the neutron number by one and increases the proton number by
one. On the nuclide table, we find the resulting nuclide by moving up one and to the left one from
the original nuclide. A typical beta (minus) decay would be that of tritium

T→ 3
2He1 + e− + ν̄e + 18.6 keV (3.2.3)

where I have included neutrinos as ν and the bar indicates an antiparticle.17 In nuclear terminology,
this process changes a nuclide into an isobar (because the total number of protons and neutrons,
the mass number, is conserved).

A beta plus decay occurs when a proton transforms into a neutron and positron (and neutrino).
A typical process is given by

23
12Mg11 → 23

11Na12 + e+ + νe (3.2.4)

And so in a beta plus, we find the resultant nuclide by moving down one and to the right one from
the original nuclide.

The way to think about this is that beta plus decay occurs in proton-rich nuclei and beta minus
decay occurs in neutron-rich nuclei. In turns out that in general, a stable nucleus requires a balance
of neutrons and protons. It is also important to realize that beta plus decay is not the same as
proton decay, because beta plus decay is a nuclear process in a bound nucleus (whereas proton
decay is for a bare proton).

Gamma decay occurs because there can be metastable (excited) nuclei. That is, the nucleus is not
in its ground state. This typically occurs after an alpha or beta decay, and the excited state is
often indicated by a superscript asterisk next to the nucleus. Cobalt to nickel is an example. This
occurs in three steps. First cobalt changes to nickel via beta minus decay, and then goes from
one metastable state to a lower metastable state by gamma decay. Then it goes from this lower
metastable state to an unexcited state by another gamma decay. This is shown as

60
27Co33 → 60

28Ni
∗ + e− + ν̄e + γ + 1.17 MeV (3.2.5)

60
28Ni

∗ → 60
28Ni + γ + 1.33 MeV (3.2.6)

For neutron emission, the process is simple. You have a nuclide that is neutron-rich, and so to
become more stable it emits a neutron or neutrons to get there. On the nuclide table, for a single
neutron emission you simply move to the left one, as one neutron is removed from the nuclide.
Some examples are for beryllium and helium

13
4Be9 → 12

4Be8 + n (3.2.7)
5
2He3 → 4

2He2 + n (3.2.8)

16Do not worry about neutrinos and antineutrinos. Consult a particle physics reference if you wish to understand
them better.

17The neutrinos aren’t important for the processes we are concerned with, but are important for balancing nuclear
reactions.
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For electron capture, the process is for proton-rich nuclides. On the table of nuclides you move
down one and one to the right. An example of electron capture is given by aluminium18

26
13Al13 + e− → 26

12Mg14 + νe (3.2.9)

As you can see, decay is actually not as simple as it may at first seem. Real radioactive decay at the
nuclide level is usually a series of different radioactive processes. In addition, there are quite a few
exotic possibilities such as double decays, three-body collisions, etc. These are usually exceedingly
rare processes, but nuclear physicists have often characterized them nevertheless. We won’t worry
about the exotic processes, since they are not of much consequence for producing electrical energy.

All of the previous processes are spontaneous, in the sense that they naturally occur in nature all of
the time. If we just have pieces of the element and do not do anything special, the above decays will
occur naturally. However, as humans, we can alter the conditions so that processes become more
likely to occur. When we do this with radioactive processes, we call this induced radioactivity.
This just means what was a radioactively stable nuclide was changed into an unstable nuclide by
some human intervention.

One way of doing this is bombarding nuclei with neutrons. These can lead to nuclear reactions as
they can physically break up the nucleus. If, in the process of doing so, the reaction releases more
neutrons, it can also lead to a chain reaction and an explosive or steady release of energy through
nuclear fission. Since we are focused on fusion, I will not explore this process. If you’d like an
overview with a good amount of history, consult Rhodes[15] or equivalent texts[17][1].

3.3 Cross Sections
It was quite the most incredible event that has ever happened to me in my life. It was
almost as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came
back and hit you.

— Ernest Rutherford, [This refers to the discovery of the nucleus.]

I mentioned exotic processes, but how do we know if a process is exotic? Unlike in common
parlance, exotic here means rare rather than occurring in a foreign land or culture. If some process
is very unlikely to occur, then it is an exotic process. This sounds very good in words, but it would
be better to have something quantitative to point at. What we want to characterize now is how
easily a reaction can occur in a collision. For fusion, it is important that two nuclei “hit”19 each
other, and so we will look at the probability of such an event occurring.

The way of describing this is with cross sections. The reason for calling it a cross section comes
from examining a simple case, two hard spheres of radius Ra and Rb. We then want to know what
is the total area of the region where the spheres will hit each other. The spheres will only hit
if their radii overlap. Thus the total area will be π(Ra + Rb)

2. If the particles are greater than
Ra+Rb apart, then they will clearly miss. Thus, the cross section σ = π(Ra+Rb)

2. Unfortunately
18More commonly called aluminum in the US. Aluminum is completely acceptable, but I think it’s better to

support the international standard.
19The terminology is that of a classical collision, though as always, the quantum shroud makes such classical

depictions somewhat incorrect. The collision terminology does not mislead very much, though, and so it serves as
a better way of remembering what is happening.

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



Nuclear Fusion 379

cross section is often used for differential cross section, which we will explore shortly. The cross
section σ is often called the integral cross section or total cross section to make it clear that it
is not per angle. However, the term total cross section should be avoided, because total cross
section is usually associated with the cross section for all of the different decay/collision processes.
Luckily, context usually makes it very clear whether we are talking of the integral cross section or
differential cross section when speaking of a cross section.

The main idea is that the transverse area20 that a particle must be in, in order to “hit” or collide
with a target gives us an idea of how likely such a process is of occurring. The larger the cross
section, the more probable the collision is.

Another cross section is the differential cross section. This yields the transverse area for a specific
energy, angle, impact parameter,21 or some other variable(s). The integral cross section is then
arrived at via integrating over the variables. If the cross section is over a solid angle, then the
differential cross section is typically written as dσ/dΩ with dΩ = 2π sin θ dθ the solid angle for
azimuthally symmetric situations.22 By convention, the differential impact parameter is forced to
be a positive number. In general we could write

dσ

dΩ
(θ, ϕ) (3.3.1)

as the differential cross section with Ω a solid angle variable such that

‹
dΩ

dσ

dΩ
=

ˆ π

0

dθ

ˆ 2π

0

dϕ sin θ
dσ

dΩ
= σ (3.3.2)

The Rutherford differential cross section for the Coulomb interaction is one of the most famous
results in classical collisional physics. It is typically written with the impact parameter b as

dσ

dΩ
=

b

sin θ

∣∣∣∣dbdθ

∣∣∣∣ =

(
Z1Z2e

2

8πε0mv2
0

)
csc4 θ

2
(3.3.3)

where v0 is the speed at infinite distances and m is the reduced mass of the two particles. We can
see the trajectory and definition of the angle θ and impact parameter b in Figure 3.1.

Note that the Rutherford integral cross section23 can be written such that it only depends on the
relative velocity between the target and the projectile.

Now, in reality, we do not figure out the exact potential from the nucleus and the neutron (this
would require writing down what the strong force interaction is between the projectile and all of the
nucleons, a quite difficult task). Instead, cross sections are calculated empirically by bombarding
known materials (of a known number density). Because the radii of nuclei are on the order of
10 femtometers, 1× 1014 m, then one would guess cross sections for nuclear reactions are often

20That is the area in the plane perpendicular to the line joining the two particles.
21Impact parameter is usually represented as b and is the perpendicular distance between the target and projectile.
22The azimuthal angle ϕ usually has symmetry and so can be ignored as a dependent variable. This just means

we can rotate our system such that the change in ϕ does not affect any of our predictions.
23This is also called the microscopic cross section.
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Figure 3.1: This shows the particle trajectory for Rutherford scattering of a particle off of a target
with defined angle θ and impact parameter b.

about ∼ (1× 1014 m)2 = 1× 1028 m2. This is the reason that this area is given the special name
of “barn”.24

Now, to get a cross section empirically, it is convenient to think of a frame of reference where
you create a beam of particles (the projectiles) that hit a stationary target material. Suppose for
simplicity of the picture that we consider only a single target. Then if we have a beam of particles
traveling at velocity vb and the cross section for the target (for the reaction r we desire) is σr,
then there will be a number of reactions in time ∆t corresponding to every beam particle in the
cylinder of volume σr(vb∆t ). If there are nb beam particles in a volume then the total number of
reactions rr∆t in this time (with rr the reaction rate) is then given by

rr∆t = nbσrvb∆t (3.3.4)
rr = nbvbσr = Φbσr (3.3.5)

where Φb = nbvb is the flux of the beam particles. Note that this was for one target. If there are
nt targets in a unit volume (and so target number density is nt), then we have roughly nt of the
cylinders per unit volume25 and so the total reaction rate per volume Rr is in these cases

Rr = ntΦbσr (3.3.6)

In reality, the cross section is a measured quantity by setting up a beam into a target and counting
the number of reactions per time. When we go to the more realistic empirical case, we simply

24Back during the Manhattan project, the cross section was estimated as above and physicists wanted a secretive
way of referring to cross sections that would not raise suspicions in conversations. Whether or not talking about
“barns” in this manner would keep the conversation non-suspicious, I am a bit skeptical. In any case, despite the
secretive reason for naming the unit “barn”, it is now widespread in particle physics. It is also said that “barn” was
apt as it connects to the idiom “couldn’t hit the broad side of a barn”.

25This assumption is that
√
σ � n

−1/3
t so that the targets are spaced out such that cross sections for each target

don’t overlap.
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define σr via the above relation, and so the cross section can theoretically depend on nt, nb, or
vb. In reality, σr is highly dependent on the initial beam particle energy, but not as sensitive
to nt and nb and so we assume σr = σr(vb). Obviously this approximation could break down if√
σ ' n

−1/3
t or if we go to extreme number densities far beyond what is normally encountered for

nuclear reaction measurements. In addition, we can consider the reaction rate for a distribution
of beam velocities. That is, instead of a beam velocity, we consider a distribution of velocities. In
this case, the reactivity is usually written as 〈σv〉 and is related to the reaction rate per volume Rr

for process r with target velocity vt and beam velocity vb via the velocity v′ = vb − vt (v′ = |v′|)
with velocity distributions for the target ft(vt) and beam fb(vb) as

Rr = ntnb 〈σr|vb − vt|〉 = ntnb 〈σrv′〉 ≡
˚ ∞

−∞
d3vt

˚ ∞

−∞
d3vb σ(v′)v′ft(vt)fb(vb) (3.3.7)

This form is not particularly illuminating yet, however. We will consider the Maxwellian case later
on. If the target and beam are of the same material, then the above is actually an overcount26 and
we must use

Rr =
ntnt

2
〈σrv′〉 (3.3.8)

The reaction rate is usually what we actually care about, as it yields the number of reactions
occurring per volume per time and so determines how much energy is being released.

One last word of caution, again concerning the cross section σr. It is also called the microscopic
cross section. Sometimes a macroscopic cross section is used, defined by Σt = ntσt. This means
that Σt has units of inverse length, and so is even more divorced from a cross section than the
microscopic cross section. The macroscopic cross section is useful because it can be easier to
measure.

3.4 Fusion Reactions
When we look up at night and view the stars, everything we see is shining because of
distant nuclear fusion.

— Carl Sagan

Now let us consider the processes most important for us from a magnetic confinement perspective.
The first thing to consider is how hard it is for a two positively charged particles to hit each other.
Clearly the Coulomb interaction, which is repulsive, will be dominant over distances greater than
the rough size of a nucleus. Since a nucleus is on the order of femtometers, we can use this as
a cutoff, and below that the strong force’s attraction overcomes the Coulomb barrier. Suppose
we consider the Coulomb barrier height near where it switches. Then we can approximate it as
being about EC in comparison to the strong force’s potential valley. Classically with a Boltzmann
distribution of particles with energy E we would expect that the probability of a particle getting

26We are in essence counting each reaction as happening twice because we cannot distinguish between the beam
and target, so instead we pretend we can and divide by two. Think about the case where we have two indistin-
guishable balls and N distinguishable containers. We can count the number of configurations by first assuming the
balls are distinguishable. Then there are N(N − 1) ways. However, for each of these configurations we could switch
the location of the balls so we have overcounted. There are 2 ways of rearranging the balls for each configuration
so the final answer is N(N − 1)/2.
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over the barrier EC to be exp(−EC/E), the proportion of particles with energy E > EC . In
fact this is too restrictive as it omits the possibility of quantum tunneling through the potential.
Remember that this probability is for a given collision being in a regime where a fusion event
is possible, and not the probability of a fusion event actually occurring.27 Quantum mechanical
scattering can yield a value for EC given by

EC =
Z2

1Z
2
2e

4µ

8ε20~2
≈ Z1Z2µ

mp

0.99 MeV (3.4.1)

where Z1 and Z2 are charges for the two particles and µ is the reduced mass of the system. The
probability of penetrating the barrier quantum mechanically (that is, given the Coulomb ptotential,
what is the probability of a collision, not necessarily of a fusion event) is then given by[12]

P ∼ exp

(
−
√
EC
E

)
(3.4.2)

with the square root coming from the use of a JWKB estimate.28 EC is sometimes denoted EG
and is called the Gamow energy.29

A cartoon drawing, but a good enough approximation of the potential shape for us, is shown in
Figure 3.2.

3.4.1 Stellar Fusion Reactions

It is illuminating to consider the one (so far) functioning fusion reactor in our solar system, our
sun. One can consider the powerhouse reactions for stellar fusion. This turns out to not be a
trivial process, but a chain of reactions that leads from protons to helium. We begin with

p+ p→ D + e+ + νe
∼→ D + νe + 2γ + 1.44 MeV (3.4.3)

Because we live in a matter universe, the positron will almost always end up annihilating with an
electron and forming two gamma rays hence the ∼→. This process is not very feasible anywhere but
in stars since a single proton waits on average almost 10 billion years before it reacts with another
proton. Luckily for us, the sun has much more than 10 billion protons, and keeps them together
for extended periods of time.

It is instructive to consider the quantum and classical predictions for the probability of a collision.
The actual (quantum influenced) probability of a collision was given before as P ∼ exp

(√
EC/E

)
with the Gamow energy (sometimes called the Coulomb energy30) defined as in (3.4.1). Then for
the sun with a core temperature of about 1.4 keV=1.6× 107 K=16 MK, and µ = mp/2 we’d find

P ∼ exp
(
−
√

500 keV/1.4 keV
)
≈ exp(−18.9) ≈ 10−9 (3.4.4)

27Even if the collision occurs, there may be other circumstances that drastically change the probability of a fusion
event actually occurring.

28Effectively, this comes from the fact that the JWKB estimate has exp(
´

dx′
√
U(x′)) and U(x′) ∼ 1/x′.

29Alas, sometimes the Gamow energy is defined differently depending on whether you are caring about a volume
rate or a rate through a surface.

30I wouldn’t recommend calling it this, since it EC comes from a quantum mechanical estimate, but you still see
it called this in some physics or astronomy literature.
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Figure 3.2: This shows a cartoon-figure for the potential a positive particle sees as it approaches
a nucleus. As it gets close to about 1 fm the nuclear potential dominates and brings it down to a
low level. Quantum tunneling allowing one to access the nuclear potential in classically forbidden
regions, is also represented by the dashed arrow.
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Classically, we would simply consider the Boltzmann fraction of particles with energy greater than
500 keV, which are the only ones that have enough energy to penetrate the Coulomb barrier,
because there is no quantum tunnelling. This would lead to an estimate

Pclassical ∼ exp(−EC/E) ≈ exp (500 keV/1.4 keV) ≈ 10−155 (3.4.5)

which would mean it would be essentially impossible in stellar cores like our sun. I want you
to stop and think about this difference because it is mind-boggling. The difference is like if you
classically expected $0.01 or one (US) cent, but were given $10144. If you gave each particle in
the observable universe (all 1080 of them) the world’s total GDP per year of about $1014 or 100
trillion US dollars every attosecond (10−18 seconds) of the year, you would have to wait nearly
3× 1024 yr to exhaust the $10144. The universe has only lasted about 13× 109 yr, so you could
wait 100 trillion times the age of the universe before you ran out of money!

Note that a cross section for proton-proton fusion is actually lower than the probability of two
protons getting close enough by penetrating the Coulomb barrier because the protons need a
weak interaction beta decay in addition to getting close enough. Most weak interactions take a
long time in comparison to electromagnetic or strong interactions, and so the necessity of a weak
interaction actually imposes quite a penalty on the likelihood of a successful fusion event. The
energy dependent fusion cross section is usually written in the form

σ(E) =
S(E)

E
exp(−

√
EC/E) (3.4.6)

with S(E) a factor that takes into account the probability of the fusion once the nuclei come
into contact. One can estimate the fusion reaction rate in our sun via the fusion rate be-
ing 6× 1011 kg s−1 of hydrogen which translates into a number of protons produced of about
4× 1038 s−1. We will use a central sun density (n0) of 1031 m−3 with exponential number density
given by n0 exp(− x ln 2

0.1R�
) and R� being a solar radius (6.96× 108 m). The solar core then has about

1× 1056 protons. So the fusion reaction rate per proton is about 4× 10−18 s−1. Thus, on average
it takes a proton 1/(4× 10−18 s−1) or about 8 billion years for a proton to fuse, and justifies our
earlier claims of about 10 billion years. Because the central number density of the sun is so large at
1031 m−3 this allows substantial energy production with a process that is so rare. At the very core
then, we have a volume reaction rate of 4× 1013 m−3 s−1. One final thing to consider is what the
likelihood of a collision is. We use the collision frequency at the core to be estimated by (we use
the reduced de Broglie wavelength of the hydrogen as an estimate for the cross section λdB = ~

mpvth

with vth =
√

2kBT/mp ≈ 5.2× 105 m s−1 this implies λdB ≈ 1.2× 10−13 m)31

ν = nπλ2
dBvth ≈ π(1031 m−3)(1.2× 10−13 m)2(5.2× 105 m s−1) ≈ 2× 1011 s−1 (3.4.7)

Which would imply a probability of fusion upon collision of 4× 10−18 s−1/2× 1011 s−1 ≈ 2× 10−29

which is much smaller than our previous estimate based on the Gamow energy of 10−9. This is
because we ignored the S(E)/E portion of the cross section, which for a weak interaction dependent
process can be quite small.

31We use the de Broglie wavelength because this serves as an effective quantum cutoff for us. We use the reduced
value for convenience as it is better for cross section estimates. See Section 3.5.1.1 for the details.
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The process of producing energy requires a chain, and the deuteron then produced by the proton-
proton reaction can interact with the surrounding solar material to produce much more energy per
reaction.

The deuteron just produced can undergo a reaction

D + p→ 3
2He1 + γ + 5.49 MeV (3.4.8)

This process is mediated by the strong force and usually occurs on a scale of seconds for a deuteron
(this is mostly saying that the S(E) is much more favorable and so the Gamow energy estimate is
more accurate).32

There are three main ways for the resulting 3
2He1 to be converted into the more stable 4

2He2, with
the first two dominating the probability. They are usually labeled p-p I-III.

3
2He1 + 3

2He1 → 4
2He2 + 2 1

1H + 12.9 MeV (p-p I)

The total process releases about 26.8 MeV and about 83% of reactions take this route in our sun.
It releases 26.7 MeV because if we start only with protons then we have to have both (3.4.3) and
(3.4.8) occur twice in order to finish (p-p I). It is dominant for temperatures greater than 10 MK
(about 860 eV) but less than 14 MK (about 1200 eV).

The p-p II route involves lithium and so is often called lithium burning. It is a chain
3
2He1 + 4

2He2 → 7
4Be3 + 1.59 MeV

7
4Be3 + e− → 7

3Li4 + νe + 1.37 MeV
7
3Li4 + p→ 2 4

2He2 + 16.8 MeV

(p-p II)

This chain occurs about 17% of the time in our sun and is dominant for 14 MK (about 1.2 keV) to
23 MK (about 2.0 keV).

The p-p III route also involves beryllium and boron
3
2He1 + 4

2He2 → 7
4Be3 + γ + 1.59 MeV

7
4Be3 + p→ 8

5B3 + γ − 0.374 MeV
8
5B3 → 8

4Be4 + e+ + νe + 17.5 MeV
8
4Be4 → 2 4

2He2 + 0.0918 MeV

(p-p III)

This chain only occurs 0.02% of the time in our sun but is believed to be important because it
generates neutrinos with high energy and is dominant for 23 MK (about 2.0 keV) or higher.

There is one more twist to the story. For stars with larger masses than our sun (about 1.3 times),
a different process dominates. This is called the CNO process. This stands for carbon-nitrogen-
oxygen. In these cases, carbon, nitrogen, and oxygen catalyze fusion reactions. There are again
detailed paths for how this can occur, but the main reaction is given by

4p+ 2e− → α + 2e+ + 2e− + 2νe + 3γ + 24.7 MeV→ α + 2νe + 7γ + 26.7 MeV (3.4.9)

32You can already begin to see why terrestrial fusion eyes deuterons over protons. If we use that the Gamow
energy estimate of probability of fusion per collision of about 10−10 with a similar collision frequency, as computed
above, then the reaction rate is about 10−10(2× 1011 s−1) = 2 s−1. Such a rough estimate shows the average lifetime
of a deuteron is on the order of seconds.
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The step in between the arrows is where carbon, nitrogen, and oxygen nuclides make the end result
reactions by capturing protons (that is a nucleus gains one proton via fusing a proton with some
other nuclide) and then beta decaying.

The reason that larger mass stars are dominated by CNO is because of the temperature dependence
of all these reactions. A self-sustaining proton-proton chain can start in stars near 4 MK (about
350 eV) but the CNO process only becomes self-sustaining near 15 MK (about 1.3 keV) and rapidly
becomes more dominant (that is, it releases more energy more quickly as temperature rises) such
that it is the dominant process for temperatures above 17 MK (about 1.5 keV). You can see that
our sun just barely misses this with a core temperature of 15.7 MK (about 1.4 keV).

3.4.2 Terrestrial Fusion

It is now time to look at reactions that are of interest for fusion reactions on Earth (or terrestrial
fusion). We previously mentioned that proton-proton fusion requires nearly 10 billion years for a
single proton in the sun. This immediately tells us a couple of things. We either need a lot of
protons in one place or this process is not going to release energy on a timescale useful to humans.
For the sun, there is a massive number of protons held together by gravitation. We do not want to
create a literal star on Earth,33 so this method will not be what we desire. Later we will see how
this can be quantified in the Lawson criterion, but for now let’s focus on the nuclear reactions we
will consider. This will be looking at the problem from a magnetic confinement perspective. Thus,
we are using electromagnetic fields to contain particles and hoping they collide through random
thermal motion.

There are a number of things we can consider for reactions that are potentially good for this type
of energy production. Obviously we want reactions that release energy, but it would be better
to use lower atomic number nuclei because then the Coulomb interaction is not as strong of a
barrier. It is also ideal to have two reactants because getting more than two things to hit each
other is difficult. In addition, it is better to have only two products so that energy and momentum
conservation are simple (which also means that we do not get momentum or energy taken from the
rest of the plasma possibly altering the equilibrium and causing stresses on the confining device).
Finally, we don’t want to rely on (weak interaction) radioactive decay within the device; these
are reactions that do not conserve proton and neutron number separately. This is mostly because
(weak interaction) radioactive decay doesn’t happen often enough.34 We see that this step is the
main reason we cannot rely on stellar processes because the proton-proton reaction relied on a beta
decay which does not conserve the number of protons or neutrons (separately). Stellar processes
usually rely on beta decays which are too slow for us, because we cannot hold the particles together
as long as a star can (nor can we hold a gigantic number of them together for a shorter period of
time).

Some reactions that satisfy these requirements include

D + T → 4
2He2 + n+ 17.6 MeV (3.4.10)

D +D → T + p+ 4.03 MeV (3.4.11)

33If you think you do, rethink what having a literal star “on” Earth would mean. Here’s a hint. There would be
no “Earth” left for the star to be on. There would just be a star.

34If the radioactive decay were the main source of energy in the process, you would also wonder if the fusion
reaction part is even necessary.
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D +D → 3
2He + n+ 3.27 MeV (3.4.12)

D + 3
2He → 4

2He + p+ 18.3 MeV (3.4.13)

We can use (3.1.15) in these reactions to find what proportion of the kinetic energy is distributed
to the reactants. We simply use

m4
2He

mn +m4
2He
≈ 0.799⇒ Kn ≈ 14.1 MeV (3.4.14)

mn

mn +m4
2He
≈ 0.201⇒ K4

2He
≈ 3.54 MeV (3.4.15)

mT

mT +mp

≈ 0.750⇒ Kp ≈ 3.02 MeV (3.4.16)

mp

mT +mp

≈ 0.250⇒ KT ≈ 1.01 MeV (3.4.17)

m3
2He

mn +m3
2He
≈ 0.749⇒ Kn ≈ 2.45 MeV (3.4.18)

mn

mn +m3
2He
≈ 0.251⇒ K3

2He
≈ 0.821 MeV (3.4.19)

m4
2He

mp +m4
2He
≈ 0.799⇒ Kp ≈ 14.6 MeV (3.4.20)

mp

mp +m4
2He
≈ 0.201⇒ K4

2He
≈ 3.68 MeV (3.4.21)

The DD reactions occur with about 50% probability for each (all branching ratios are given at
cross section peaks). If we relax our restrictions, we can go for some more reactions (some of these
happen if we primarily use the previous reactions) with the percentage of the time a particular
reaction branch is used indicated in square brackets

T + T → 4
2He + 2n+ 11.3 MeV (3.4.22)

3
2He + 3

2He → 4
2He + 2p+ 12.9 MeV (3.4.23)

3
2He + T → 4

2He + p+ n+ 12.1 MeV [57%] (3.4.24)
3
2He + T → 4

2He +D + 14.3 MeV [43%] (3.4.25)
p+ 6

3Li → 4
2He + 3

2He + 4.0 MeV (3.4.26)
p+ 11

5B → 3 4
2He + 8.7 MeV (3.4.27)

Another consideration is that we would like to avoid neutrons because they can activate [i.e., make
radioactive] the confining materials and cause damage to the confinement device and magnets.

The cross sections and reactivities are most advantageous for DD and DT fusion, as we will soon
learn, with DT the most advantageous. One of the other problems is the relative abundances of
the elements. Tritium is not stable with a 12.3 year half life and so if this reaction is to be primary
then a method of producing more tritium must be introduced. Fortunately for fusion, neutrons
bombarding lithium leads to significant tritium production

n+ 6
3Li → T + 4

2He + 4.78 MeV (3.4.28)
n+ 7

3Li → T + 4
2He + n− 2.76 MeV (3.4.29)
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388 Fusion Reactions

The lithium-7 reaction has unfavorable cross sections unless the impinging neutrons are high
energy.35 For fusion, it is imagined that a lithium-6 enriched “blanket” will be needed to produce
the required tritium. This blanket will also require some other element(s) that will improve the
likelihood of neutron and lithium-6 reactions.

3.4.2.1 Cross Section and Reactivity Values

First let’s consider our reaction rate per volume

Rr ≡
˚ ∞

−∞
d3vt

˚ ∞

−∞
d3vb σ(v′)v′ft(vt)fb(vb) (3.4.30)

in the case of Maxwellian distributions

fi =
ni

π3/2v3
thi

exp

(
− v2

i

v2
thi

)
(3.4.31)

v2
thi =

2kBTi
mi

(3.4.32)

And we can introduce the total velocity V = vt + vb. The argument of the exponentials can then
be rewritten

v2
t

v2
tht

+
v2
b

v2
thb

=
v2
thbv

2
t + v2

thtv
2
b

v2
thbv

2
tht

(3.4.33)

|V|2 = v2
t + v2

b + 2vt · vb (3.4.34)

If we assume that both are at the same temperature, then we can define v2
th = 2kBT/µ with µ

the reduced mass µ = mtmb/(mt +mb). We’d like to get everything in terms of v′ and V and we
assume that we can factor out v′2/v2

th out. We note that this is

|v′|2

v2
th

= µ
v2
t + v2

b − 2vtvb
2kBT

(3.4.35)

and so

2kBT

(
v2
t

v2
tht

+
v2
b

v2
thb

− |v
′|2

v2
th

)
= mtv

2
t +mbv

2
b −

mtmb

mt +mb

(v2
t + v2

b − 2vt · vb)

= v2
t

mt(mt +mb)−mtmb

mt +mb

+ v2
b

mb(mt +mb)−mtmb

mt +mb

+ 2
mtmb

mt +mb

vt · vb

= v2
t

m2
t

mt +mb

+ v2
b

m2
b

mt +mb

+ 2
mtmb

mt +mb

vt · vb
(3.4.36)

We can then use
(mt +mb)V + (mt −mb)v

′ = (mt +mb)(vt + vb) + (mt −mb)(vt − vb)

= vt (mt +mb +mt −mb) + vb (mt +mb +mb −mt)

= 2mtvt + 2mbvb

(3.4.37)

1

4
[(mt +mb)V + (mt −mb)v

′]2 =
1

4
[2mtvt + 2mbvb]

2 = m2
tv

2
t +m2

bv
2
b + 2mtmbvt · vb (3.4.38)

35The larger than expected yield of the hydrogen (thermonuclear fusion) bomb test Castle Bravo was due to
scientists ignoring the lithium-7 reactions. Ivy Mike was the first hydrogen bomb test, but used cryogenic (liquid)
deuterium directly, while Castle Bravo used lithium deuteride [i.e., a solid composed of deuterons and lithium].
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so that

2kBT

(
v2
t

v2
tht

+
v2
b

v2
thb

− |v
′|2

v2
th

)
=

[(mt +mb)V + (mt −mb)v
′]2

4(mt +mb)
(3.4.39)

We thus have (since vt and vb vary from −∞ to ∞ in all directions, then v′ and V will as well
since they are just linear combinations of vt and vb)36

Rr =
ntnb

8π3v3
thtv

3
thb

˚ ∞

−∞
d3v′

˚ ∞

−∞
d3V σ(v′)v′ exp

(
− [(mt +mb)V + (mt −mb)v

′]2

8kBT (mt +mb)

)
exp

(
− v

′2

v2
th

)
(3.4.40)

Now we can do the integral over V ( d3V ). We can rewrite it as
˚ ∞

−∞
d3V exp

(
−α(V + βC)2

)
(3.4.41)

α =
mt +mb

8kBT
(3.4.42)

β =
mt −mb

mt +mb

(3.4.43)

Because V and v′ are now independent we note that within the V integral that we can use a
change of variables x = V + βC and thus eliminate the v′ dependence in the exponential for the
V integral.37 We use the fundamental Gaussian relation

ˆ ∞
−∞

dx e−αx
2

=

√
π

α
(3.4.44)

and
˚ ∞

−∞
d3x exp

(
−α|x|2

)
=
(π
α

)3/2

=

(
8kBTπ

mt +mb

)3/2

(3.4.45)

and so

Rr =
83/2(kBT )3/2ntnb

8(mt +mb)3/2π3/2v3
thtv

3
thb

˚ ∞

−∞
d3v′ σ(v′)v′ exp

(
− v

′2

v2
th

)
(3.4.46)

We note the pre-factor (83/2/8 = 23/2) can be written as

23/2(kBT )3/2

(mt +mb)3/2v3
thtv

3
thb

= ���
���

�
23/2(kBT )3/2

(mt +mb)3/2
(
���2kbT
mt

)3/2 (
2kBT
mb

)3/2

=
m

3/2
t m

3/2
b

(mt +mb)3/2(kBT )3/2
=

(
µ

2kBT

)3/2

=
1

v3
th

(3.4.47)

36By using V = vt + vb instead of (vt + vb)/2, our Jacobian for the transformation introduces a factor of 1/8.
You should calculate this for yourself.

37This is a non-trivial statement. It means that the integral over d3V gives the same answer so long as C is
constant with respect to V. It doesn’t matter that C will vary in the outer integral because the integration removes
any C dependence.
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We can then convert the integral into spherical v′ coordinates since the only dependence is on the
magnitude of v′.

Rr =
ntnb
π3/2v3

th

˚ ∞

−∞
d3v′ σ(v′)v′ exp

(
− v

′2

v2
th

)
=

ntnb
π3/2v3

th

ˆ ∞
0

dv′ σ(v′)v′ exp

(
− v

′2

v2
th

) ˆ π

−π
dθ

ˆ 2π

0

dφ v′2 sin θ

= 4π
ntnb
π3/2v3

th

ˆ ∞
0

dv′ σ(v′)v′3 exp

(
− v

′2

v2
th

)
=

4ntnb
π1/2v3

th

ˆ ∞
0

dv′ σ(v′)v′3 exp

(
− v

′2

v2
th

)
(3.4.48)

Finally, it can be useful to use impinging particle energy εb = mbv
′2

2
instead of using v′ because

energy is used more often in experiments and so the data is usually given in units of energy. We
then use dεb = mbv

′ dv′ and

Rr =
4ntnb
π1/2v3

th

ˆ ∞
0

dv′ σ(v′)v′3 exp

(
− v

′2

v2
th

)
= nbnt

√
2µ3

π(kBT )3

ˆ ∞
0

dv′ σ(v′)v′3 exp

(
− v

′2

v2
th

)
(3.4.49)

Rr =
8ntnb

m2
bπ

1/2v3
th

ˆ ∞
0

dεb σ(εb)εb exp

(
− 2εb
mbv2

th

)
=
nbnt
m2
b

√
8µ3

π(kBT )3

ˆ ∞
0

dεb σ(εb)εb exp

(
− µεb
mbkBT

)
(3.4.50)

Remember the above formula only holds for Maxwellian distributions for both species! If the beam
is actually a beam, you will get a different answer. For thermonuclear fusion in magnetic confine-
ment devices, using both the beam and target as Maxwellian is a fairly decent approximation. One
last useful form normalizes the energy form with y = µεb/(mbkBT )

Rr =
nbnt
m2
b

√
8µ3

π(kBT )3

m2
b(kBT )2

µ2

ˆ ∞
0

dy σ

(
mbkBT

µ
y

)
y exp(−y)

= nbnt

√
8kBT

µπ

ˆ ∞
0

dy σ

(
mbkBT

µ
y

)
y exp(−y)

(3.4.51)

There is another frame (quite frankly it is more sensible from a theoretical perspective) that is often
used for cross section data. This is the center of momentum frame.38 In this case we normalize

38Often abbreviated COM or CM. Some call this a center of mass frame, but center of mass is somewhat imprecise
in special relativity (is it the “relativistic mass” or rest mass?), whereas center of momentum is unambiguous.
Technically, a center of momentum frame does not have to have the center of mass at the origin, whereas a center of
mass frame does. In any case, you can use these terms interchangeably since in practice hardly anyone pays attention
to the difference. The important point is that when I say center of momentum, I mean the total momentum in the
frame is 0.
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D-D (3.4.11) D-D (3.4.12) D-T (3.4.10) D-32He (3.4.13) T-T (3.4.22) 3
2He-T (3.4.24)

A1 46.097 47.88 45.95 89.27 38.39 123.1
A2 372 482 50200 25900 448 11250
A3 4.36× 10−4 3.08× 10−4 1.368× 10−2 3.98× 10−3 1.02× 10−3 0
A4 1.220 1.177 1.076 1.297 2.09 0
A5 0 0 409 647 0 0

Table 3.1: The “Duane” coefficients[5] as given by the NRL Plasma Formulary[8]. Note that the
Duane coefficients consider the heavier particle to be the target and use energies εb

according to the relative energy given by εµ = µv′2/2. We then use dεµ = µv′ dv′ and find

Rr =
4ntnb
π1/2v3

th

ˆ ∞
0

dv′ σ(v′)v′3 exp

(
− v

′2

v2
th

)
= nbnt

√
2µ3

π(kBT )3

ˆ ∞
0

dv′ σ(v′)v′3 exp

(
− v

′2

v2
th

)
(3.4.52)

Rr =
8ntnb
π1/2v3

th

ˆ ∞
0

dεµ σ(εµ)εµ exp

(
− 2εµ
µv2

th

)
= nbnt

√
8µ3

π(kBT )3

ˆ ∞
0

dεµ σ(εµ)εµ exp

(
− εµ
kBT

)
(3.4.53)

with the normalized y = εµ/(kBT ) giving

Rr = nbnt

√
8kBT

µπ

ˆ ∞
0

dy σ (kBTy) y exp(−y) (3.4.54)

If you wish to compare two data sets with one using εb and the other εµ, then you must convert
the values. To convert εb to εµ you use that mb

µ
εb = εµ. One can use that mb

µ
= mt+mb

mt
= 1+ mb

mt
> 1

to see that the center of momentum energy will be greater in general.

Because cross sections are not easy to calculate theoretically, empirical relations with fitting func-
tions are used. There are a variety of references to use for this. I will follow the plasma formulary
with Duane coefficients and then the more recent and accurate Bosch-Hale fit, but it should always
be remembered that these are fits to data. Thus, for all of the reactions we have talked about
above, we can use for impinging particle of energy εb or the center of momentum frame energy
εµ. One must carefully check the references to determine which frame is appropriate and so which
formula to use.

We’ll consider both models. First, we use a fitting by Duane[5]. This model uses εb (measured in
keV) and writes the cross sections as (I just write ε rather than εb for the formulas)

σ(ε) =
A5 + A2

(A4−A3ε)2+1

ε[exp(A1ε−1/2)− 1]
(3.4.55)

The above formula yields σ in units of barns (1× 10−28 m2) for the coefficients as given in Table
3.1.

The next model, which is more recent and so more accurate is due to Bosch-Hale (BH)[3]. The
parameters can be easily accessed through the MIT Magnetic Fusion Energy Formulary[7]. This
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D-D (3.4.11) D-D (3.4.12)
BG 31.3970 31.3970
A1 5.5576× 104 5.3701× 104

A2 2.1054× 102 3.3027× 102

A3 −3.2638× 10−2 −1.2706× 10−1

A4 1.4987× 10−6 2.9327× 10−5

A5 1.8181× 10−10 −2.5151× 10−9

B1 0.0 0.0
B2 0.0 0.0
B3 0.0 0.0
B4 0.0 0.0
VER 0.5-5000 0.5-4900

Table 3.2: The Bosch-Hale (BH)[3] coefficients for DD reactions as given by the original paper.
Here VER means Valid Energy Range in keV. BH uses the center of momentum frame, and so εµ.

D-T (3.4.10) D-T (3.4.10) D-32He (3.4.13) D-32He (3.4.13)
BG 34.3827 34.3827 68.7508 68.5708
A1 6.927× 104 −1.4714× 106 5.7501× 10−6 −8.3993× 105

A2 7.454× 108 0.0 2.5226× 103 0.0
A3 2.050× 106 0.0 4.5566× 101 0.0
A4 5.2002× 104 0.0 0.0 0.0
A5 0.0 0.0 0.0 0.0
B1 6.38× 101 −8.4127× 10−3 −3.1995× 10−3 −2.6830× 10−3

B2 −9.95× 10−1 4.7983× 10−6 −8.5530× 10−6 1.1633× 10−6

B3 6.981× 10−5 −1.0748× 10−9 5.9014× 10−8 −2.1332× 10−10

B4 1.728× 10−4 8.5184× 10−14 0.0 1.4250× 10−14

VER 0.5-550 550-4700 0.3-900 900-4800

Table 3.3: The Bosch-Hale (BH)[3] coefficients as given by the original paper. It is best to match
the D-T formulas at 530 keV as they agree at this value. Similarly, it is best to match the D-32He
data at 900 keV, though it is not ever a continuous match. Here VER means Valid Energy Range
in keV. The Bosch-Hale coefficients use a center of momentum frame and so use εµ for energies.

uses εµ (measured in keV), the center of momentum frame, and uses the fit39

σ(ε) =
S(ε)

ε exp(BGε−1/2)
(3.4.56)

S(ε) =
A1 + ε(A2 + ε(A3 + ε(A4 + εA5)))

1 + ε(B1 + ε(B2 + ε(B3 + εB4)))
(3.4.57)

Despite many years of progress, if we convert the Duane values into the center of momentum frame,
we see that only at the largest energies (which will probably be outside the largest permissible
energy value in the target-beam frame) do we get substantial disagreement. The largest difference
can be seen for Deuterium reactions in Figure 3.4.In fact, looking at the relative error between
them, one can find that the worst relative error is about 100% for Duane, but that this is the

39The formula for S(ε) comes from a Padé approximation.
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worst possible error and on a log-log plot this is not easy to see. Over the majority of these energy
ranges, the values are very comparable. The most problematic values are at high energy, and
because those come from εb < εµ, we have gone beyond the valid energy range for the fitted data
for εb in the plots.

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



394 Fusion Reactions

Figure 3.3: This gives the BH values of cross section and reactivity for DD, DT , and D-32He
reactions (DD1 is for (3.4.11) and DD2 is for (3.4.12)). It demonstrates why DT is preferred,
with this highest reactivity over the temperature range of interest. The proton-boron reactions
use[13] for an empirical fit of the cross-section.
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Figure 3.4: The cross sections and reactivities for Duane and BH fits for a DD reaction. The x
axis is center of mass energy εµ and that is why the Duane values are incorrect past 1 MeV. The
εb is past the valid energy range for Duane.
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3.4.2.2 Lawson Criteria

Now we can finally get into what is necessary to get fusion going. As we can see in Figures 3.4-3.5,
the larger the temperatures that can be achieved, the better off we are in these reactions (although
DT has diminishing returns in reactivity as we approach 100 keV). In some sense, we are lucky
that the tail of the Maxwellian energy distribution is all that is needed to get fusion reactions. On
the other hand, the bulk of the particles will not be participating in reactions since the bulk are
at an energy near the given temperature of the plasma. We see this in Figure 3.5 which shows for
the DT reaction that the Maxwellian distribution ε exp(−ε/(kBT )) has its tail contributing to the
integrand for the reactivity due to the cross section being higher in the tail.

Let’s concentrate on DT for now because we have seen it has one of the best cross sections and
reactivities at the temperatures we are looking at, about 1 keV to 100 keV (see Figure 3.3). In that
case, we’d like to know the power output in a certain volume and time. We use

PDT = nDnT 〈σv〉DT EDT (3.4.58)

which is simply the number density of the two species times the reactivity and the energy released
per reaction EDT . Let’s write the total density of tritons and deuterons as n = nD + nT . Then

PDT = nD(n− nD) 〈σv〉DT EDT (3.4.59)

We’d like to find the value of nD such that PDT is maximum. Then

∂PDT
∂nD

= 0⇒ n− 2nD = 0⇒ n = nD/2 (3.4.60)

which means we have an even mix of nT and nD ideally. In that case the optimal power density is
given by

PDT =
n2

4
〈σv〉DT EDT (3.4.61)

We then need to ask how well does the plasma hold energy. Suppose PL is the natural power loss
of the plasma and V is the total plasma volume. If the total energy of the plasma is EP then we
define the energy confinement time as

τE =
EP
PL

(3.4.62)

From a practical level, if you are keeping a plasma in a steady-state energy balance then the power
provided will equal the power loss (so long as there is no fusion power adding to the mix. . . ).
There is an empirical relation for the energy confinement time τE in tokamaks given by[10]

τ
H98(y,2)
E = 0.0562Ip(MA)0.93B0φ(T)0.15R(m)1.97ε0.58κ0.78ne(

m−3

1019
)0.41P (MW)−0.69M0.19 (3.4.63)

where the parentheses indicate the units to be used40 with Ip the plasma current, B0φ the toroidal
magnetic field at the major radius, R the major radius, ε = r/R the inverse aspect ratio, κ the
plasma elongation, ne the central line-averaged number density (measured in units of 1× 1019 m−3),

40The powers are on the variables, not on the units. So R(m)1.97 means take R1.97 when R is measured in meters.
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Figure 3.5: The contributions to the reactivity integral are shown. The tail of the Maxwellian
distribution (ε exp(−ε/(kBT ))) contributes the most to overall integrand at higher ε due to the
cross section σ(ε) being higher there.
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P is the heating power (both fusion and supplied power), and M is the mass number (the number
of protons and neutrons for the main ion). We can use ITER41 values Ip = 15, B0φ = 5.3, R = 6.2,
ε = 0.32, κ = 1.8, ne = 10, P = 122, M = 3 yield τE ≈ 3 s which can be considered a typical value.

For stellarators, a different scaling[2][21]

τ ISS04E = 0.134a(m)2.28R(m)0.64ne(1020 m−3)0.54B(T)0.84ι0.41
2/3 P

−0.61(MW) (3.4.64)

with the same meaning except ι2/3 is the rotational transform at radius r = 2a/3, and the minor
radius is defined by the plasma volume being given by 2πR(πa2).42 For a stellarator like W7X,
this would yield a = 0.53, R = 5.5, ne = 0.8, B = 3, ι2/3 ≈ 1, P = 15 to 30. This leads to a
confinement time of 0.027 s to 0.040 s. W7X has actually attained a confinement time of about
0.1 s[4], so the confinement time scaling should not be taken as too accurate. The scaling gives
an idea of why tokamaks are still preferred, though. Tokamaks have tended to be bigger and had
fewer problems with particle confinement, and so have had better scaling historically. As can be
seen, this may no longer be true in the future.

For DT fusion 14.1 MeV of the energy goes into the neutron which leaves the plasma and so does
not add to the energy in the plasma (assuming it does not collide with anything on the way out).
Thus we are left with the helium α particles43 with their Eα = 3.54 MeV of kinetic energy. Thus

Pα =
n2

4
〈σv〉DT Eα (3.4.65)

Pα =

˚
d3x

n2

4
〈σv〉DT Eα (3.4.66)

We can then consider “ignition” of the plasma, and call the plasma an ignited plasma. This is the
point where heating due to α’s is enough such that no other external power source is required.
This means that Pα ≥ PL.

We use this condition to define the ignition point and beyond via

PL ≤ Pα (3.4.67)
EP
τE
≤
˚

d3x
n2

4
〈σv〉DT Eα (3.4.68)

This form is rather unenlightening. We will look at the equality point (it should be obvious which
direction for quantities is still ignited). We can define an average term via

Pα =
Eα
4
n2 〈σv〉DTV (3.4.69)

q =
1

V

˚
d3x q (3.4.70)

Let hats over a function such as T̂ or n̂ indicate a peak value for whatever the profile is of T or n
and we can write44

Pα = CP1
Eα
4

(n̂)2〈̂σv〉DTV (3.4.71)

41This gives us an idea of the best we can do in 2020 and the near future for tokamaks.
42That is, given a plasma volume and an a, we determine R by V = 2πR(πa2).
43They are sometimes called helium ash because they come from “burning”, that is fusing, deuterium and tritium.

If the helium ash becomes too numerous it starts to cause problems with the fusion process.
44Note I wrote (n̂)2 rather than n̂2. I do this so I can divide by n̂ rather than dealing with averages of squares.

There is no harm in writing it this way so long as we take it into account when determining CP1.
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with CP1 representing a dimensionless number which depends on all the profiles involved (which
are parameterized through their peak values with hats). The energy of the plasma is given by

EP =

˚
d3x

[∑
s

3

2
nskBTs

]
(3.4.72)

with s a species index and using equipartition of energy in three dimensions to get 1
2
nkBT for each

degree of freedom for each species (here we can consider the deuterons and tritons).

EP = 3nkBTV = 3kBCP2n̂T̂ V (3.4.73)

where we use the hats and a dimensionless profile dependent CP2. Thus

PL < Pα ⇒
3CP2kBn̂T̂

τE
V <

CP1

4
n̂2〈̂σv〉DTEαV (3.4.74)

n̂τE >
CP2

CP1

12kBT̂

〈̂σv〉DTEα
(3.4.75)

We can set CP = CP2/CP1 and note for flat profiles that CP = 1 for a rough estimate. This rough
estimate is often then used to determine what conditions are necessary. It is also usually presented
without the hats on top to make it look a little cleaner. This rough estimate has many grains of
salt since we are ignoring profile characteristics (unless things are uniform), but this gives a good
enough idea of what is required.

We can read this as nτE must exceed the value given by

12kBT

〈σv〉DT Eα
(3.4.76)

We can find a minimum value for the right hand side to try and find an optimal nτE but τE is a
function of n and T , so in order to find the actual optimal value we need to take this into account.
Since higher energy is expected to lead to worse confinement, we can expect for some real number
k that τE ∼ (kBT )−|k|, and so an optimal T will be given a little below the optimum from the
right-hand side alone. In any case, if we ignore this dependence and plot 12kBT/ 〈σv〉DT we get
Figure 3.6 leading to a minimum at T ≈ 25.9 keV and so at this minimum temperature ignition
would require

nτE > 1.50× 1020 s/m3 (3.4.77)

In addition, Wesson[19] uses that for kBT in keV in the range 10 keV to 25 keV we have

〈σv〉DT ≈ (kBT )2(1.1× 10−24 m3/s) (3.4.78)

and so we can form a “triple-product” also called the Lawson criterion in some instances (all
energies in keV)

nkBTτE >
12

(1.1× 10−24 m3/(s keV2))(3.5× 103 keV)
≈ 3.1× 1021 keV s (3.4.79)
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400 Fusion Reactions

Figure 3.6: This shows the values nkBTτE must meet in order to meet the requirements for ignition.
Note how the minimum is between 20 keV and 30 keV with a value of about 1× 1020 s/m3 to
2× 1020 s/m3.
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This leads to a different minimum at a temperature of about T = 14 keV. Note how this is a
good bit smaller than for the nτE criterion. We will see that the left hand side nkBTτE is a better
parameter because it changes less with changes in n and T than nτE. To meet this triple product
criterion we see that about n = 1× 1020 m−3, kBT = 10 keV, and τE = 3.1 s would be required for
ignition.

We can show for tokamaks that nkBTτE is a better parameter by using that τE scales as

τE ∝ n1/3P
−2/3
in (3.4.80)

for tokamaks, where Pin is the input power. For an ignited plasma Pin is simply Pα ∝ n2T 2

[remember (3.4.78)] so in fact

nkBTτE ∝�nT (��
�

n1/3[��
�

n−4/3T−4/3]) = T−1/3 (3.4.81)

which is a fairly weak dependence on temperature and so the minimum of the right hand side of
the triple product is near optimal.

There are other ways of analyzing this with more in common with Lawson’s original proposal that
does not use ignition. I used Lawson criteria for the name of this section rather than criterion
because sometimes the ignition condition is used with nτE or nkBTτE, and sometimes a simple
power in and out of the plasma is used instead. This latter approach is what we will now explore
in the spirit of Lawson’s original expression.

We could instead define a physicists’ Q given by the ratio of fusion power to total heating power
externally supplied to the plasma Pext [not the power actually drawn to create this heating, see
the “engineering” comment below] so

Q =
CP1

n̂2

4
〈σv〉DT EDTV
Pext

(3.4.82)

We should note that engineering Q uses the total power required to supply the plasma with the
needed heating (that is, what power do you need to draw “from the wall” in order to get the
required heating in the plasma). Engineering Q is more important for energy production but we
can see that it is simply related to the efficiency of total external energy going into the plasma,
and so physicists’ Q is usually a factor of 3 to 5 times larger than engineering Q. While this
distinction is somewhat important, in fusion research it is assumed we can adjust the value of Q to
get the desired result and so physicists’ Q > 1 is an important measure of progress. If I speak of
Q without specifying which type in this chapter, assume it is physicists’ Q.45 One can also adjust
things by considering energy loss mechanisms as well, but I won’t because while this is important,
it complicates the analysis.

Because EDT ≈ 5Eα, this is often written as

Q =
5Pα
Pext

(3.4.83)

and then we see Q = 1 means that the

5Pα = Pext (3.4.84)

45For the next chapter, I will mostly deal with engineering Q, so do not get confused! Also do not confuse it with
the nuclear reaction Q.
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402 Fusion Reactions

Then
Pα

Pα + Pext
=

Pα
6Pα

=
1

6
(3.4.85)

and so Pα provides 1/6 or about 16.7% of the total power and 1/5 or 20% of the externally supplied
power. Q = 1 is often called scientific breakeven because this is the point at which an appreciable
amount of the heating (power) is due to fusion. This is a somewhat arbitrary location, but is
important for understanding the physics of magnetic confinement with fusion occurring. To hit
engineering breakeven then, we need Q > 5 so that Pα ≈ Pext. Notice that Pext → 0 and Q→∞
at ignition. Q > 1 but Q < ∞ is often called a burning plasma to indicate that an appreciable
amount of the heating comes from fusion, but that external power is still being applied.

It should also be noted that current fusion plasma experiments usually use DD reactions and so
extrapolate Q based on assuming similar conditions (n, kBT , etc.) could be achieved with a DT
plasma. This is a caveat to most quoted Q values (TFTR and JET being exceptions as they
actually had tritons in their plasma).

If we were to do an analysis for a burning but not ignited plasma, then instead of requiring Pα > PL
we would use

PL < Pα + Pext (3.4.86)

PL < Pα +
5Pα
Q

(3.4.87)

EP
τE

<
(5 +Q)

Q
Pα (3.4.88)

(3.4.89)

and then follow the same steps as before for the Lawson criteria and find

n̂τE >

(
CPQ

Q+ 5

)
12kBT̂

〈̂σv〉DTEα
(3.4.90)

It is easy to see that as Q → ∞ that Q/(Q + 5) → 1. Thus, if we only require Q = 5 to 10 then
we can simply multiply our Lawson criteria by 0.5 to 0.67 which allows us to get away with energy
production without using fusion power to solely power the heating.

In general, if we let Efus. be the total energy per fusion reaction and the fraction used in heating
the plasma κ then we still use

Q =
CP1

n̂2

4
〈σv〉Efus.V

Pext
=
Pfus.

Pext.
(3.4.91)

but when we calculate the balance of energy losses and gains we find

EP
τE

< κPfus. + Pext. = κPfus. +
Pfus.

Q
(3.4.92)

EP
τE

<
κQ+ 1

Q
Pfus. (3.4.93)

EP
τE

<
κQ+ 1

κQ
Pfh (3.4.94)

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



Nuclear Fusion 403

leading to

n̂τE >
CPκQ

κQ+ 1

12kBT̂

〈̂σv〉Efh

(3.4.95)

which also means that we do not need to hit the ignition Lawson criterion. However, we must
be careful to consider how much external power is needed. Most likely the external power will be
electrical energy produced by the fusion, reducing the amount available to sell.

3.4.2.3 Tritium Breeding and Energy Release per Mass

While deuterium is available in the world’s oceans, the supply of tritium is quite scarce. Tritium
has a 12.3 yr half-life so that it rapidly diminishes. As previously stated, we can use

n+ 6
3Li → T + 4

2He + 4.78 MeV ((3.4.28))
n+ 7

3Li → T + 4
2He + n− 2.76 MeV ((3.4.29))

to recover tritium using some of the neutron energy from the DT fusion reactions. The 6
3Li is

especially attractive as it would release an additional 4.78 MeV of energy for the power output. The
issue of lithium reserves are left for later. The cross section for the above reactions at approximately
14 MeV is46 about 380 millibarn[18]47 for 7

3Li and is about 30 millibarn[18] for 6
3Li at that energy.

However, 6
3Li has a much better cross section at lower energies, with a cross section of about 5

barns at 1 keV neutrons. An interesting report on the difficulties and methods of getting a cross
section for these neutron mediated reactions was done by Wyman[20] which gets values similar to
modern ones while explaining how these values are arrived at.

3.5 Beam Fusion
In this section we will explain why beam fusion cannot work. We will begin with beam-target
fusion which is the same essential analysis as beam-beam fusion. In addition, this analysis will
force us to consider losses in the fusion process that we ignored in our previous analysis. This will
lead us to new estimates for the Lawson criteria.

3.5.1 Beam-Target Fusion

Rather than heating up particles to 1 keV to 100 keV temperatures, why not just shoot a beam
of particles at each other? We will consider deuterium-tritium fusion again, because it is the
most optimistic. Then because tritium is the rarer material, we will designate it a target, and
deuterium a beam that we will accelerate to the cross section peak. The fusion reactivity will
clearly be 〈σv〉DT = σvD where vD is simply the deuterium velocity. For keV temperatures, we
don’t need to worry about relativity as the mass of a deuteron is approximately 2 GeV/c2. The
cross-section peak is at 113 keV with a cross section of 4.9 barn. So we need the deuterons to be
at a velocity

vD =

√
2E

mD

=

√
2(113 keV)

1.88 GeV/c2
= (0.011)c ≈ 3.3× 106 m/s (3.5.1)

46The 14 MeV neutrons correspond to a velocity of 5.18× 107 m/s.
47I used the website https://wwwndc.jaea.go.jp/jendl/j40/j40.html to find the data.
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404 Beam Fusion

We find the number of reactions (assuming the beam just hits the target tritium nuclei48) via the
usual means

R = nDnT 〈σv〉DT (3.5.2)

with

〈σv〉DT = σvD = (4.9 barn)(3.3× 106 m/s)(1× 10−28 m2/barn) = 1.6× 10−21 m3/s (3.5.3)

Given that the density of liquid tritium is given by ρ = 0.13 g/cm3 with molar mass Mm =
3.02 g/mol. Thus the number density of the tritium is given by (with NA Avogadro’s number)

nT =
ρ

Mm

NA ≈
0.13 g/cm3

3.02 g/mol
(6.022× 1023 mol−1)(1× 106 cm3/m3) ≈ 2.6× 1028 m−3 (3.5.4)

Deuterium’s number density can also be determined via deuterium gas’s density ρ = 164 g/m3

with Mm = 2.01 g/mol so

nD =
ρ

Mm

NA ≈
164 g/m3

2.01 g/mol
(6.022× 1023 mol−1) ≈ 4.9× 1025 m−3 (3.5.5)

Thus the reactions per unit volume would be

R = nDnT 〈σv〉DT ≈ (4.9× 1025 m−3)(2.6× 1028 m−3)(1.6× 10−21 m3/s) = 2.0× 1033 m−3s−1

(3.5.6)

The total energy density released per second (that is, the power density) will be

Ptot = EDTR = (17.6 MeV)(2.0× 1033 m−3s−1) ≈ 5.6× 1021 Js−1m−3 (3.5.7)

The power density to accelerate the deuterons from rest to 113 keV every second yields an input
power density

PD,r = (2.0× 1033 m−3s−1)(113 keV) ≈ 3.6× 1019 Js−1m3 (3.5.8)

There will of course be a requirement to cool the tritium so that it is a liquid, but for now let’s
just look at how much more energy per volume one gets versus the energy required to get the
deuterons up to speed. The power density gain G is then

GP =
Ptot

PD,r
≈ 155 (3.5.9)

This is a fairly impressive gain per volume. Note that in this case we could just consider a
single fusion event to find this. If we consider per incident deuteron we’d clearly have G =
(17.6 MeV)/(0.133 MeV) ≈ 155 which tells us per deuteron we get a significant gain which leads
to large gains per volume.

One other important consideration is the mean free path of the deuterium in the tritium. This
tells us what length of tritium we need. We find this via

λmfp =
1

nTσ
≈ 1

(2.6× 1028 m−3)(4.9× 10−28 m2)
≈ 8× 10−2 m = 80 mm (3.5.10)

48What could go wrong? Do you think they’ll just hit them?
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which is quite feasible.

So why doesn’t anyone just do this? Well, I hinted before that we were ignoring something. We are
ignoring losses due to scattering. Scattering of deuterons on tritons (or vice versa), deuterons on
other deuterons, and deuterons/tritons on electrons. To study this, let’s just consider the Coulomb
interaction. I will simply use the differential cross section for Rutherford scattering as a given,
because it is calculated in numerous physics textbooks. The Rutherford integral cross section for
scattering at an angle greater than θ (which we will set to a cutoff value θc) is given by

σs =
π

4

(
Z1Z2e

2

4πε0

2

m0v2
0

)2
[

csc

(
θ

2

)2

− 1

]
=
π

4

(
Z1Z2e

2

4πε0

2

m0v2
0

)2

cot

(
θ

2

)2

=
π

4

(
Z1Z2e

2

4πε0

2

m0v2
0

)2
1 + cos θ

1− cos θ

(3.5.11)

If we do it in a center of momentum frame then replace 1
2
m0v

2
0 with 1

2
µv2 where v is the relative

velocity and µ = m1m2/(m1 + m2) is the reduced mass. I will explore the center of momentum
approach later, but we will consider a beam-target idea here. You can note that for a small enough
angle, the above expression for σ diverges. This is because small θ corresponds to a large impact
parameter.49 We can cut off θ based on an appropriate impact parameter b, where

b =
Z1Z2e

2

4πε0m0v2
0

cot

(
θ

2

)
(3.5.12)

Then our cutoff angle θc is given by

θc = 2 arccot

(
4πε0m0v

2
0b

Z1Z2e2

)
(3.5.13)

which is generally speaking a small angle, but not zero. We are concerned with two nuclei hit-
ting each other in the deuteron hitting another deuteron case. We will therefore use an impact
parameter b given by the nuclear radius which is typically 1× 10−14 m or 10 fm. Then

θc = 1.1 rad (3.5.14)

Then plugging in our numbers we find with K = 1
2
m0v

2
0 measured in keV that

σs ≈
6.9× 10−23 m2

K(keV)2
≈ 6.9× 105 barn

K(keV)2
(3.5.15)

For K = 113 keV we then find σs ≈ 54 barn. Two things should be noted. First, the scattering
cross section rapidly decreases as energy goes up. This means the faster the particles, the less likely
they are to collide. Second is that they have comparable cross sections to fusion cross sections at
the temperatures of interest.

We thus have found the scattering cross section, which means that

σs
σDT

≈ 11 (3.5.16)

49Impact parameter b is the perpendicular distance of the projectile from the target particle when the projectile
is far away.
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406 Beam Fusion

How would this degrade the gain factor from before, though? Well, we have that the total cross
section is σs+σDT , and so we need to think about how many particles are removed from the beam
without fusing. Therefore we have σDT/(σs + σDT ) as the proportion now yielding power. That is
before we had the reaction rate per volumes perfectly cancelling (ED is the kinetic energy of the
deuteron beam)

G =
Ptot

PD,r
=
REDT
RED

=
EDT
ED

(3.5.17)

where R is the reaction rate per volume. That is the input energy on bottom only required enough
to produce fusion. Now the input power must also include the total cross section because we have
to put more power in because scattered particles do not contribute to the power density gain in
the numerator. Because the R before were the same in all respects, we could essentially just cancel
them. But now they have different cross sections applied. If we write Rf and Rt for the fusion
reactions and total fusion reactions and scatterings, respectively, then we must take into account
this difference. Then we must have

Greduced =
RfEDT
RtED

=
σDTEDT

(σDT + σs)ED
=

σDT
σDT + σs

G (3.5.18)

Thus the power density (and so the energy density) released will be this fraction. The new gain is
thus

Greduced =
σDT

σDT + σs

Etot

ED,r
≈ (0.083)(155) ≈ 12 (3.5.19)

which is not great, but we see that we still have some room for a gain of energy from this process.
This assumes that the first scattering completely removes the beam from a possible fusion event.
This is incredibly pessimistic. If this were all, it would be worth it to calculate a more realistic
loss.

Unfortunately, this isn’t the whole story. What about the electrons in the target tritium? We have
to use an impact paramter b of about a0, an atomic radius (that is, using a Bohr radius) because
these electrons are bound to their atoms, and so will interact with a passing particle if it is near
the atomic size. Then we find

θc ≈ 2.5× 10−4 rad (3.5.20)

σs ≈
1.7× 10−15 m2

K(keV)2
≈ 1.7× 1013 barn

K(keV)2
(3.5.21)

and so the new σs ≈ 1.3× 109 barn, a gigantic cross section. Then we have the new power density
gain with electron scattering as

Greduced =
σDT

σDT + σs

Etot

ED,r
≈ (3.7× 10−9)(155) ≈ 5.7× 10−7 (3.5.22)

which means that we are not even close to energy breakeven. Even if it required multiple collisions.
If we look at a collision,50 we will see that the electron gains most of the kinetic energy from the
deuteron and so it really does only require one collision to destroy our chances of beam-target
fusion.

50Remember the non-relativistic formula we derived in (3.1.15)?
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3.5.1.1 Beam-Beam Fusion

Beam-beam fusion is essentially the same as beam-target fusion in a center of momentum frame.
Therefore we can consider the exact same analysis as for the beam-target case. Experimentally
there would be some problems since we would need to form a tritium beam, but the underlying
scattering processes would remain the same.

What is worth exploring is how to calculate a similar cutoff angle for the center of momentum
frame. We will introduce a cutoff when the relative velocity kinetic energy is equal to the Coulomb
potential energy. This will give us an effective radius which we can use as our cutoff. This just
means we ignore interactions that are beyond the effective radius R, because the interaction is so
minor. In equations it says

1

2
µv2 =

Z1Z2e
2

4πε0R
(3.5.23)

R =
Z1Z2e

2

2πε0µv2
(3.5.24)

and we use this as a cutoff.

Also, remember how we talked about the reduced de Broglie wavelength? If we simply assume
that we have quantized levels for the angular momentum levels around the center of momentum
so µvR = n~ then the de Broglie wavelength shows up as ~/(µv). Remember this comes from
requiring standing waves for matter waves so that the 2πR = nλ with λ the regular de Broglie
wavelength so R = λdB which shows the relationship even more simply. So if we are using a
quantum cutoff, the de Broglie wavelength is what makes the most sense as the cutoff.

For a deuteron on deuteron collision, we find

RDD =
e2

2πε0
mD

2
v2

=
(1.60× 10−19 C)2

2π(8.85× 10−12 F m−1)(3.34× 10−27 kg)(3.3× 106 m s−1)2
≈ 2.5× 10−14 m = 25 fm

(3.5.25)

in line with our estimate of 10 fm above.

Had we used a quantum cutoff, we’d find

Rq
DD = λdB,DD =

~
µν
≈ 1.055× 10−34 J s

(3.34× 10−27 kg)(3.36× 106 m s−1)
≈ 9.4× 10−15 m = 9.4 fm (3.5.26)

which is not all that different.

For an electron on deuteron collision, however, we find (same velocity, assuming the electrons are
on average at zero velocity on the scale of an atom) we have only a different reduced mass. So we
multiply the previous result by

mD

2

1

µ
=
mD

2

mD +me

memD

=
mD +me

2me

=
mD

2me

+
1

2
≈ 3.34× 10−27 kg

9.11× 10−31 kg
+

1

2
≈ 3700 (3.5.27)
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and so get an estimate of

RDe ≈ 3700

RDD︷ ︸︸ ︷
(2.5× 10−14 m) ≈ 9.3× 10−11 m = 93 pm (3.5.28)

similar to the Bohr radius (53 pm) estimate we had above. The quantum estimate will be larger
by the same factor of about 3700 and so yields

Rq
De = λdB,De ≈ 3700

λdB,DD︷ ︸︸ ︷
(9.4× 10−15 m) ≈ 3.5× 10−11 m = 35 pm (3.5.29)

which is again in the same ballpark.

3.5.2 What About Thermonuclear Fusion?

You might naturally ask yourself, how do things improve for thermonuclear fusion? The answer is
that the electrons are now free of the nuclei, and so it is not as easy to hit the electron. There are
still problems with hitting the electrons, since they absorb the kinetic energy, but the electrons
are no longer “stationary” with respect to a region of an atom, but can roam freely and so are
more difficult to collide with. You can think of this because now the v2 in 1

2
µv2 is much larger

because we have really hot ions and electrons, and so the effective cross section is much smaller. In
addition, because the electrons and ions are in a Maxwellian at some temperature, the exchange of
collisions will average out and so scattering is not as big of a problem. In other words, the particles
are still confined and not immediately lost in thermonuclear fusion. One important loss is still
due to radiation, though. Remember that accelerating charges radiate energy, and scattering will
cause electrons and ions to accelerate or decelerate causing some Bremsstrahlung. This is a loss
mechanism if the radiation leaves the plasma region, which can easily happen, especially at the
plasma edges. The original Lawson criterion used an estimate for radiation power losses to derive
a Q.

3.6 Muon Catalyzed Fusion
You may have heard that an abundance of muons would help make fusion easy. This has elements
of truth to it, but would not solve our problems. If you are unfamiliar, a muon is basically a more
massive version of an electron, but it is unstable in nature.

First, why do muons catalyze fusion? If you read some treatments the incorrect argument goes
roughly like this: the muon makes the atomic radius smaller and so the nuclei (say a deuteron and
triton or deuteron and deuteron) are closer together, which allows fusion to happen more easily.
To see this look at Bohr’s formula for the orbit of an electron. We have uniform circular motion
and the Coulomb law. Thus we must have (use the center of momentum frame with µ the reduced
mass, r the relative distance between the particles, Z the charge of the nucleus, and v the relative
velocity)

µv2

r
=

Ze2

4πε0r2
(3.6.1)

µv2r =
Ze2

4πε0
(3.6.2)

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



Nuclear Fusion 409

The final step is to use µvr = n~, that is quantized angular momentum. We’d like the radius so
v = n~/(µr) and

µ
n2~2

µ2r2
r =

Ze2

4πε0
(3.6.3)

r =
4n2~2πε0
Zµe2

(3.6.4)

For electrons it is quite accurate to assume it is orbiting the nucleus, so µ = me, Z = 1 and so for
n = 1 we find

re1 =
4~2ε0
mee2

(3.6.5)

the Bohr radius. For muons we actually need to use µ = (mnmµ)/(mn +mµ) with mn the nucleus
mass and mµ the muon mass. It turns out that mµ ≈ 1.88× 10−28 kg or about 10% of a proton.
Thus the new radius of the atom (say a deuteron) with a muon is

rµ1 =
4~2ε0
µe2

=
me

µ
re1 ≈

1

196
re1 ≈ 0.005re1 � re1 (3.6.6)

And so the atomic radius with a muon is smaller than that for an electron.

The problem with this treatment for the given claim is that the previous argument only shows
that the atomic radius is smaller, not that the nucleons in the nucleus are any closer together. It is
rather difficult to imagine why the nuclei would suddenly get closer together due to this, though,
it’s not completely implausible. In any case, the smaller atomic radius means that particles can now
get closer to the nucleus before they are scattered because the muon screens the nucleus’s charge.
This is the real key: particles can now get closer to the nucleus before feeling a huge Coulomb
barrier. For if we looked at the effective radius R from above, we’d find that mD

2

mD+mµ
mDmµ

≈ 18,
which yields a much more favorable cutoff. It is this aspect that makes it possible for fusion events
to occur, even at room temperatures. The even better part is that if a muon penetrates past an
electron, the electron in an atom is then ejected because it is no longer bound to the atom (the
muon will stay closer to the nucleus and screens the charge from the electron).

Muons have two major limitations, however. First, they last 2.2 µs in their rest frame. This means
there are not a whole lot of sources of muons in large numbers, because all the muons decay away.
But suppose we found a process that did produce muons in the necessary numbers. There is a
second, more fatal, flaw. If we consider DT fusion, then an α particle, 4He is produced. The
muon can easily be attracted to the α, and so “stick” to it after a fusion event rather than go
free and stick to some other deuteron or triton. Jackson[9] calculated that the probability after a
fusion event of the muon sticking to the α to be about 1%. This means that a muon can only help
about 100 fusion events to occur before it stops catalyzing fusion. This is not enough reactions to
produce net energy when accounting for muon scarcity and lifetimes.

3.7 Further Reading
For a general overview of nuclear, atomic, and particle physics, I highly recommend Eisberg[6].
If you are interested in both the history of fission then Rhodes[15] is a good resource, though it
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focuses on the weapons angle. Stellar fusion can be learned about in Phillips[14] among other
online resources such as Knapp[12]. Wesson[19] has a good overview of terrestrial fusion. For
beam fusion, the lecture notes by Schuster[16] are very clear. Muon catalyzed fusion can of course
mostly be looked at through Jackson[9], though online resources tend also to be good.

3.8 Problem Set
3.1. For Section 3.1.

3.1.1. Calculate (3.1.8) and (3.1.9) using the momentum four-vector formalism. That is define
(for the standard basis (see Section 1.2.6)

PW =
EW
c

ê0 + pW (3.8.1)

PX =
EX
c

ê0 + pX (3.8.2)

PY =
EY
c

ê0 + pY (3.8.3)

PZ =
EZ
c

ê0 + pZ (3.8.4)

PI =
EI
c

ê0 + pI = PW + PX (3.8.5)

PF = EF ê0 + pF = PY + PZ (3.8.6)

using that ê0 · ê0 = −1, and for a single particle (any of W , X, Y , or Z) P · P = m2
0c

2

for that particle’s rest mass.

3.1.2. Derive (3.1.12) and starting just with classical energy conservation and classical mo-
mentum conservation. You will still have to assume that the initial kinetic energy is
essentially zero in comparison to the final kinetic energy.

3.1.3. Write definitions for nuclide and isotope and see if you understand what the difference
between them could be.

3.1.4. Sometimes people refer to radionuclides. These are nuclides that are unstable, and so ra-
dioactively decay. Look at a table of nuclides and think about the ratio of radionuclides
to stable nuclides. Is it surprising how many radionuclides there are?

3.2. For Section 3.2.

3.2.1. Look up what double decays are possible. Find some example decays.

3.2.2. The SI units for radiation are the becquerel Bq, gray Gy, and sievert Sv. Is there a
difference between a becquerel and a hertz? Explain what the differences are between
the three units I mentioned. It may help to figure out which refers to a radioactive
decay rate (activity referred to a radionuclide), which is an absorbed dose, and which
is a dose equivalent.

3.2.3. Radiation units have several other older units used. Determine how a curie Ci, a
roentgen R, and a rem rem are related to the SI units in the previous problem. These
are often used units despite the availability of SI equivalents.
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3.2.4. Find what the lethal doses of radiation are. Is there a single measure that determines
this? Do you see why different types of radiation can cause different amounts of biolog-
ical tissue damage?

3.2.5. The banana equivalent dose (BED) is sometimes used to indicate that radioactivity is
all around us. It is usually given as 0.1 µSv, based on the potassium-40 in bananas.
What is this in comparison to background doses? Against dangerous exposure levels?
Against a CT scan?

3.2.6. Explain the limitations of the BED. A human body keeps the amount of potassium in
the body constant. This means that the excess amount of potassium-40 from eating a
banana is quickly balanced by expelling an amount equal to the amount gained (assum-
ing that the banana wasn’t enriched with excess potassium-40). This means eating an
additional banana does not increase the radiation dose a person would receive (except
for the couple of hours of “processing” the banana). Explain how this would then ad-
just what a BED would be if we were to take this expulsion into account. What other
limitations are there? [Hint: are all radiation exposures equivalent?]

3.2.7. Learn about the linear threshold model for radioactivity. Do you think it should be
used to determine accumulated doses? That is, should a precautionary principle apply?
Or do you think that this is being too cautious?

3.2.8. What is the relationship between the 1/e time (mean decay time) and the half life?
Consider that there are N particles of a radionuclide. Then the differential equation is
given by

dN

dt
= −µN

for µ the decay constant (one over the mean decay time). What is the solution for N?
Then find the relationship between half-lives and decay times.

3.2.9. What if you have a chain of decays? that is given radionuclides A, B, and C with a
number of nuclei given by NA, NB, and NC . Assume A decays into B only, and B
decays into C only. We assume N = NA +NB +NC is conserved. Thus the differential
equations are

dN

dt
= 0

dNA

dt
= −µANA

dNB

dt
= −µBNB + µANA

dNC

dt
= −µCNC + µBNB

What are the solutions for NB and NC?

3.3. For Section 3.3.

3.3.1. Derive the differential cross section for Rutherford scattering. Assume that there is
no ϕ dependence for scattering, as we can rotate to any ϕ and it will not affect the
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differential cross section. To do so, it is simplest to find the relationship between b and
θ. Then derive dσ

dΩ
= b

sin θ
db
dθ
. Remember that we enforce dσ

dΩ
> 0 so enforce that the

previous expression is positive.

3.3.2. Calculate Rr for ft and fb two beams at different constant velocities v0t and v0b. Thus
ft(vt) = δ(vt−v0t) and fb(vb) = δ(vb−v0b). Do you get what you would expect naively
from the notation 〈σv〉 for v constant?

3.4. For Section 3.4.

3.4.1. Learn where the Boltzmann distribution makes sense. The Gibbs distribution in statis-
tical mechanics is where you may want to look. The canonical partition function is also
worth looking at.

3.4.2. Do you think the Boltzmann distribution makes sense for particles in a plasma such as
in the sun? Do you think the number density of particles in the sun should also follow
such a distribution?

3.4.3. Find EC , what I called the Gamow energy, by applying the JWKB approximation to
the Coulomb potential for two particles scattering off of each other. Consider spherical
symmetry and so only consider ψ(r, θ, ϕ) = ξ(r) using

~2

2m

(
d2ξ

dr2
+

2

r

dξ

dr

)
=

(
V (r) +

~2

2m

n(n+ 1)

r2
− E

)
ξ

with V (r) standing for the Coulomb potential and E the total energy (here an eigen-
value).

3.4.4. I gave the number density distribution as an exponential factor exp(− x ln 2
0.1R�

). Where
does this exponential equal 1/2? Do you see why I wrote it this way?

3.4.5. Look up some of the CNO chains and see how carbon, nitrogen, and oxygen act as
catalysts. If our sun was dominated by the CNO chain, would it live longer or shorter?
Why or why not?

3.4.6. What is the cross section for the proton-proton beginning reaction? I have given you
the reaction rate r, nt the sun’s central density, and the thermal velocity as an estimate
of vb previously. Do you think such a cross section can be measured in a laboratory?

3.4.7. Look at Figure 3.3. Which reaction looks most promising to you? Consider the fusion
cross sections in this figure against the previous stellar cross section. Which process
would you choose to build a nuclear reactor if all you had were fusion cross sections to
go off of?

3.4.8. Find the distribution of kinetic energy into the products for the 3
2He + T → α+D and

for all the lithium reactions.

3.4.9. For the Lawson criteria we used flat profiles. What happens if you choose everything
to have a simple quadratic profile around a central value. That is,

q(x) = q(r) = λq0(1− r

a
)2
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for any quantity q with a the minor radius of the plasma for a toroidal with circular
cross section plasma. Here λ is a constant. You will need to find the q̂ values and CP1

and CP2. Note that q̂ = λq0.

3.4.10. What if we have q(x) = q(r) = q0 exp(−αr)? What happens to CP1 and CP2?

3.5. For Section 3.5.

3.5.1. Suppose someone comes to you with a plan to bombard tritium with deuterium. How
do you explain to them that this will not work?

3.5.2. Suppose for the sake of argument, that there were no electrons in the deuterium-tritium
beam fusion experiment. We calculated the loss assuming one collision removes a
deuteron from the beam. Suppose instead it takes effectively N collisions before it
is removed from the beam. As a first approximation, don’t alter the cross section after
each collision, so that each collision is just barely changing the velocity of the deuterons.
We showed that even if only one collision removed a deuteron we would have a gain
greater than one. How many collisions are required before our gain factor is within one
percent of its original?

3.5.3. Determine how much velocity would on average be lost by a deuteron undergoing a
collision. Assume this would be true for each subsequent collision. How many collisions
would you then estimate would be necessary to essentially remove the deuteron from a
fusion event?

3.6. For Section 3.6.

3.6.1. Explain how muons catalyze fusion reactions.

3.6.2. What would the gain factor be for a muon catalyzed fusion assuming we had all the
muons we needed for free?

3.6.3. What is more limiting for muon catalyzed fusion, the lifetime of a muon or the fact that
it gets stuck to α particles?
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Chapter 4

Resource Needs

Very few facts are able to tell their own story, without comments to bring out their
meaning.

— John Stuart Mill[15, p. 22]

This chapter is still about nuclear fusion, but focusing on requirements for making nuclear fusion a
major electrical power source rather than on the physics requirements for creating such an electrical
power source.

I will begin with an analysis for a DT plasma to produce fusion energy at a level that would be
useful for the world. I will take fairly optimistic projections, not because I think they are necessarily
the most realistic, but because it gives a baseline that we can then subtract inefficiencies from.
The other method of using a pessimistic prediction may on occasion be used, but it provides less
information. It is easy to assume the worst and show no useful energy will come out. It’s a much
stronger statement to assume the best and still not find useful energy production.

It is then worth looking in a bit more detail at tritium production for DT plasmas. After that we
will explore DD plasmas for producing fusion energy. This analysis can easily be extended to other
possible reactions, but DD is of special interest because of the relative abundance of deuterium on
Earth and in the universe. Finally, I will examine some other nuclear fusion power plant potential
problems.

4.1 Deuterium-Tritium Necessary Resources

He who knows only his own side of the case, knows little of that.

— John Stuart Mill[15, p. 41]

The first question to ask yourself, and, indeed, the first question physicists asked themselves, was
do we have enough fuel? We will first calculate how much deuterium, lithium, and tritium there
is in the world. It is often claimed that the amount of deuterium and lithium on Earth is enough
to satisfy fusion needs for millions of years, and that fusion therefore has an essentially unlimited
fuel supply[6]. There are various ways to understand essentially unlimited, but if resources last a
million years that seems like a good enough definition for me. That is more than 100 times longer
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418 Deuterium-Tritium Necessary Resources

than recorded human history, at the very least. The question, though, is where are these resources
and how easily can they be extracted.

To start with, let’s look at tritium. This means we need to look at lithium resources. If we use
the most optimistic assumption that all of the lithium will be converted in reactions, and that the
mined lithium is refined to be pure lithium-6, we can calculate how much energy and tritium will
be produced. Remember the lithium reactions are given by

n+ 6
3Li → T + 4

2He + 4.78 MeV (3.4.28)
n+ 7

3Li → T + 4
2He + n− 2.76 MeV (3.4.29)

Let’s do this per kilogram of lithium-6. The number of atoms of 6Li in a kilogram is

1 kg

6.015 g /mol
6.022× 1023 mol−1 ≈ 1.00× 1026 (4.1.1)

If all the lithium were to be used up in reactions, then the energy release in 1 kg of lithium-6 would
then be

(1.00× 1026)(4.8 MeV)(1.60× 10−22 GJ MeV−1) ≈ 7.7× 104 GJ = 77 TJ (4.1.2)

This will also clearly produce the same number of tritons. It is useful to keep in mind that 1 MJ is
approximately the amount of energy in a glazed doughnut. That is a 1 GW power plant is a fairly
large power plant, with a US household using about 1 MW h per month1 or in a nice pure SI unit,
1.37 kW.2 Thus the above amount of electrical energy could supply a single household for nearly
1800 years. And this is just from the energy release of the lithium-6.

The molar mass of atomic tritium3 is about 3.02 g /mol and so a kilogram of lithium will produce

1 kg
3.02 g /mol

6.015 g /mol
≈ 0.5 kg (4.1.3)

or just about half a kilogram of tritium.

Now we can consider the requirements for the DT fusion itself. Suppose we had a kilogram of
tritium, then we know for a perfect burn we need the same number of deuterons as tritons. This
means the mass of deuterium required is given by

1 kg
2.01 g /mol

3.02 g /mol
≈ 0.67 kg (4.1.4)

This way there is the same number of tritons and deuterons. In other words, for this perfect
balance, a kilogram of deuterium requires 1.5 kg of tritium which requires 3.0 kg of lithium-6.
There are

1 kg

2.01 g /mol
6.022× 1023 mol−1 ≈ 3.00× 1026 (4.1.5)

1The electrical units MW h, kW h, etc., should really be cursed as abominable complications. We have a unit
for this already called the joule! But, life is not fair, and the electrical industry has decided to report the energy
delivered in this terribly unnecessary unit. You can use 1 W h = 3600 J.

2A leisurely 120 doughnuts every day each month (of 30 days). Do not take nutritional advice from a physics
textbook.

3Note that tritium and deuterium do not usually come as atoms, but as molecules attached to themselves. And
in fact, even then they are often attached to other atoms, such as in heavy water.
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possible reactions with a kilogram of deuterium. Each DT reaction can release 17.6 MeV per reac-
tion. Thus, if we include the energy from the lithium-6 reaction we release 17.6 MeV +4.78 MeV =
22.4 MeV per reaction or about a 27.3% increase in energy released (or a factor of 1.273) relative
to just the DT fusion burn. If we ignore the lithium-6 reactions we find the energy release of just
D and T yields

(3.00× 1026)(17.6 MeV)(1.60× 10−22 GJ MeV−1) ≈ 8.4× 105 GJ = 840 TJ (4.1.6)

Thus, the total energy release if the tritium was produced from lithium-6 would be

(3.00× 1026)(22.4 MeV)(1.60× 10−22 GJ MeV−1) ≈ 1.08× 106 GJ = 1080 TJ (4.1.7)

This ideal burn requires approximately 3 kg of lithium-6 per kilogram of deuterium, but that does
not tell us how much lithium needs to be mined. Since lithium-6 has a natural abundance of 7.6%
and lithium-7 a natural abundance of 92.4%, we see that we actually require (1/0.076) ≈ 13 times
the amount of natural lithium to get an appropriate amount of lithium-6. So in reality, for every
kilogram of deuterium to fully burn from generated tritium (after the initial tritium is used, of
course to start the process), we require (13)(3 kg) or 29 kg of natural lithium.

As an optimistic look, let’s consider that the entirety of the energy in these processes can be
extracted. Then we can apply factors for efficiency, but it is useful to see what the most energy we
could get out is. We will consider 1 TW as a nice benchmark.4 This is approximately two times
the US’s electrical production and about half of the world’s total electrical production per year in
the 2010 decade. We will also consider with and without the extra energy released by lithium-6
since it does not require much extra work. It just entails whether we omit a factor of 1.273. How
much deuterium would be required to supply 1 TW for one year. That is

(1 TW)(1 yr) = (1 TW)(3.154× 107 s) ≈ 3.154× 1019 J = 3.154× 1010 GJ (4.1.8)

and so the minimum mass of deuterium required is

3.154× 1010 GJ

8.4× 105 GJ/kg
≈ 3.8× 104 kg = 38 mt (4.1.9)

with 1 mt being one metric ton.5 This means we require

mD,min. req. ≈ 3.8× 104 kg (4.1.10)
mT,min. req. ≈ 5.7× 104 kg (4.1.11)
mLi6,min. req. ≈ 1.1× 105 kg (4.1.12)
mLi,min. req. ≈ 1.5× 106 kg (4.1.13)

If we include the energy from 6Li reactions we can lower the requirement to (I put the bar over
the quantities to represent lithium-6 energy release included)

m̄D,min. req. ≈ 3.0× 104 kg (4.1.14)
m̄T,min. req. ≈ 4.5× 104 kg (4.1.15)
m̄Li6,min. req. ≈ 9.0× 104 kg (4.1.16)
m̄Li,min. req. ≈ 1.2× 106 kg (4.1.17)

4The electrical companies would probably say something like about 8760 TW h/yr.
5I will try to avoid metric tons from now on since they are just 1000 kg, and could just as easily be called 1 Mg.

They also add unneeded confusion about long tons, short tons, and metric tons.
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420 Deuterium-Tritium Necessary Resources

We can compare these results to those that appear in the literature. Hartley[10] says that for a
1 TW fusion power capacity, it would require consumption of about 0.34 mt /GW yr−1 of lithium-6
or 3.4× 105 kg/TW yr−1 which is similar to our estimate. The amount of lithium required in each
plant is much higher, however. They estimate that about 4× 105 mt to 1.2× 106 mt [4× 108 kg
to 1.2× 109 kg] of lithium for 1 TW power capacity. This is about a thousand times more lithium
than is needed as fuel, and a substantial portion of the available lithium on Earth (outside of
the oceans). Hartley says it is about 1/3 of known US lithium resources.6 Hartley also uses that
for 1 GW one requires about 50 kg of deuterium per year. This translates to 5× 104 kg for 1 TW
power capacity which is also close to our estimates.

In reality, we need to take into account some inefficiencies for a “realistic” optimistic estimate. Only
80% of the energy is available for electrical energy at best,7 and conversions of this to electrical
energy will lead at best to only about 25% of the 80% available actually being converted.8 Most
likely some of this electrical energy will have to be diverted for heating in current configurations,
so let’s use that only 15% of the total energy will make it. This means for a constant 1 TW
production of electricity, we require per year

mD,1 TW yr = 2.5× 105 kg (4.1.18)
mT,1 TW yr = 3.8× 105 kg (4.1.19)
mLi6,1 TW yr = 7.6× 106 kg (4.1.20)
mLi,1 TW yr = 9.9× 107 kg (4.1.21)

If we include lithium-6 energy releases we still get

m̄D,1 TW yr = 2.0× 105 kg (4.1.22)
m̄T,1 TW yr = 3.0× 105 kg (4.1.23)
m̄Li6,1 TW yr = 6.0× 105 kg (4.1.24)
m̄Li,1 TW yr = 7.8× 106 kg (4.1.25)

Let us now consider how much of these materials there are in the world, and just as importantly,
where they are.

4.1.1 Material and Location

We can first look at deuterium. Virtually all the deuterium that is needed is in the oceans
at a concentration of cD = 300 ppm (by mass). The volume of the ocean is estimated at Vo =
1.37× 1018 m3 with a mean density of ρo = 1030 kg/m3. This means that there is mass of deuterium
MD in the oceans of

MD = VoρocD =
(
1.37× 1018 m3

) (
1030 kg/m3

) (
3× 10−4

)
≈ 4.2× 1017 kg (4.1.26)

6Resources that are still not being used because of their poor quality (as of 2020).
7Remember we are using some of the energy to heat the plasma and keep the reactions going.
8You could argue that we should be using 40% as a best case scenario and then cut it down to about 30% when

thinking about the power used by the plant itself. If you believe this, you can cut our resource needs in half, and so
resources will last twice as long. These better numbers are not impossible, but seem rather optimistic to me. Since
we really can only claim to be getting order of magnitude estimates, the factor of two shouldn’t drastically change
our results.
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For 1 TW of constant power each year (with power losses put in), we estimated that this would
require aboutmD,1 TW yr ≈ 2.5× 105 kg/yr of deuterium and 3.8× 105 kg/yr of tritium. This means
that the supply of deuterium would last

tD,L =
MD

mD,1 TW yr

≈ 4.2× 1017 kg

2.5× 105 kg/yr
≈ 1.7× 1012 yr (4.1.27)

or about 2 trillion years. Even if we required 1000 TW of power per year,9 there would be 2 billion
years, much longer than our million year horizon for essentially unlimited.

If instead, we turn our attention to lithium, then the concentration is cL = 0.2 ppm (by mass) and
so the mass of lithium in the ocean ML is

ML = VoρocL =
(
1.37× 1018 m3

) (
1030 kg/m3

) (
2× 10−7

)
≈ 2.8× 1014 kg (4.1.28)

The amount of lithium needed for 1 TW each year (this includes that most lithium is lithium-7
and lithium-6 is required to breed tritium, so this mass is the needed to be mined assuming we
can separate with 100% efficiency) was calculated at mLi,1 TW yr = 9.8× 107 kg. Then our supply
would then be

tL,L =
ML

mL,1 TW yr

≈ 2.8× 1014 kg

9.8× 107 kg/yr
≈ 2.9× 106 yr (4.1.29)

or about 3 million years.10 This meets our requirements for virtually unlimited, and is what will
be presented if you challenge someone about lithium supplies.

However, extracting something with such a low concentration from ocean water is a difficult task.
Lithium is already highly prized for lithium-ion batteries, but this lithium comes from brine lake
deposits in South America and a few other areas[14][17] and from particularly good ore deposits
in Australia. Practically all the world’s supply of lithium comes from just these two sources right
now. If we could access ocean lithium economically, it would almost certainly already be done. The
counterargument is that with cheap fusion energy, the economics of lithium extraction from ocean
water will change so that it is economically viable. This could be true, but it is difficult to predict
in advance. Before moving on to the relevant resource numbers, let’s consider some difficulties
with extracting small amounts of material from a vast ocean. We will see that for lithium it just
might be doable without losing energy, and so it just might be possible for this to be economically
worth it.

4.1.2 Extraction from Ocean Water

As a beginning cautionary tale, consider gold. The concentration is a measly cAu = 0.005 ppb (by
mass), but that means there is

MAu = VoρocAu =
(
1.37× 1018 m3

) (
1030 kg/m3

) (
5× 10−12

)
≈ 7.0× 109 kg (4.1.30)

Compare this with 1.7× 108 kg that has been mined by humanity. People have tried to get gold
from seawater, but in a cubic kilometer of seawater there is only about 5 kg of gold. Try to imagine

9The current global energy production is 2 TW and so 1 TW is a significant production of electrical energy. If
we include all power (not just electrical) then the world uses about 20 TW.

10Even if we include the extra energy from lithium-6 we only get 3.7 million years.
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422 Deuterium-Tritium Necessary Resources

a cubic kilometer of seawater. Suppose we could process 1000 Olympic size swimming pools of
water11 each day. It would still take over a year (400 days) to process a cubic kilometer of water.
That rate translates into about 30 m3 s−1, which is about two thousandths (0.002) of the volume
discharged by the Mississippi River (16 800 m3 s−1).12

With this lesson in hand, let us reexamine deuterium and lithium from the oceans. Suppose we
have a volume of some main substance with density ρm with another substance of concentration
c� 1 and density ρc and we then take out a small volume dV and extract some of the substance
out of this volume with efficiency α. Let the mixture’s concentration be ρ0. That is we extract a
mass of

dmc = αcρ0 dV (4.1.31)

Initially the entire mass was

M0 = ρ0V0 = M0 = Mm +Mc (4.1.32)

c =
Mc

Mm +Mc

=
Mc

M0

≈ Mc

Mm

(4.1.33)

where Mc � Mm since c � 1. After removing the small amount of mass the new concentration
will be

cn =
Mc − dmc

M0 − dmc

(4.1.34)

Because M0 �Mc then this simply says

dc = cn − c =
Mc − dmc

M0

− Mc

M0

= − dmc

M0

= −αρ0c dV

M0

(4.1.35)

Thus, as time changes

dc

dt
= −αρcc

M0

dV

dt
(4.1.36)

where dV
dt

is the volume rate of change, that is, the volume of the main substance that must be
processed, alternatively called a discharge or volume flow rate. We can use M0 = ρ0V0 to then
write

V0
dc

dt
= −cαρ0

ρ0

dV

dt
≡ −cαdV

dt
(4.1.37)

Note that if we used ppm by volume instead of mass, we would also arrive at the same equation
with c� 1,13

V0
dc

dt
= −cαdV

dt
(4.1.38)

11The minimum volume of an Olympic size swimming pool is 2500 m3 which is what I will use.
12You can look at the data yourself as provided by NOAA and NWS at https://waterdata.usgs.gov/usa/

nwis/uv?site_no=07374000.
13The derivation follows the same form as that for an article examining uranium from ocean water in Abbott[1].
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Now if we are extracting and want a certain amount of mass per year, then αdV
dt
∝ 1/c because the

less concentrated the substance is, the more flow we need to get the same mass out. Because of
this, we can simply define the flow rate to be dF

dt
= αdV

dt
. Then dF

dt
= k/c and we have the equation

dc

dt
= − k

V0

(4.1.39)

c =
−k
V0

t+ c0 (4.1.40)

with c0 the initial concentration. We also have that dF0

dt
≡ αdV

dt
|t=0 = k/c0 ≡ G0 so that if we solve

for the flow volume required for a specified mass per year we find

k
dF
dt

=
−k
V0

t+ c0 (4.1.41)(
dF

dt

)−1

=
−t
V0

+
c0

k
(4.1.42)

dF

dt
=

1
1
G0
− t

V0

=
V0G0

V0 −G0t
(4.1.43)

And so the total volume processed will be

V =
F

α
=

1

α

ˆ T

0

dt
V0G0

V0 −G0t
=
V0G0

αG0

ln

(
V0

V0 −G0T

)
= −V0

α
ln

(
1− G0T

V0

)
(4.1.44)

Note a problem with this equation. Remember G0 = αdV
dt
|t=0. So when T = V0/G0 we get an

infinite amount of water processed. What this is saying is that as we get close to removing all of
our desired material out of the water, it requires more and more water to extract the little that is
left.

We can then note the initial flow rate required if we are to produce a constant mass per second
rm,cons. is

V0 =
G0

α
=
rms,cons.
αcρ0

(4.1.45)

This is arrived at by asking what flow rate would initially be required to produce the mass we
desire. We want mcons. and so we initially have cρ0 of the desired mass per volume. Thus, we take
the initial desired mass per time and divide it by the given mass per volume to find the volume
per time. Remember that F0 takes into account that we can only get α of the cρ0 out, and so have
to multiply by 1/α to get the correct initial volume flow rate. So we get the formula (4.1.45).

Let’s look at this with deuterium. For deuterium, let’s assume that we have 100% efficiency
(α = 1). The initial flow required for our mD,1 TW yr = 2.5× 105 kg/yr for 1 TW each year then
requires

V0 =
rmD,1 TW yr

cDρ0

=
(2.5× 105 kg/yr)

(3.15× 107 yr /s)(3× 10−4)(1030 kg m−3)
≈ 2.5× 10−2 m3 s−1 (4.1.46)

This is a small value and would not require enormous expense to produce a volume discharge this
large. The total volume discharge of rivers in the world is approximately 5× 105 m3 s−1.14 We can

14It should be noted that the Amazon river contributes 2× 105 m3 s−1 of this discharge.
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424 Deuterium-Tritium Necessary Resources

Figure 4.1: The required flow rates for deuterium on the left and lithium on the right are shown
over time. This assumes inefficiency in electrical production (15% of total energy release goes
out as electrical energy), but perfect removal from sea-water (α = 1), so on balance leads to an
optimistic estimate. Note that deuterium requires very little volume flow per second and is quite
manageable. On the other hand, lithium requires flows of nearly 104 m3 s−1 or 1 km3 d−1, a massive
volume of water to process! The oil production of 150 m3 s−1 is shown on the lithium figure to
show the scale.

instead compare it to oil extraction. In 2018 about 80 or 85 billion barrels of oil were produced.15
This corresponds to about 150 m3 s−1 using US Energy Information Administration data.16 One
other point of information is the water desalinated per year. This is about 1013 kg yr−1[3] or
310 m3 s−1. We can then graph the required volume discharge rate for deuterium (and lithium)
from the oceans in Figure 4.1. The good news is that there will not be substantial increases in the
volume discharge rate for millions of years in both cases. The bad news, as we will calculate, is
that lithium will require a gigantic volume discharge.

For lithium we require mL,1 TW yr = 9.9× 107 kg, so with 100% efficiency,

G0 =
mL,cons.

cLρ0

=
(9.9× 106 kg/yr)

(3.15× 107 yr/s)(2× 10−7)(1030 kg/m3)
≈ 1.5× 104 m3/s = 15 000 m3/s

(4.1.47)

This is similar to the discharge of the Mississippi River (16 800 m3 s−1). Even if we include lithium-6
energy release

Ḡ0 =
m̄L,cons.

cLρ0

=
(7.8× 106 kg/yr)

(3.15× 107 yr/s)(2× 10−7)(1030 kg/m3)
≈ 1.2× 104 m3/s = 12 000 m3/s

(4.1.48)

15A barrel of oil is 0.1359 m3.
16The data is somewhat confusing, but I used world oil production at about 80 billion barrels per day.

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



Resource Needs 425

We see that this flow is still less than that of all the rivers of the world, but it is also 100 times
larger than the amount of oil extracted currently. If we have less than 100% extraction efficiency
this comparison only gets worse.

It seems fairly clear from this that deuterium should not be difficult to extract, even with poor
efficiencies, it would be surprising if extracting it from the oceans would be as energy intensive as
burning it as fusion fuel.

For ocean lithium, it seems unlikely to be processed efficiently enough to justify its use in fusion,
though it just might be doable. That is a lot of water, but fusion plants produce a lot of energy.
Note that if we simply assume an efficiency of 50% (this is incredibly optimistic since at best 20%
efficiency may have been shown), suddenly even with our most optimistic scenario [perfect energy
consumption and α = 1] we find

Ḡbest
0 ≈ (0.15)Ḡ0

0.5
≈ (0.3)Ḡ0 ≈ 4000 m3 s−1 (4.1.49)

Cutting this in half with a more optimistic power plant efficiency might get you down to 2000 m3 s−1.
Remember that total oil production is about 150 m3 s−1 as quoted before and that is a massive
industry. This is no small amount of water to process, and we have not actually considered the
energy efficiency of the extraction process. And remember this is for only 1 TW of power. If fusion
were to meet the world’s needs in the future, it might require as much as 15 TW, so 15 times the
discharge volume rates we’ve calculated. What this says is that lithium extraction from sea water
would need to become an industry bigger than the oil industry is today.

4.1.3 Literature Review of Resources for Fusion

Given these limitations on lithium, we can look at the world’s likely resources on land. This is
still fairly optimistic, as they are not reserves (that is the subset of resources that are economically
viable). There are numerous estimates of resources and reserves. Hartley[10] cites US lithium
reserves between 3.7× 108 kg to 3.2× 109 kg. He claims 2.5× 1016 kg of lithium in the ocean,
but cites 1.7× 10−4 kg m−3 which with our ocean volume estimate of Vo = 1.3× 1018 m3 yields
2.2× 1014 kg which is essentially our previous estimate. Hartley tends to be quite optimistic that
the 3.2× 109 kg of US lithium supplies are viable reserves. Hartley essentially assumes so by saying
that lithium produces enough energy for fusion such that it will be economically exploitable, and
so will become a reserve. I feel as if this is assuming fusion energy is cheap, but you can decide for
yourself. Supposing that these resources indeed were reserves, under our optimistic scenario (15%
efficiency) we would have 3.2× 109 kg/7.8× 106 kg/yr = 410 yr.

Fasel[7] says lithium resource estimates vary widely from 9.4× 109 kg to 2.1× 1010 kg. Fasel also
explains that Australia has most of the mineral resources, i.e., from rocks, while Chile has most
of the brines that supply lithium to the world. Some of the resource estimates include difficult
to extract lithium, as well. He also considers ocean resources with the accurate estimation of
2.3× 1014 kg of lithium in the ocean. Fasel then cites a Japanese experiment that claimed to
recover usable lithium with 20% efficiency from seawater. This must not have turned out as well
as hoped given that it has been nearly 15 years and this method does not appear to have been
adopted.17 Fasel estimates 6.3× 103 kg to 8.9× 103 kg of lithium consumed for 1.5 GW during

17I am dubious of the relevance of this experiment to general extraction of lithium from ocean water. As Fasel
states, “Unfortunately, no details exist on the process energy requirements and the estimated production price.”
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8000 h or 1.37 GW continuously during a year. This translates to 4.6× 106 kg to 6.5× 106 kg
which is within our most optimistic estimate.

Vikström[18]18 estimates resources as 21.3× 109 kg to 65.3× 109 kg with estimated reserves at
6.5× 109 kg to 29.3× 109 kg. For our most optimistic scenario assuming every resource becomes
a reserve we would find

6.5× 1010 kg

7.8× 106 kg/yr
= 8300 yr (4.1.50)

for a constant 1 TW each year. Vikström also points out the absurdly large volumes of water
required to process seawater and gives an estimate from Bardi[3] of 2.5× 107 kg per year of lithium
would require about 1.5× 103 TW h of energy, or 2.2× 1011 J kg−1 which is 0.22 TJ kg−1 of lithium.
19 Bardi estimates two different methods: pumping the water directly through membranes like
in desalination plants, and putting membranes in the seawater and using ocean currents (rather
than pumping water) to push water through a membrane. The analysis does not include the
energy needed to create the membranes or of the process of actually extracting the lithium from
the membranes.20 Pumping water directly would require 9000 J per kilogram of water pumped
according to the paper. For 7.8× 106 kg of lithium corresponding to at best

(4000 m3 s−1)(1 yr)(1030 kg m−3) ≈ 1.2× 1014 kg (4.1.51)

of seawater this would require 1018 J or 106 TJ to process that amount of water into lithium. Thus it
requires about 0.13 TJ per kilogram of lithium. This would still compare favorably to our previous
burn for DT of about 270 TJ with about 30 kg of lithium which would only require about 3.8 TJ
of this. Thus the energy requirements are not altogether unfavorable to lithium extraction from
seawater if efficient-enough membranes and separation processes can be discovered. You would still
need to mass produce them and get 4000 m3 s−1 of water processed. This rate would go through a
cubic kilometer of seawater about once every three days.

It is best to just use the words in Vikström, “In summary, extraction from seawater appears
not feasible and not something that should be considered viable in practice, at least not in an
imminent future. A major portion of sound scepticism should accompany all thoughts about rapid
developments of large-scale Li-extraction from seawater.”[18]

So we find that in our optimistic (though not extremely optimistic) scenario, we have about 800
years of lithium available. Of course, 800 years is a long time, but it is not even close to our

18I consider Vikström to be the best paper on resources among these estimates. The paper is clear, comprehensive,
and is fairly careful in its analysis. It also has lithium resources and reserves data for most countries on Earth.

19Remember that about 29 kg of natural lithium was needed for a perfect burn of 1 kg of deuterium and 1.5 kg
of tritium, which releases 1080 TJ. So the lithium would require about 9 TJ of this. Of the total theoretical energy
production, maybe 25% will be available for electrical energy, leaving 270 TJ for electrical energy and so the natural
lithium extraction would require at least 3.7% of the fusion reactor’s energy. This doesn’t include how much land
use and the initial set up of the plants, but gives a flavor of why some are optimistic. Even if lithium alone took
10% of the energy, that could theoretically leave room for abundant energy production. I think Bardi’s estimate
should be closer to 1%, though he is assuming perfect efficiency of lithium extraction and is looking only at moving
membranes or water through membranes.

20The Bardi paper’s primary analysis is for uranium and so its lithium estimate is difficult to follow. It appears
to me Bardi overestimates the lithium consumed by a fusion reactor by a factor of 10. Using 3000 kg of membranes
required per 1 kg of lithium produced with 5 kW h per kilogram of membrane to move the membranes (this does
not include processing energy) yields around 102 TW h. However, processing would almost certainly be significant,
so that the extra factor of 10 is not perhaps a terrible estimate. In any case, the case is not great, but nor is it so
dire as to be impossible to get lithium from seawater for fusion.
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virtually unlimited claim of a million years. In addition, that is lithium consumption. The amount
of lithium required for the blanket is about 1000 times more than the amount consumed. This
would imply that basically the entirety of the world’s lithium would be used in fusion power plants
if we had a 1 TW fusion electrical energy capacity.21 It is certainly fair to point out that 800 years
is much longer than any technological prediction could be made, but fission power could claim the
same advantages on this time frame and it would not theoretically require all of the world’s lithium.
Remember that I have been using fairly optimistic values.22 Lithium is a precious resource for DT
fusion and largely limits what is possible for DT fusion energy production.

We can also consider some of the other resource constraints. Lead and beryllium will also probably
be needed for the blanket for tritium production. Here, Bradshaw[5] is a great article to consider
resource constraints. The paper estimates a lithium-6 consumption of 266 kg per year for 2.385 GW
or 1.1× 105 kg TW−1 per year, which actually matches our estimate when not including energy
released from the lithium-6 reactions. In addition, the initial lithium-6 inventory is estimated at
about 1× 104 kg to 2.5× 104 kg for the 2.385 GW plant. So again, we see almost 1000 times more
is needed than what is consumed.23 In addition, Bradshaw considers the lead inventory. It is
estimated that lead reserves are 79× 109 kg and resources are 1.5× 1012 kg. As an example of lead
required, the DEMO reactor considered requires an inventory of 4× 106 kg to 5× 106 kg and the
lead is burned up at 3.1× 103 kg per year. Bradshaw then assumes 2760 fusion power stations for
30% of future energy production (about 2.74 TW continuous operation yearly), and with a burn up
of about 8× 105 kg of lithium-6 finds with 9.9× 109 kg of regular lithium reserves lasting 990 years.
But the lithium inventory would be nearly 6.9× 107 kg of lithium-6, requiring about one tenth of
the 7.6× 108 kg reserves of lithium-6 as estimated in Bradshaw. Beryllium is an even worse case,
requiring 3× 108 kg in inventory and consuming about 5× 105 kg annually. Note that 3× 108 kg
would most likely be between 90% and 100% of all beryllium, exceeding the Bradshaw beryllium
resource estimate. Lead lasts for 175 000 yr, which is better. It would require 1.5× 1012 kg of lead
as inventory, though.

The good news is that lithium-6 is the badly needed part for fusion reactors. Perhaps blankets for
tritium production can use something other than lithium with the lithium-6 to get the necessary
tritium production.24 The demand from lithium-ion batteries and fusion may spur conversion of
resources to reserves. If they enabled seawater extraction, then there would be far fewer problems,
at least from a running out of resources perspective. The seawater extraction would spawn an
industry at least as large as oil extraction. To say that this is impossible is wrong, but it would
require incredible investment.

This is perhaps a long-winded way of saying that the virtually unlimited claim is not well-justified.
On the other hand, it seems reasonable to assume around 200 yr of less than 1 TW production from

21Unless we get a different battery technology, this is pretty clearly not ideal since lithium-ion batteries would be
needed and require some of the lithium. Of course, the more abundant lithium-7 would be available for batteries,
so it is may not be quite so dire.

22I am sure people will quibble with this, but even you assume double the efficiency of what I did, you would not
be close to essentially unlimited, and you would still be holding most of the world’s lithium in fusion power plants.

23If beryllium is used in the blanket (to reduce the amount of lithium needed), then 1.20× 105 kg is required and
190 kg (again consistent with an approximate factor of 1000 between the amount consumed in reactions and the
needed inventory).

24Although the considered replacements often have problems. Beryllium has a scarcity problem as well, as we saw.
Hartley[10] gives the reserves at 4× 108 kg [compare 8× 107 kg for Bradshaw[5]] with a consumption of 6× 105 kg
to 1.1× 106 kg at 1 TW every year. The required inventory of beryllium would again be about 1000 times the
consumption, and so we find once again that nearly the entire world’s beryllium supply would be in the reactors.
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DT fusion is quite possible. With the intervening time, other approaches may present themselves.

One final comment is that this is under the optimistic scenario that the fuels deuterium and tritium
are recycled with near 100% efficiency. Much of the fuel will not burn before it escapes confinement
because fusion reactions are mostly done by particles in the tail of the Maxwellian. This means
most of the fuel just flies around inside the reactor and does not fuse. If the fuels cannot be recycled
(and in the case of the lithium blanket, extracted) with perfect efficiency, then the mass required
per year increases (although the amount burned per year is fairly minimal), and the number of
years of fusion are reduced.25

4.2 Tritium Breeding

Precious tritium is what makes this project go.

— Dr. Otto Octavius in Spider-Man 2

As mentioned in Section 3.4.2, we need lithium in order to breed tritium for DT fusion to work.
The details of how much tritium we get requires careful analysis but the basic picture is that we
get a tritium breeding ratio (TBR) based on the ratio of the tritium atom production over tritium
atoms burned. Then the net TBR (TBRnet) is sometimes defined as the ratio of tritium atoms
recovered for production over the tritium atoms burned. The net TBR needs to be greater than
1.01 for fusion to really be viable. It certainly must be greater than 1 for physical viability. Let
the net TBR be BT (as I will define it below). Then let f be the fraction of the time the plant is
running. If we assume each plant requires at least a mass of tritium MT0 to begin running, we can
calculate the doubling time for the mass given that the plant is only running a fraction f of the
time (if f = 0.01, this corresponds to a plant running 1% of the time). The net TBR says that if
there are r reactions then there are net TBR times r tritons produced, i.e. BT r tritons produced.

Before estimating the tritium production for a power plant, let us take a minute to explain what is
going on. A fusion reactor needs tritium forDT reactions, which needs to come from somewhere. It
is imagined lithium-6 is an ideal candidate. Thus, we use the high energy neutrons that come out of
DT reactions, and have it hit a “blanket” of some material that will produce tritium. This blanket
is made up of lithium-6 and other materials so that it can produce tritium. I have mentioned lead
and beryllium as possible constituents. As we have seen, there are serious questions about whether
these blankets can be produced at a scale needed for widespread fusion energy production. In any
case, the blanket also serves to absorb neutrons, produce the heat for electrical energy production,
and prevent neutron damage beyond the blanket.

We can estimate the reaction rate per volume near the ignition limit of kBT = 10 keV and nT =
nD = n/2 = 5× 1019 m−3 as

RDT = nTnD 〈σv〉DT ≈ nTnD(10)2(1.1× 10−24 m3 s−1)

≈ (2.5× 1039 m−6)(1.1× 10−22 m3 s−1) ≈ 2.75× 1017 m−3 (4.2.1)

and so the number of reactions (per second) is given by

rDT = VRDT (4.2.2)

25Assuming that the unburnt and unrecycled fuel is irretrievable.
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We then have NrDT = rDT (1 s) reactions in a second and so for BT = TBRnet we must now
have bred NbtDT = BTNrDT total triton atoms. Because the molar mass of a triton wT =
3× 10−3 kg mol−1 is fixed, we can multiply both sides by the molar mass to find the mass of
bred tritons. We can call this mass of bred tritons MbtDT , which were created by the mass of
tritons burned in fusion reactions MrDT . Then we find

NbtDT = BTNrDT (4.2.3)
MrDT = wTNrDT (4.2.4)
MbtDT = wTNbtDT (4.2.5)
MbtDT = BTMrDT (4.2.6)

Clearly after one second of reactions we will then have BT times the initial burn amount given by
MTB0 and after N seconds we will have a mass MT = (BT )NMTB0. It is also worth noting that if
the initial amount of tritium in the reactor is MT0, then MTB0 �MT0 because we will have a lot
of initial tritium that will not be burned up in reactions. Thus, if we wish to find the number of
seconds N for a doubling period (with respect to the burned tritium) given BT we use

MT

MTB0

= 2 = (BT )N = (elnBT )N = eN lnBT (4.2.7)

N =
ln 2

lnBT

(4.2.8)

Thus it will take N seconds to double the initial mass burned assuming that the reaction rate
remains constant throughout this process. If we only allow reactions to happen with duty cycle f
then clearly it will take more time in proportion to the inverse of the duty cycle, 1/f . Thus

N =
ln 2

f lnBT

(4.2.9)

As a check, for a duty cycle of half, f = 0.5 then it will take double the amount of time, which
makes complete sense. This leads to Figure 4.2 for the doubling time for a given net TBR, BT .

Our previous calculations suggested a likely tritium fusion reactivity near 10 keV yields 〈σv〉DT ≈
1.1× 10−22 m3 s−1. So for a tritium and deuterium density of 5× 1019 m−3 this yields a reaction
rate (per volume) of

RDT = (25× 1038 m−6)(1.1× 10−22 m3 s−1) ≈ 2.75× 1017 m−3 s−1 (4.2.10)

A DEMO-like size[12]26 would lead to a plasma volume of 2500 m3 and27 so

rDT ≈ (2500 m3)(2.75× 1017 m−3 s−1) ≈ (6.9× 1020 s−1) (4.2.11)

The initial mass in such a reactor can be estimated by assuming a rather flat number density
throughout the plasma volume yielding (this will be somewhat of an overestimate, but given that
you would want to have extra tritium available at all times this is not a terrible overestimate)

MT0 = nTV mT ≈ (5× 1019 m−3)(2500 m3)(2.14× 10−27 kg) ≈ 2.7× 10−4 kg = 270 mg (4.2.12)

26The website www.fz-juelich.de/iek/iek-4/EN/Research/07_DEMO/artikel_2014.html gave an estimate of
2500 m3 for DEMO. Anywhere from about 1800 m3 to 3500 m3 seem like reasonable estimates given that DEMO is
not a set design[12].

27Note that ITER, a rather large device, has a plasma volume of about 830 m3.
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Figure 4.2: Given a net TBR equal to BT , we see the number of seconds to double the amount of
tritium with a full duty cycle f = 1 (i.e., no time off). Note that it would be ideal to have shorter
times to ensure that the machine does not need to be operating continuously in order to produce
enough tritium for future reactors.
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Note that the mass burned per second would be given by (NA is Avogadro’s constant)

MT,burn =
rDT
NA

wT ≈
6.9× 1020 s−1

6.022× 1023 mol−1 (3× 10−3 kg mol−1) ≈ 3.4× 10−6 kg = 3.4 mg (4.2.13)

Suppose we have a pretty good net TBR, say around BT = 1.2. This means that we have N = 3.8
to gain MTB0 = 3.4 mg of material. If we require MT0 = 270 mg to start a new tokamak, it will
then require 270

3.4
N(1 s) ≈ (79)(3.8 s) ≈ 300 s of plasma time to produce enough tritium for a new

plant. Even with a poor duty cycle of f = 0.1 this would only require 3000 s or about 50 min. On
the other hand, suppose that there are problems with BT = 1.01, then N ≈ 70 and so it will take
5600 s of time to produce enough for a new reactor. Then with a duty cycle of f = 0.1 it would
take 15 h to produce enough tritium for a new plant.

These are representative of the problem in general, and show that tritium production is not so
terrible of a problem even under fairly pessimistic scenarios. It could turn out, of course, that the
TBR is just always going to be unfavorable, but that seems unlikely.

As we have seen, the net TBR is fairly important for understanding how quickly new plants would
need to be made. For reasonable duty cycles and even fairly pessimistic fusion projections we see
that the limiting factor will not be tritium if there are operational fusion power plants. Even if
one required ten times the amount of tritium to be placed in the device at any time with f = 0.1
and BT = 1.01 it would only require about 6.5 days to produce enough tritium for a second plant.

Of course, this is assuming 1.01 is a pessimistic net TBR. I think it is, but for the truly cynical,
assume that in fact the TBR is an abysmal 1.001. Suddenly N = 690 so it takes 690 seconds of
fusion to double. If we require ten times the mass in the reactor as an inventory then we need
2700 mg. We find that the time the reactor must be operating to produce enough for a new reactor
is 2700/3.4 · 690 s ≈ 5.5× 105 s. If the duty cycle was then f = 0.1 it would require 5.5× 106 s
or about 64 days. Compared to the time of building a fusion power plant this is nothing, but it
would no longer be an insignificant amount of time to replenish lost tritium either.

4.3 Deuterium-Deuterium Fusion
A [numerical] computation is a temptation that should be resisted as long as possible.

— J. P. Boyd[4] [This is a paraphrase of T. S. Elliot.]

Given the resource limitations of DT fusion given in the previous section 4.1, we should consider
the difficulties of DD fusion. We have seen that deuterium resources are essentially unlimited.
The reactions of interest are then

D + T → 4
2He2 + n+ 17.6 MeV (3.4.10)

D +D → T + p+ 4.03 MeV (3.4.11)
D +D → 3

2He + n+ 3.27 MeV (3.4.12)
D + 3

2He → 4
2He + p+ 18.3 MeV (3.4.13)

That is, if we have the two D+D reactions we produce 3
2He and T so under ideal conditions28 we

28This is again assuming that we completely consume the fuels or recycle them back into confinement until they
are consumed.
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432 Deuterium-Deuterium Fusion

can combine these into a “single” reaction

6D → 2 4
2He + 2p+ 2n+ 43.2 MeV (4.3.1)

Thus, a kilogram of atomic deuterium in this case which has 3.00 × 1026 deuterons could ideally
release

(3.00× 1026)

6
(43.2 MeV)(1.6× 10−22 GJ/MeV) ≈ 3.5× 105 GJ = 350 TJ (4.3.2)

Compared with the DT results, which could ideally yield 840 TJ we see that DT releases about
2.4 times more energy per kilogram of deuterium than DD releases. This is a bit of an unfair
comparison though since DT uses two different reactants. If we instead consider two kilograms of
deuterium fully reacting we’d only have around 690 TJ and so DT is only 1.2 times more energy
per kilogram (excluding the lithium-6 energy release). Of course, DT reactions occur in this DD
cycle, but the tritium is not ever directly supplied.

The other thing to consider is what will eventually contribute to the electrical energy. With tritium,
if we only extract neutron energy we get 670 TJ from the neutrons. With deuterium alone, if we
only extract electrical energy from neutrons, then 2 kg of deuterium reacting yields

2
(3.00× 1026)

6
(14.1 MeV + 2.45 MeV)(1.6× 10−22 GJ/MeV) ≈ 2.6× 105 GJ = 260 TJ (4.3.3)

If we were to only use α’s (4He) for heating (so we somehow harnessed proton and neutrons for
energy) we’d have

2
(3.00× 1026)

6
(14.1 MeV + 2.45 MeV + 3.02 MeV + 14.6 MeV)(1.6× 10−22 GJ/MeV)

≈ 5.5× 105 GJ = 550 TJ
(4.3.4)

which is still unfavorable compared to using DT , but still yields an appreciable yield.

The neutron only electrical energy extraction is probably the most likely route at this point.

The next thing to consider is what the Lawson criteria is for these DD reactions. We use the
methods from before in Section 3.4.2.2. First, we note that we have α’s and protons that will come
out of (4.3.1) we need to find the energy in them out of the total. We can write

D + T → 4
2He2(3.54 MeV) + n(14.1 MeV) (4.3.5)

D +D → T (1.01 MeV) + p(3.02 MeV) (4.3.6)
D +D → 3

2He(0.820 MeV) + n(2.45 MeV) (4.3.7)
D + 3

2He → 4
2He(3.68 MeV) + p(14.6 MeV) (4.3.8)

And so if we use all the non-neutrons for heating the plasma, we’d get 24.8 MeV of heating. If we
instead imagine harnessing the protons for electrical energy production in some way, we still have
7.22 MeV of heating from α’s. We will consider both scenarios. If we look at the cross sections
and reactivities in Figure 3.3 we see that at 20 keV to 30 keV that DD and D 3He have similar
reactivities and less than DT . Let’s consider the two DD reactions (with protons counting as
heating so that they can be considered separately) with their heating contribution and then the
D3He.

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



Resource Needs 433

Reaction LC δss′ Eheat

DD1 D +D → T + p 6 1 3.02 MeV
DD2 D +D → 3

2He + n 6 1 0.82 MeV
DD Both DD reactions 6 1 0.82 MeV and 3.02 MeV
D 3He D + 3

2He → 4
2He + p 12 0 3.68 MeV

DT D + T → 4
2He + n 12 0 3.54 MeV

Table 4.1: The parameters used in the Lawson criteria analysis. Generally proton contributions
are assumed to be harnessed as energy except in the DD1 reaction and DD reactions.

nτE > Tmin
nτE

nkBTτE > nkBTτE > Tmin
nkBTτE

DD1 8.8× 1021 s/m3 118 keV 3.2× 1023 keV s/m3 500 atm s 16 keV
DD2 2.7× 1022 s/m3 136 keV 1.1× 1024 keV s/m3 1700 atm s 17.0 keV
DD 6.6× 1021 s/m3 123 keV 2.5× 1023 keV s/m3 390 atm s 16.0 keV
D 3He 1.2× 1021 s/m3 62 keV 5.4× 1022 keV s/m3 85 atm s 33.0 keV
DT 1.5× 1020 s/m3 26.0 keV 2.7× 1021 keV s/m3 4.3 atm s 14.0 keV

Table 4.2: The results of the Lawson criteria fits.

We can restate a generalized Lawson criteria with

n̂τE >
CP2

CP1

12
1+δss′

kBT̂

〈̂σv〉ss′Eheat

(4.3.9)

n̂τE >
LCkBT̂

〈̂σv〉ss′Eheat

(4.3.10)

LC =
CP2

CP1

12

1 + δss′
(4.3.11)

where s and s′ are the two species, δss′ = 1 if s = s′ and 0 otherwise, and Eheat is the energy
of the particles that go into heating the plasma and LC is a dimensionless number dependent on
the profiles and species. Table 4.1 shows the relevant parameters for the reactions when using flat
profiles. Figure 4.3 shows the Lawson criterion under these conditions. Note that the DD reaction
uses

n̂τE >
LCkBT̂

〈̂σv〉DD1(3.02 MeV) + 〈̂σv〉DD2(2.45 MeV)
(4.3.12)

for the Lawson criteria.

We can then perform the same analysis but with the triple product for a more optimal calculation

n̂kBT̂ τE >
LCkBT̂

2

〈̂σv〉ss′Eheat

(4.3.13)

yielding Figure 4.4. All of this information is summarized in Table 4.2.

There are quite a few things that we can see from this analysis. The first is that the pure DD
reactions (both of them) are ignited only when conditions are roughly 100 times more favorable
than for pure DT conditions. When this occurs, the DT and D-3He reactions will be in an ignition
state but the restrictive conditions on DD means that something in the triple product must be
improved far beyond what even DT fusion conditions would need.
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434 Deuterium-Deuterium Fusion

Figure 4.3: This shows the values nτE must meet in order to meet the requirements for ignition.
Note how DT reactions are by far the most favorable. The D3He curve uses the Duane coefficients
while the others use BH coefficients.
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Figure 4.4: This shows the values nkBTτE must meet in order to meet the requirements for ignition.
Note how DT reactions are by far the most favorable. The D-3He curve uses the Duane coefficients
while the others use BH coefficients.
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4.3.1 Full Deuterium-Deuterium Fusion Cycle Analysis

Finally, while all of these analyzed separately are useful, it is also good to consider the entire
fuel cycle for ignition. I will assume that the α’s are used for heating, the neutrons and protons
somehow being utilized for electrical energy (It may be that protons and α’s will be somehow used
for energy production or that protons and α’s are used for heating). We can write it as (n is nD)

PDD,all =

PDD12︷ ︸︸ ︷
n2

2
(〈σv〉DD1EDD1 + 〈σv〉DD2EDD2) +nnT 〈σv〉DT EDT + nn3He 〈σv〉D 3He ED 3He

= PDD12 + n(
nn

2
〈σv〉DD1) 〈σv〉DT EDT + n(

nn

2
〈σv〉DD2) 〈σv〉D 3He ED 3He

=
n2

2
(〈σv〉DD1EDD1 + 〈σv〉DD2EDD2 + φDT 〈σv〉DT EDT + φD 3He 〈σv〉D 3He ED 3He)

(4.3.14)

where I have defined φDT and φD 3He by the above equation. We see EDD1 = EDD2 = 0 as there
are no α’s. For simplicity we can assume a steady state of creation per second of 3He and T . The
φ are determined by the density via

φDT = n 〈σv〉DD1 (4.3.15)
φDT = n 〈σv〉DD1 (4.3.16)

φ̂DT = n̂〈̂σv〉DD1 (4.3.17)

φ̂DT = n̂〈̂σv〉DD1 (4.3.18)

with the hats assuming the same temperature and number density profile as for other quantities
(the 〈σv〉 are in fact multiplied by 1 s above to see how many new particles are generated per
second which all burn up within one second to stay in steady state). Note that this is saying

nT
n

=
n

2
〈σv〉DD1 tI (4.3.19)

n3Hen

n
=
n

2
〈σv〉DD2 tI (4.3.20)

where tI is the unit of time used in 〈σv〉. There are two important points here. The first is that
the relative fraction of nT or n3He is proportional to n, the deuterium number density. Thus at
higher deuterium number density we get more and more tritium and helium-3 as a proportion of
the plasma. Second, we are assuming that the density of tritium and helium-3 is completely due
to their production via DD reactions.

We can then use

n̂τE >
kBT̂∑

ss′
φss′ 〈̂σv〉ss′Ess′,heat

LCss′

(4.3.21)

n̂kBT̂ τE >
(kBT̂ )2∑

ss′
φss′ 〈̂σv〉ss′Ess′,heat

LCss′

(4.3.22)
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which we can write out as only using the α’s for heating as

n̂2τE >
kBT̂

〈̂σv〉DD1 〈̂σv〉DT (3.54 MeV)

12
+
〈̂σv〉DD2 〈̂σv〉D 3He (3.68 MeV)

12

(4.3.23)

n̂2kBT̂ τE >
(kBT̂ )2

〈̂σv〉DD1 〈̂σv〉DT (3.54 MeV)

12
+
〈̂σv〉DD2 〈̂σv〉D 3He (3.68 MeV)

12

(4.3.24)

a very generalized form of the Lawson criteria. This produces Figure 4.5. It leads to conditions

n2τE > 1.5× 1043 s/m6 (4.3.25)
Tmin
n2τE

= 77.9 keV (4.3.26)
n2kBTτE > 6.8× 1044 keV s/m6 = 1.07× 1024 atm s/m3 (4.3.27)
Tmin
n2kBTτE

= 29.0 keV (4.3.28)

Remember that τE has a number density dependence, however. Still, these are useful estimates.
If we take n = 1020 m−3 with kBT = 29.0 keV then we require

τE > 2300 s (4.3.29)

which leads again to an estimate that τE needs to be about 1000 times better than for DT fusion
in addition to the temperature being almost double that required for DT fusion.

4.3.1.1 Neutron Heating Only

We can go through the same process assuming that only neutrons contribute to electrical energy
and that all protons and α’s are used to heat the plasma as another possibility.

The generalized Lawson criteria then state

n̂τE >
kBT̂

〈̂σv〉DD1(3.02 MeV)

6
+

n̂〈̂σv〉DD1 〈̂σv〉DT (3.54 MeV)

12
+ n̂

〈̂σv〉DD2 〈̂σv〉D 3He (3.68 MeV+14.6 MeV)

12

(4.3.30)

n̂τE >
kBT̂

〈̂σv〉DD1(3.02 MeV)

6
+ n̂

〈̂σv〉DD1 〈̂σv〉DT (3.54 MeV)

12
+ n̂

〈̂σv〉DD2 〈̂σv〉D 3He (18.3 MeV)

12

(4.3.31)

n̂kBT̂ τE >
(kBT̂ )2

〈̂σv〉DD1(3.02 MeV)

6
+ n̂

〈̂σv〉DD1 〈̂σv〉DT (3.54 MeV)

12
+ n̂

〈̂σv〉DD2 〈̂σv〉D 3He (18.3 MeV)

12

(4.3.32)

We see that in this case there is no simple way to eliminate n̂ dependence on the right-hand side
of these equations. Thus, we need to create a contour plot in order to see the full variation. This
is shown in Figure 4.6 and for a couple different number densities in Figure 4.7

The higher the achievable number densities the better the results, as we might expect. If we impose
n = 1020 m−3 then the minimum temperature for nτE is 120 keV and nτE > 7.9× 1021 s/m3. This
then means τE > 79 s which is only an improvement of about 10 from DT required values, however,
the temperature is far beyond DT required values. At the same number density nkBTτE has a
minimum temperature of 15.9 keV and nkBTτE > 3.1× 1023 keV s/m3 which implies τE > 190 s
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438 Deuterium-Deuterium Fusion

Figure 4.5: This shows the values of n2τE and n2kBTτE. These curves use BH coefficients for
DD reactions and Duane coefficients for other curves (appropriately translated into the center-of-
momentum frame for BH).
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Figure 4.6: This shows the values of the log10 of nτE and nkBTτE (the units given are for the
quantities in the logarithms). The contours show that at low density there is no minimum except
at very high temperatures. At higher number densities there is a minimum in a lower temperature
range. Otherwise for densities below 1021m−3 both nτE and nkBTτE do not vary much with number
density. These curves use BH coefficients for DD reactions and Duane coefficients for the other
curves.
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Figure 4.7: This shows the values of nτE and nkBTτE for various given number densities. These
curves use BH coefficients for DD reactions and Duane coefficients for the other curves.
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n nτE > Tmin
nτE

τE
DT 1020 m−3 1.50× 1020 s/m3 26 keV 1.5 s
DDα 1020 m−3 1.5× 1023 s/m3 78 keV 1500 s
DDα,p 1020 m−3 7.9× 1021 s/m3 120 keV 79 s
DDα,p 1021 m−3 3.9× 1020 s/m3 120 keV 0.39 s

n nkBTτE > Tmin
nkBTτE

τE
DT 1020 m−3 3.1× 1021 keV s/m3 14 keV 2.2 s
DDα 1020 m−3 6.8× 1024 keV s/m3 29 keV 2300 s
DDα,p 1020 m−3 3.1× 1023 keV s/m3 16 keV 190 s
DDα,p 1021 m−3 2.2× 1023 keV s/m3 24 keV 9.2 s

Table 4.3: A summary of representative DD results. DDα indicates heating only from α particles
while DDα,p means both protons and α’s are used for fusion heating.

which is not as encouraging, since this requires 100 times better than DT confinement times,
though the temperature is now easily in the DT range. The problem really is that confinement
times are only expected to be about 1 s to 10 s for a device like ITER. One other factor to consider
is how much tritium and 3He are in this steady state. For the n = 1020 m−3 case, nT/n = 0.0013
and n3He/n = 0.0016 so that only a very small amount of tritium and helium-3 needs to be seeded
in to start this DD fusion cycle process at this level. That or there needs to be a brief time of
increased temperature to jumpstart DD reactions until such concentration of tritium and helium-3
are produced.

If we consider n = 1021 m−3 then for nτE the required temperature is 120 keV again and nτE >
3.9× 1020 s/m3 or τE = 0.39 s. For nkBTτE the required temperature is 24 keV and nkBTτE >
2.2× 1023 keV s/m3 or τE > 9 s. This is perhaps a more realistic scenario, though a bit more
challenging for the temperature. It also requires nT/n = 0.013 and n3He/n = 0.016 which means
that some tritium and helium-3 may need to be generated at higher temperature or supplied when
beginning a run. Because tokamak plasmas run into density limits and all current experiments
use lower number densities than 1021 m−3, while this looks like a promising scenario, it actually
requires substantial improvements in current values.

All of our results so far suggest that improvements are required for DD fusion to be feasible, and
that DT fusion is still the most achievable.

4.3.1.2 Deuterium-Deuterium Summary

This analysis shows why DT fusion is considered the best way to start fusion energy. While
DD would have a substantial advantage in resource allocation over DT , it demands either better
temperatures, densities, or confinement times (or a combination thereof). These usually require
improvements in nkBTτE on the order of 100 to 1000 and so would seem to be impractical for the
near future. A comparison of some representative cases is shown in Table 4.3.

4.3.2 Proliferation Concerns

Another consideration for fusion power is that it produces fast neutrons. Fast neutrons can be
used to breed plutonium.29 You will notice specifically that the most easily attainable fusion

29Please consult elsewhere for details. This is a book on fusion energy not on plutonium production.
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process, DT , creates fast neutrons. Thus, any process that produces fusion energy for other
types of reactions should be able to switch to DT and begin producing fast neutrons. Once DD
fusion conditions can be met there are really only two barriers to producing these fast neutrons:
monitoring of the fusion facilities to make sure there is no fissile material going in or out and the
intrinsic cost of the fusion facility.

Most analyses of fusion proliferation concerns point out that there are much simpler ways of
producing fast neutrons to produce plutonium. Left implicit in this premise is that fusion facilities
are an uneconomical way of producing fast neutrons. If fusion technology were to progress such
that it was a way of producing cheap electricity, such an argument no longer would hold. One
could use a fusion facility for energy production and for proliferation without losing money if the
energy production is economical.30 As far as I know, there is no actual reason if fusion becomes
economical why it would not lead to an easier time of producing plutonium. This is of course true
of any technology that could efficiently and cheaply produce fast neutrons, but fusion advocacy
tends to claim that proliferation is less of a concern with fusion facilities with studies such as
Goldston[9]. It is true that uranium should not be lying around in a fusion facility, and so in
that sense would be easy to detect, but this again would require facility monitoring, just as fission
plants require.

Another factor is whether fusion facilities intrinsically need to be large.31 Current thoughts are
that fusion facilities need to be large in order to run and so cannot be (easily) hidden. There would
be tell-tale signs of a fusion facility being constructed. This again, assumes that fusion power will
remain with large devices for the foreseeable future.

It seems to me that fusion energy is in the unenviable position of the more efficient (and smaller)
fusion power plants become, the more they become proliferation risks. The major advantage over
fission is that with proper monitoring, there is no reason for fissile materials to be on a fusion
power plant premises. Should fusion require large, marginally economical facilities, then it won’t
be a proliferation risk, but that means fusion is probably not a major supplier of electrical energy
either.

4.4 Power Plant Considerations
There can be no doubt that our descendants will learn to exploit the energy of fusion for
peaceful purposes even before its use becomes necessary for the preservation of human
civilization.

— Lev Artsimovich

Fusion power plants are usually large. This is because with a larger volume one can produce
more fusion reactions, which are necessary because creating fusion conditions is power intensive,
radiation losses can be significant, and generally speaking, the bigger the reactor, the more efficient
it gets. This is partially because the confinement time goes up. The improvement is also due to
the larger the volume you go to, the less energy you lose on the surface. This is easily seen because

30Perhaps one would have to sacrifice energy production for plutonium production, but so long as this is not fatal
to energy production, it does not seem like it would be insurmountable for a determined entity.

31This is often considered a factor against them from a technological point of view, and so many engineers and
scientists have tried to come up with ways of making smaller fusion power plants. Should they succeed, it would
actually lead to proliferations risks as it would be easier to hide a small fusion facility.
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volume scales as L3 and surface area as L2 for a characteristic distance L. So as L increases the
volume increases much more quickly than the surface area.

It is instructive to consider a most optimistic scenario and see how long it would take for fusion
energy to supply the world’s electrical energy needs. As previously mentioned, the current world
electrical energy requirements needs a power of 2 TW or 2000 GW. A typical fusion power plant
would probably be around 0.5 GW to 1 GW. Suppose it was the larger power. How long would
it take to build a single power plant? Suppose we are true optimists and we think that a power
plant will be built in about 50 months32 or around 4 years. We previously showed that this gives
plenty of time to produce enough tritium for the future power plants. Suppose that this plant is
so enticing that when it is immediately finished that the world decides to double down, and when
those are done, they decide to double down. How long will it take to meet the world’s needs?
We find 211 = 2048 so approximately 11 doubling periods. This means that it will take about
550 months or about 46 years. This is at a relatively breakneck speed for a complicated and new
technology. It is quite unrealistic to assume that fusion reactors would be built in this way, of
course. Note that in the last 50 months of those 46 years, 1024 power plants will be built. In
reality the process would be more evenly spread after an initial success, but 50 years is still a
pretty optimistic estimate given that 50 months for a single plant is an optimistic estimate.

The lesson to be learned from this is that a fusion energy dominated future is far away even under
an optimistic construction schedule. In reality, solar and wind power are improving and so fusion
will have to beat both of them economically (in addition to fission power) to fuel such widespread
construction.

This will probably only happen if those first reactors are enormous successes with few to no
problems, so that they can be copied on a wide scale. That is not impossible, but the history
of fusion and fission advancements do not support it as most likely. There is certainly no reason
yet that it is impossible, but neither is there compelling evidence to suggest that fusion electrical
energy will be that much cheaper than all other forms of energy production.

There is one more reason for caution. While the comparison between fusion and fission power
plants is not a perfect comparison, it has enough similarities that it is instructive. If anything,
fission power plants are simpler in energy production and so this should somewhat compensate for
fission’s negatives such as radioactive contamination. I’m not saying it’s a fair comparison, just
that the comparison is not terrible. We calculated earlier that the most optimistic energy released
from a kilogram of deuterium and 1.5 kg tritium is 840 TJ. The reaction for 235

92U is given by

n+ 235
92U → 141

56Ba+
92
36Kr + 3n+ 202.5 MeV (4.4.1)

The molar mass33 of uranium-235 is given by 0.235 kg mol−1 and so we’d find the energy output
of one kilogram of uranium-235 will be

NA︷ ︸︸ ︷
(6.022× 1023 mol−1)(202.5× 106 eV)(1.60× 10−19 J eV−1)

(
1 kg

0.235 kg mol−1

)
≈ 8.3× 1013 J = 83 TJ

(4.4.2)

32South Korea has built multiple fission nuclear plants in this time period, so this is not an unprecedented time,
though it is far better than the average of the US or most of Europe.

33You can usually estimate the molar mass by the mass or atomic number. That is an element with atomic
number X, will have a molar mass of X/1000 in kg mol−1 or just X in g mol−1.
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Energy Type Lazard 12.0
SPV Res Roof 160 to 267
SPV Best 36 to 46
Solar Thermal 98 to 181
Wind 29 to 56
Geothermal 71 to 111
Fission 112 to 189
Coal 60 to 143
Natural Gas 41 to 74

Energy Type IRENA
SPV 58 to 219
Geothermal 60 to 143
Solar Thermal 109 to 272
Offshore Wind 102 to 198
Onshore Wind 44 to 100
Hydro 30 to 136

Energy Type EIA
SPV 60.0
Geothermal 41.0
Solar Thermal 157.1
Offshore Wind 130.4
Onshore Wind 55.9
Hydro 39.1
Advanced Fission 77.5
Natural Gas 41.2 to 89.3
Coal CCS 98.6 to 104.3

Table 4.4: This shows the levelized cost of energy (LCOE) estimates for different energy types
in $/(MW h) (US dollars per megawatt-hour). Lazard[13], IRENA[11] and EIA[2]are the sources.
Here SPV is solar photovoltaics, with SPV Best referring to thin film utility scale solar photo-
voltaics. SPV Res Roof is for solar paneling on residential roofs. For EIA data, CCS means
carbon sequestration (between 30% and 90%). The Natural Gas estimate for EIA is between all
sorts of different natural gas plant types. EIA data is for plants planning on coming into service
in 2023. Lazard is for 2018 and IRENA for 2019 plants. All data is the unsubsidized LCOE.

Therefore per kilogram there is more energy in deuterium (though per reaction uranium-235 clearly
wins). Given that uranium-235 is only about 0.72% of all uranium, one needs about 138.9 kg of
natural uranium to actually have a single kilogram of uranium-235. The fact that currently nuclear
fission energy is a struggling industry is not reassuring. This is only a factor of 10 difference in
energy per mass, which while sizeable, is mostly wiped out by the complexities of a fusion power
plant. With fission, you mostly just leave a metal in a box. Much of the fission complexities
come from making sure that the metal in the box doesn’t melt stuff and release radiation.34 With
deuterium and tritium reactions this is ameliorated a bit by having less radioactive waste (or less
dangerous waste, at the very least) and by the reaction being able to shut down very quickly. The
extra factor of 10 gives at least some leeway with all the extra machinery required to keep the
plasma fusing, but we need to assume that fusion will retain an advantage over fission. Otherwise
we would be left with energy prices at fission levels. Fission energy is not super expensive, but
neither is it very cheap, which does not leave one full of hope.

One way of comparing energy costs across sectors is to find the levelized cost of energy (LCOE).
This is essentially the price of electricity one would need to charge over the entirety of a plant’s
lifetime in order to ensure that you simply broke even. That is the break even price when accounting
for the costs of building the power plant and how long the power plant will last. Now there are
problems with this measure. First, it does not actually tell you if your plant will necessarily be
able to meet the electrical demands to break even. Second, determining what the costs of the
plant are tends to be difficult and so different assumptions (for example, are taxes included? do
you discount future money?) can yield different results. That said, multiple firms perform these
analyses fairly often and one can look up their reports to find the details of their calculations. See
Table 4.4 for unsubsidized cost comparisons.

As I said, the comparison should not be too heavily weighted, since the complexities of nuclear
fusion power plants and the complexities of nuclear fission power plants lie in different areas, but

34Because the metal is so good at releasing energy, it is actually hard to turn off quickly.
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unless you think fusion can use its factor of ten advantage in energy per mass to keep an advantage
over fission energy production, the story of nuclear fission energy should give you a sense for why
people are not always believers in fusion energy.

4.5 Final Thoughts
What goes on in science is not that we try to have theories that accommodate our expe-
riences; it’s closer that we try to have experiences that adjudicate among our theories.

— Paul Rosenbaum[16, p. 126]

All learning is cumulative. It is not something that one comes to realize in a morning
or an evening.

— Sakuma Shōzan in Reflection on My Errors, quoted from Marius Jansen,
The Making of Modern Japan

I hope that this book does not turn you off of fusion energy research. That said, I do hope that it
gives you a healthy appreciation for just how difficult it is to say that fusion energy will be cheap,
and that there are many challenges that could prevent it from being so. Most fusion researchers are
aware of the difficulties, but I never felt like they were compiled together in an easily accessible way.
In addition, many of the estimates for fusion resources have always seemed absurdly optimistic
to me. I wrote this chapter to counter some of the (what I would call) absurd claims and give
you a more balanced picture. The numbers do not prove that fusion is impossible. I rather doubt
there will ever be a simple calculation that will show fusion energy is impossible, and so fusion
researchers are right to be skeptical of those that say fusion energy never will be. The question is
more whether fusion is economically practical.

The economics of fusion is a tough topic. All of my previous calculations being just surface scans
of a deeply complicated question of whether fusion reactors will be economical. Because we do
not know what a fusion reactor will look like in all of its details, it is not possible to do much
better than make statements about what a generic reactor is likely to look like. We can only look
at a variety of scenarios and see if they seem like they could be profitable. I have mostly avoided
talking about cost because it can be a bit of a red herring. What the cost of energy is today will
change tomorrow, and how energy is consumed could change greatly on the scale of decades and
centuries. Instead, I tried to look at resource allocation. This is much more concrete. If there is
not enough lithium for breeder blankets, then it is clear it does not matter what it would cost for
lithium that does not exist. As you have read, I am not very optimistic about the DT process as
a long-term energy prospect (though in the short term [of decades to centuries], it seems like it
could work). Unfortunately, I do not know if DD will ever be technologically and economically
feasible. It seems like it could be, and it would require some great advancements. It does not seem
infeasible.

Perhaps it is best left there. There have been high hopes for fusion for well over seven decades.
Enormous changes and advancements have been made, but the best that we can now state is that
it does not seem infeasible. If you prefer, I can remove the negative qualifiers in that sentence and
say that fusion energy seems feasible.35 As long as it is not impossible, the question is whether we
(as a society and as scientists) think it is worth trying.

35“Fusion energy seems feasible” rather than the statement “fusion energy does not seem infeasible”.
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4.6 Further Reading

As far as I am aware, there is no book that explains the resource needs and challenges of economic
fusion. There are many books and papers on the technical challenges of a fusion reactor, but
far fewer on resource needs, understandably. For the resource requirements, Hartley[10], Fasel[7],
Vikström[18], and Bradshaw[5] are great for laying out resource requirements. For tritium breeding,
there is a large amount of literature looking at the problem. A good overview of material challenges
for fusion is provided in Zinkle[19]. The extraction of tritium from the blanket does not appear to
be a large problem[8]. It may not be entirely solved, but neither has it shown signs of becoming
a large concern. There are a number of DEMO papers, and one can easily search and find them.
Zohm[20] is a good reference for explaining the needed size of DEMO.

4.7 Problem Set

4.1. For Section 4.1.

4.1.1. Some lithium-7 will probably be wanted in the blanket so that the TBR is greater than
1. Consider a blanket that is α of pure lithium-6 and 1 − α of lithium-7. At what α
do we get no energy gain and no energy loss from incoming neutrons. For simplicity,
assume that the cross section is equal for lithium-6 and lithium-7 reactions.

4.1.2. Use the given cross sections in Section 3.4.2.3 to adjust the probabilities for the previous
problem.

4.1.3. Investigate the possible efficiency of converting steam into electrical energy. Does 25%
seem like a good estimate to you?

4.2. For Section 4.1.1

4.2.1. Consider other elements in seawater. Lead has a concentration (all by mass) 5× 10−3 ppm,
uranium a concentration 1.6× 10−3 ppm, and beryllium has a concentration 2.1× 10−7 ppm.
What volume is required to have a single gram of the substance in the water?36

4.2.2. What initial volume flow is necessary for each of the elements in the previous problem
for 1 TW continuous of fusion energy production?

4.2.3. Derive V0
dc
dt

= −cαdV
dt

when c is concentration by volume rather than mass.

4.3. For Section 4.2.

4.3.1. Why is beryllium considered for tritium breeding? Do the following reactions give a
hint?

9
4Be + n→ α + 6

2He
6
2He → 6

3Li + β−

6
3Li + n→ α + T

36See https://web.stanford.edu/group/Urchin/mineral.html and https://www3.mbari.org/chemsensor/
be/beryllium.html.
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4.3.2. Investigate the different types of blankets. Why is lead often used? Are there any
other elements you see when talking of blankets for nuclear reactors? What sorts of
compositions do you see in terms of lithium-6, lithium-7, beryllium, and lead.

4.4. For Section 4.3.

4.4.1. For a quadratic profile, q(r) = λq0(1 − r/a)2, do our numbers for the DD and other
reactions change much? Are there any differences from when we did theDT calculation?

4.4.2. Do larger number densities make sense as a steady state? That is if n = 1024 m−3, what
is the relative density nT/n and n3He/n?

4.4.3. Using the scaling laws for τE from (3.4.64) and (3.4.63), what would be necessary to get
a τE of about 1000 s, making DD fusion a possibility? First try changing just a and R
to do this. How large is the resulting tokamak or stellarator?

4.4.4. There are some thoughts of using fusion to provide neutrons for fission reactors. Would
this be more or less of a proliferation concern than a pure fission or pure fusion reactor?
What are the advantages of this method? What about the disadvantages?

4.5. For Section 4.4.

4.5.1. Look up some typical times for fission reactors to be built in the US, France, and South
Korea. Do you think these will be good estimates for fusion reactor build times?

4.5.2. Look at the build time for ITER, TFTR, and JET. Do you think a DEMO would be
closer to an ITER or TFTR time?
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Appendix A

Fourier and Laplace Transform Tables

The discussion in Sections 1.3.3 and 1.3.4 explain some of the theory for Fourier and Laplace
transforms. The following tables give common transforms of functions and some of the known
identities.

Also note that the convolution for Fourier transforms is given by

f(x) ∗ g(x) = (f ∗ g)(x) =

ˆ ∞
−∞

f(t) g(t− τ) dτ =

ˆ ∞
−∞

f(t− τ) g(t) dτ , (A.1)

while convolution for the Laplace transform is given by

f(t) ∗ g(t) = (f ∗ g)(t) =

ˆ t

0

f(τ) g(t− τ) dτ =

ˆ t

0

f(t− τ) g(t) dτ . (A.2)
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function Fourier transform

f(x) f̃(k)

af(x) + b g(x) af̃(k) + b g̃(k)

f(x− a) e−ikaf̃(k)

eiaxf(x) f̃(k − a)

f(ax) 1
|a| f̃

(
k
a

)
f̃(x) 2πf(−k)

dnf(x)
dxn

(ik)nf̃(k)

xnf(x) in df̃(k)
dkn

f(x) ∗ g(x) f̃(k) g̃(k)

f(x)g(x) 1
2π
f̃(k) ∗ g̃(k)

f(x),={f(x)} = 0 f̂(−k) = f̂(k)∗

Table A.1: Fourier transforms of general functions (n is an integer). The ∗ is the convolution while
∗ is the complex conjugate.
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function Fourier transform Comment

sin(ax) −iπ [δ(k − a)− δ(k + a)]

1 2π δ(k)

δ(x) 1

eiax 2π δ(k − a)

cos(ax) π [δ(k − a) + δ(k + a)]

e−axΘ(x) 1
a+ik

e−ax
2 √

π
a
e−k

2/(4a)

e−a|x| 2a
a2+k2

sech(ax) π
a

sech
(
π
2a
k
)

cos(ax2)
√

π
a

cos
(
k2

4a
− π

4

)
sin(ax2) −

√
π
a

sin
(
k2

4a
− π

4

)
xnf(x) (2π) inδ(n)(k) f̃(k) n = 0, 1, 2, . . . , see caption for δ(n)(k)

1
x

−iπ sgn{k}
1
xn

−iπ (−ik)n−1

(n−1)!
] sgn{k} n = 0, 1, 2, . . .

|x|a −2 sin(πa/2)Γ(a+1)
|k|a+1 0 < a < 1

sgn(x) 2
ik

Θ(x) π
[

1
ikπ

+ δ(k)
]

ln |x| − π
|k| − 2πγ δ(k) γ ≈ 0.5722

(∓ix)−a 2π
Γ(a)

Θ(±k) (±k)a−1 0 < a < 1

Table A.2: Fourier transforms of various functions. The ∗ is the convolution, Θ(x) is the Heaviside
step function, sgn is the sign function, and δ(n) is the nth distributional derivative of δ. Note that
γ = 0.57721566 is the Euler-Mascheroni constant.
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function Laplace transform

f(t) F (s) f̂(ω)

af(t) + b g(t) aF (s) + b F (s) af̂(ω) + b ĝ(ω)

tf(t) −F ′(s) − if̂(ω)

tnf(t) (−1)nF (n)(s) (−i)nf̂ (n)(ω)

f ′(t) sF (s)− f(0) − iωf̂(ω)− f(0)

f (n)(t) snF (s)−
∑n

k=1 s
k−1f (n−k)(0) (−iω)nf̂(ω)−

∑n
k=1(−iω)k−1f (n−k)(0)

f(at) 1
|a|F

(
s
a

)
1
|a| f̂

(
ω
a

)
eatf(t) F (s− a) f̂(ω − a)

f(t− a) Θ(t− a) e−asF (s) eiaωf̂(ω)

f(t)∗ F (s∗)∗ f̂(−ω∗)∗

Table A.3: Laplace transforms of general functions. The f (n)(t) is the nth derivative of f(t).

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



Fourier and Laplace Transform Tables 457

function Laplace transform Convergence

δ(t) 1 1 all s,ω

δ(t− τ) e−τs eiτω all s,ω

Θ(t) 1
s

i
ω

<{s}
={ω} > 0,

Θ(t− τ) e−τs

s
ieiτω

ω
<{s}
={ω} > 0

tΘ(t) 1
s2

− 1
ω2

<{s}
={ω} > 0

tn Θ(t) n!
sn+1

n!
(−iω)n+1

<{s}
={ω} > 0, n > −1

tq Θ(t) Γ(q+1)
sq+1

Γ(q+1)
(−iω)q+1

<{s}
={ω} > 0,<{q) > −1

tne−atΘ(t) n!
(s+a)n+1

n!
(a−iω)n+1

<{s}
={ω} > −a

(t− τ)ne−a(t−τ)Θ(t− τ) n! e−τs

(s+a)n+1
n! eiτω

(a−iω)n+1
<{s}
={ω} > −a

e−atΘ(t) 1
s+a

1
a−iω

<{s}
={ω} > −a

e−a|t| 2a
a2−s2

2a
a2+ω2 −a < <{s}

={ω} < a

sin(αt) Θ(t) α
s2+α2

α
α2−ω2

<{s}
={ω} > 0

cos(αt) Θ(t) α
s2+α2

α
α2−ω2

<{s}
={ω} > 0

sinh(αt) Θ(t) α
s2−α2

−α
α2+ω2

<{s}
={ω} > |α|

cosh(αt) Θ(t) α
s2−α2

−α
α2+ω2

<{s}
={ω} > |α|

e−at sin(αt) Θ(t) α
(s+a)2+α2

α
(a−iω)2+α2

<{s}
={ω} > −a

e−at cos(αt) Θ(t) α
(s+a)2+α2

α
(a−iω)2+α2

<{s}
={ω} > −a

ln(t) Θ(t) −1
s

[ln(s) + γ] 1
iω

[ln(iω) + γ] <{s}
={ω} > 0

Jn(αt) Θ(t)
(
√
s2+α2−s)

n

αn
√
s2+α2

(
√
α2−ω2+iω)

n

αn
√
α2−ω2

<{s}
={ω} > 0, n > −1

erf(t) Θ(t) es
2/4[1−erf(s/2)]

s
i e
−ω2/4[1−erf(−iω/2)]

ω
<{s}
={ω} > 0

Table A.4: Laplace transforms of various functions. Whenever n appears it is an integer, while q
is complex. Again γ = 0.57721566 is the Euler-Mascheroni constant.
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Appendix B

Vector/Tensor Identities

B.1 Vector Identities

In the following A, B, C, and D are vectors, ψ and φ are two scalar functions, and the del operator,
denoted ∇, is used so ∇ψ and ∇φ are the gradients of the two functions, respectively.

B.1.1 Identities Without Derivatives

A ·B = B ·A (B.1)
A · (B + C) = A ·B + A ·C (B.2)
(ψA) · (φB) = ψφ(A ·B) (B.3)
A×B = −B×A, A×A = 0 (B.4)
A× (B + C) = A×B + A×C (B.5)
(ψA)× (φB) = ψφ(A×B) (B.6)
A× (B×C) = (A×B) ·C = B(A ·C)−C(A ·B) (B.7)
A · (B×C) = C · (A×B) = B · (C×A) (B.8)
(A×B) · (C×D) = (A ·D)(B ·D)− (B ·D)(A ·C) (B.9)
(A×B)× (C×D) = C(A×B ·D)−D(A×B ·C)

= B(C×D ·A)−A(C×D ·B)
(B.10)

Suppose we choose to project a vector A along the direction B with b̂ = B/|B| = B/B. Then

A = A‖b̂ + A⊥ (B.11)

A‖ = A · b̂ (B.12)

A⊥ = − b̂× (b̂×A) = (b̂×A)× b̂ (B.13)
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B.1.2 Identities With the Gradient Alone

∇(ψ + φ) = ∇ψ + ∇φ (B.14)
∇(ψφ) = φ∇ψ + ψ∇φ (B.15)
∇(A ·B) = A · ∇B + B · ∇A + A× (∇×B) + B× (∇×A) (B.16)
∇(B2/2) = ∇(B ·B/2) = B× (∇×B) + B · ∇B = (∇B) ·B (B.17)
A · ∇A = ∇(A2/2)−A× (∇×A) (B.18)
B · ∇(A×C) = (B · ∇A)×C + A× (B · ∇C) (B.19)

B.1.3 Identities With the Divergence Alone

Let ∇· indicate the divergence. Then,

∇ · (A + B) =∇ ·A +∇ ·B (B.20)
∇ · (ψA) = ∇ψ ·A + ψ∇ ·A (B.21)
∇ · (A×B) = B · (∇×A)−A · (∇×B) (B.22)

B.1.4 Identities With the Curl Alone

Let ∇× indicate the curl. Then,

∇× (A + B) =∇×A +∇×B (B.23)
∇× (ψA) = ψ∇×A + ∇ψ ×A (B.24)
∇× (A×B) = A(∇ ·B)−B(∇ ·A) + B · ∇A−A · ∇B (B.25)
A× (∇×B) = (∇B) ·A− (A · ∇)B (B.26)
A× (∇×A) = ∇(A2/2)− (A · ∇)A (B.27)

Note that in Einsteinn summation notation (∂i = ∂
∂xi

), in Cartesian coordinates, the relation (B.26)
yields (for clarity)

A× (∇×B) = x̂iεijkAjεklm∂lBm = x̂i(∂iBj)Aj − x̂iAj∂jBi (B.28)

Also remember that if we prove an identity with Cartesian coordinates and can translate into
general vector notation, it is true generally.

B.1.5 Other Derivatives

∇× ∇ψ = 0 (B.29)
∇ · (∇×A) = 0 (B.30)
∇ · ∇ψ = ∇2ψ (B.31)
∇2A =∇ · ∇A = ∇(∇ ·A) +∇× (∇×A) (B.32)
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Vector/Tensor Identities 461

∇2(∇ ·A) =∇ · ∇(∇ ·A) =∇ · (∇2A) (B.33)
∇ · (φ∇ψ) = φ∇2ψ + ∇φ · ∇ψ (B.34)
∇ · (ψ∇φ− φ∇ψ) = ψ∇2φ− φ∇2ψ (B.35)
∇2(φψ) =∇ · ∇(φψ) = φ∇2ψ + 2∇φ · ∇ψ + ψ∇2φ . (B.36)
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462 Useful Derivatives of Position and Velocity Vectors

B.2 Useful Derivatives of Position and Velocity Vectors

Let x = xx̂ + yŷ + zẑ, r = |r| (and note that we get the same results exchanging X ↔ v with
v = vxx̂ + vyŷ + vzẑ the velocity vector). In many textbooks r = x is used to reduce possible
confusion so that the modulus of r is written r as r = |x|. If we wrote x = |x| it would be confusing
whether it meant the Cartesian direction x or the modulus of vector x.

∇ · x =
∂

∂x
· x = 3 (B.37)

∇v · v =
∂

∂v
· v = 3 (B.38)

∇× x =
∂

∂x
× x = 0 (B.39)

∇v× v =
∂

∂v
× v = 0 (B.40)

∇|x| = x

|x|
(B.41)

∇v =
v

v
(B.42)

∇ 1

|x|
=

∂

∂x

(
1

|x|

)
= − x

|x|3
(B.43)

∇v
1

v
=

∂

∂v

(
1

v

)
= − v

v3
(B.44)

∇ ·
(

x

|x|3

)
=

∂

∂x
·
(

x

|x|3

)
= 4π δ(x) (B.45)

∇v ·
( v

v3

)
=

∂

∂v
·
( v

v3

)
= 4π δv(v) (B.46)

∇x =
∂x

∂x
= 1 (B.47)

∇vv =
∂v

∂v
= 1 (B.48)

where 1, the identity tensor. In addition, using R = x − x′ which is a position vector that can
be interpreted as pointing from x′ to x (with R = |x− x′|) we can find further identities. We can
use that u = v− v′ analogously. Note how the partial derivative like notation leads to an easy to
understand chain rule for some of the derivations.

∂R

∂x
=

∂

∂x
|x− x′| = ∂

∂x

√
(x− x′) · (x− x′) =

1

�2

�2(x− x′) ·

1︷ ︸︸ ︷
∂

∂x
(x− x′)√

(x− x′) · (x− x′)

=

x︷ ︸︸ ︷
(x− x′) ·1

R
=

R

R

(B.49)

∂u

∂v
=

u

u
(B.50)

∂

∂x

1

R
= − 1

R2

∂R

∂x
= − R

R3
(B.51)
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∂

∂x

1

u
= − u

u3
(B.52)

∂2R

∂x∂x
=

∂

∂x

∂R

∂x
=

∂

∂x

R

R
=

1

R

1︷︸︸︷
∂R

∂x
+

(
∂

∂x

1

R

)
R =

1

R
+

(
− R

R3

)
R =

R21−RR

R3
(B.53)

∂2u

∂v∂v
=
u21− uu

u3
(B.54)

∇2 1

R
≡ ∂

∂x
· ∂
∂x

1

R
= − ∂

∂x
· R

R3
= − 4π δ(R) = − 4π δ(x− x′) (B.55)

∇2
v

1

u
= − 4π δv(u) = − 4π δv(v − v′) (B.56)

∇2R =
∂

∂x
· ∂R
∂x

=
∂

∂x
· R
R

=
1

R

∂

∂x
·
x−x′︷︸︸︷
R︸ ︷︷ ︸

3

−R · ∂
∂x

1

R
=

3

R
− R2

R3
=

2

R
(B.57)

∇2
vu =

2

u
(B.58)

∇2∇2R = ∇2
v

2

R
= − 8π δ(x− x′) (B.59)

∇2
v ∇2

vu = − 8π δv(v − v′) (B.60)
∂

∂x
·
(
R21−RR

R3

)
=

∂

∂x
· ∂

2R

∂x∂x
=

∂

∂x
· ∂
∂x︸ ︷︷ ︸

∇2

∂R

∂x
=

∂

∂x
∇2R︸ ︷︷ ︸

2
R

=
∂

∂x

2

R
= − 2R

R3
(B.61)

∂

∂v
·
(
u21− uu

u3

)
= − 2u

u3
(B.62)

This form also nicely shows that ∂
∂x′

= − ∂
∂x

and that ∂
∂x

= ∂
∂R

for objects depending on R (similarly
∂
∂v′

= − ∂
∂v

and ∂
∂v

= ∂
∂u

for objects depending on u) That is,

∂

∂x
=
∂R

∂x
· ∂
∂R

=
∂ (x− x′)

∂x
· ∂
∂R

= 1 · ∂
∂R

=
∂

∂R
(B.63)

∂

∂v
=
∂u

∂v
· ∂
∂u

=
∂ (v − v′)

∂v
· ∂
∂u

= 1 · ∂
∂u

=
∂

∂u
(B.64)

∂

∂x′
=
∂R

∂x′
· ∂
∂R

=
∂ (x− x′)

∂x′
· ∂
∂R

= −1 · ∂
∂R

= − ∂

∂R
(B.65)

∂

∂v′
=
∂u

∂v′
· ∂
∂u

=
∂ (v − v′)

∂v′
· ∂
∂u

= −1 · ∂
∂u

= − ∂

∂u
. (B.66)
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B.3 Tensor Identities

B.3.1 Dyads

A dyad is two vectors adjoined. For example, AB is a dyad, sometimes written A⊗B to indicate
the adjoining. Note that AB 6= BA in general. Also let

↔
T = Tij be a second order tensor. The

dyadic identity tensor (or more generally, the order 2 identity tensor) is here defined as 1 which
has the property that for any vector that A = A · 1 = 1 ·A. For orthogonal coordinates, 1 = δij
in which δij is the Kroencker delta.

Note that when taking ∇· on a tensor or dyad, it works on the first index. That is,

∇ · (AB) = (∇ ·A)B + (A · ∇)B (B.67)

∇ · (f
↔
T) = ∇f ·

↔
T + f∇l ·

↔
T (B.68)

For a tensor
↔
T = x̂iTijx̂j = AB = x̂iAiBjx̂j using a Cartesian coordinate system we find

∇ ·
↔
T = x̂k · ∂k(x̂iTijx̂j) = x̂k · x̂i∂k(Tij)x̂j = δik∂k(Tij)x̂j = ∂i(Tij)x̂j (B.69)

∇f ·
↔
T = ∂i(f)Tijx̂j (B.70)

This is not necessarily a standard definition (there is no standard, but this conforms to the NRL
plasma formulary’s definition and most plasma literature. The other possible definition is for
Cartesian coordinates to have ∇ ·

↔
T = ∂j(Tij)x̂i).

Note that we may now define :, the double dot operator:

1 : AB ≡ (1 ·A) ·B = A ·B (B.71)
AB : CD ≡ A · (B ·C)D = (B ·C)(A ·D) = D · (AB) ·C = B · (CD) ·A . (B.72)

We also have
↔
T :1 = 1 :

↔
T = Tii = Tr[

↔
T] , (B.73)

where Tr
↔
T is the trace (sum of the diagonal elements) of the tensor

↔
T.

So we see that
↔
T :
↔
S ≡ TijSji (B.74)

Once again, note that while this is the convention followed here, there is no general standard in
the literature. Some references may use AB : CD = (A ·C)(B ·D). However, in plasma literature,
the convention used here (B.72) is more common. Other useful identities of the : operator are

↔
T :
↔
T = |T|2 = TijTji (B.75)

↔
T : AB = (

↔
T ·A) ·B = B ·

↔
T ·A (B.76)

AB :
↔
T = A · (B ·

↔
T) = B ·

↔
T ·A (B.77)

↔
T : AB = AB :

↔
T (B.78)

B×
↔
T :
↔
W = −(

↔
T ·

↔
W)ᵀ : B× 1 , (B.79)
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where the ᵀ denotes the transpose (sometimes a capital T or T is used), so that for
↔
T = Tij,

↔
T
ᵀ

= Tji.

In addition, one can define new dot and cross operators as the cross-dot
×· , dot-cross

·
×, and cross-

cross
×
× product operators between two dyads or second order tensors. I have decided to keep

with what seems to be the small amount of literature using these, and employ definitions that are
symmetric or antisymmetric. We then have

VW
×· YZ = (V ×Y)(W · Z) (B.80)

↔
T
×· VW = (−V ×

↔
T) ·W (B.81)

VW
·
×YZ = (V ·Y)(W × Z) (B.82)

↔
T
·
×VW = V ·

↔
T ×W (B.83)

VW
×
×YZ = (V ×Y)(W × Z) (B.84)

↔
T
×
×VW = −V ×

↔
T ×W (B.85)

In general we use that with Cartesian components the definition is

↔
T
×·
↔
S = εijkTjlδlmSkmx̂i = εijkTjmSkmx̂i (B.86)

↔
T
·
×
↔
S = δlmεijkTljSmkx̂i = εijkTmjSmkx̂i (B.87)

↔
T
×
×
↔
S = εijkTjmεlmnSknx̂ix̂l (B.88)

Note that with these definitions

VW
×· YZ = −YZ

×· VW = −(Y ×V)(Z ·W) (B.89)

VW
·
×YZ = −YZ

·
×VW = −(Y ·V)(Z×W) (B.90)

VW
×
×YZ = YZ

×
×VW = (Y ×V)(Z×W) (B.91)

These are sometimes useful for factoring out quantities from integrals or derivatives, otherwise
they have limited applications. Because these operators are so rare, sometimes different definitions
are used so that (B.89) and (B.90) are in fact equalities so be careful if using these operators in
any context and inspect the definition.

Note that any second order tensor
↔
T can be decomposed into its symmetric

↔
TS and antisymmetric

(often called skew-symmetric)
↔
TA components in the following way

↔
TS =

1

2
(
↔
T +

↔
T
ᵀ

) ,
↔
TS,ij =

↔
TS,ji , (B.92)

↔
TA =

1

2
(
↔
T −

↔
T
ᵀ

) ,
↔
TA,ij = −

↔
TS,ji , (B.93)

↔
T =

↔
TS +

↔
TA . (B.94)
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There are two more operations that are useful for finding identities once tensors have been intro-
duced. The first is often called the vector operation, denoted vec(

↔
T), or, as denoted here,

↔
T×.

This operation is defined by

vec(
↔
T) =

↔
T× = J εijkTijek =

εijk
J
T ijek = T i·jei × ej = T ·ij ej × ei (B.95)

Note for a dyad this just yields the cross product definition so

vec(AB) = (AB)× = A×B (B.96)

suggesting the × product’s use as the appropriate notation.

Now let’s note that (it is important that we have index order ik for both tensors below) and using
Cartesian coordinates for ease

1×A = x̂ix̂kδijεkjlAl = x̂ix̂kεkilAl = x̂ix̂kεilkAl (B.97)
A× 1 = x̂ix̂kεijlAjδlk = x̂ix̂kεijkAj = x̂ix̂kεilkAl (B.98)
1×A = A× 1 (B.99)

contrary to our expectations from the cases for the cross product between two vectors (A×B =
−B×A). In general, using Cartesian coordinates we find

A×
↔
T = x̂ix̂lεijkAjTkl = x̂kx̂lεijkAiTjl (B.100)

↔
T ×A = x̂ix̂lεljkTijAk = x̂kx̂lεijlTkiAj (B.101)

and so usually A×
↔
T 6=

↔
T ×A unless

↔
T is a symmetric tensor. Also note the tensor index order

(either il or kl) for both entries, as it is very important when computing transposes.

Now we can define the dyad operator by (and see the Cartesian coordinate definition)

dyad(A) = −1

2
1×A = −1

2
δijεkjlAl = −1

2
εilkAl (B.102)

This is chosen to so that the antisymmetric part of a tensor is recovered under the operation
dyad(

↔
T×). Thus, omitting the Cartesian coordinate x̂i unit vectors for simplicity in our derivation,

dyad(
↔
T×) = dyad(εijkTjk) = − 1

2
εlimεijkTjk =

1

2
εilmεijkTjk =

1

2
(δljδmk − δlkδjm)Tjk (B.103)

=
1

2
(Tlm − Tml) =

1

2
(
↔
T −

↔
T
ᵀ

) =
↔
TA . (B.104)

It is also chosen so that we reasonably get dyad(A)× = vec[dyad(A)] = A, again omitting Carte-
sian coordinate x̂i for simplicity,

dyad(A)× = − 1

2
(1×A)× = − 1

2
(δijεkjlAl)× = − 1

2
εmikεkjlδijAl (B.105)

= − 1

2
(εmjkεkjlAl) =

1

2
εjkmεjklAl =

1

2
(δkkδml − δkmδkl)Al (B.106)

=
1

2
(3δml − δlm)Al = Am = A . (B.107)
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Now we may use [the index ordering inside the tensor cross product is il (not li) for both], again
omitting Cartesian coordinate x̂i unit vectors for simplicity.

(A×
↔
T)× = (εijkAjTkl)× = εmilεijkAjTkl = εilmεijkAjTkl = (δljδmk − δlkδjm)AjTkl (B.108)

= AlTml − AmTkk =
↔
T ·A−A Tr(

↔
T) (B.109)

(
↔
T ×A)× = (εljkTijAk)× = εmilεljkAkTij = εlmiεljkAkTij = (δmjδik − δmkδji)AkTij (B.110)

= AkTkm − AmTjj = A ·
↔
T −A Tr(

↔
T) (B.111)

and so

(A×
↔
T −

↔
T ×A)× =

↔
T ·A−A Tr(

↔
T)− [A ·

↔
T −A Tr(

↔
T)] =

↔
T ·A−A ·

↔
T (B.112)

(
↔
T ×A−A×

↔
T)× = A ·

↔
T −A Tr(

↔
T)− [

↔
T ·A−A Tr(

↔
T)] = A ·

↔
T −

↔
T ·A (B.113)

and thus we see that

dyad[(A×
↔
T)×] = dyad[

↔
T ·A−A Tr(

↔
T)] = − 1

2
1×

[
↔
T ·A−A Tr(

↔
T)

]
(B.114)

dyad[(A×
↔
T)×] = (A×

↔
T)A =

1

2
[(A×

↔
T)− (A×

↔
T)ᵀ] (B.115)

(A×
↔
T)− (A×

↔
T)ᵀ = 1×

[
A Tr(

↔
T)−

↔
T ·A

]
. (B.116)

or, similarly

(
↔
T ×A)− (

↔
T ×A)ᵀ = 1×

[
A Tr(

↔
T)−A ·

↔
T

]
. (B.117)

Collected below are some useful tensor identities.

B.3.2 Tensor Identities Without Derivatives

1 : AB = (1 ·A) ·B = A ·B (B.118)
AB : CD ≡ A · (B ·C)D = (B ·C)(A ·D) = D · (AB) ·C = B · (CD) ·A (B.119)

1 :
↔
T = Tr(

↔
T) (B.120)

↔
T :
↔
T = |

↔
T|2 (B.121)

↔
T : AB = (

↔
T ·A) ·B = B ·

↔
T ·A = A · (B ·

↔
T) = AB :

↔
T (B.122)

A×
↔
T :
↔
S = − (

↔
T ·
↔
S)ᵀ : A× 1 (B.123)

1 ·
↔
T =

↔
T · 1 =

↔
T (B.124)

A ·
↔
T =

↔
T
ᵀ

·A (B.125)
↔
T ·A = A ·

↔
T
ᵀ

(B.126)
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B · (1×A) = B · (A× 1) = B×A (B.127)
(A× 1) ·B = (1×A) ·B = A×B (B.128)
A · (CB−BC) = A× (B×C) (B.129)
1 ·AB = (1 ·A)B = AB (B.130)
AB · 1 = A(B · 1) = AB (B.131)
1×A = A× 1 (B.132)
A× (BC) = (A×B)C (B.133)

(A×B) ·
↔
T = A · (B×

↔
T) = −B · (A×

↔
T) (B.134)

↔
T · (A×B) = (

↔
T ×A) ·B = −(

↔
T ×B) ·A (B.135)

A×
↔
T ·B = −(

↔
T ·B)×A (B.136)

(A×B)× 1 = 1× (A×B) = BA−AB (B.137)

(A×
↔
T)ᵀ = −

↔
T
ᵀ

×A (B.138)

(
↔
T ×A)ᵀ = −A×

↔
T
ᵀ

(B.139)

(A×
↔
T)− (A×

↔
T)ᵀ = 1× [A Tr(

↔
T)−

↔
T ·A] = 2 (A×

↔
T)A (B.140)

(
↔
T ×A)− (

↔
T ×A)ᵀ = 1× [A Tr(

↔
T)−A ·

↔
T] = 2 (

↔
T ×A)A (B.141)

↔
TS =

1

2
(
↔
T +

↔
T
ᵀ

) (B.142)
↔
TA =

1

2
(
↔
T −

↔
T
ᵀ

) (B.143)
↔
T =

↔
TS +

↔
TA (B.144)

B.3.3 Tensor Identities With Derivatives

∇ · (AB) = (∇ ·A)B + (A · ∇)B (B.145)

∇ · (f
↔
T) = ∇f ·

↔
T + f∇ ·

↔
T (B.146)

A× 1 : ∇B = A · ∇×B (B.147)
1 · ∇B = ∇B · 1 = ∇B (B.148)
1 : ∇B = ∇B :1 =∇ ·B (B.149)

1
×· ∇A =∇×A (B.150)

1
·
× ∇A = −∇×A (B.151)
∇ · (1×A) =∇×A (B.152)
∇ · (f1) = ∇f (B.153)
∇ · 1 = 0 (B.154)
∇1 = 0 (B.155)
∇× (AB) = (∇×A)B−A× ∇B (B.156)
∇(A×B) = ∇A×B− ∇B×A (B.157)
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∇ · [B · ∇A] = B · ∇(∇ ·A)− (∇×A) · (∇×B) (B.158)
∇× [A · ∇A] = A · ∇(∇×A) + (∇ ·A)(∇×A)− [∇×A · ∇]A (B.159)
(CA−AC) : ∇B = CA : ∇B−AC : ∇B = (A×C) · (∇×B)

A · ∇B ·C−C · ∇B ·A = (A×C) · (∇×B)
(B.160)

CA : ∇B + BA : ∇C = ∇[(B ·C)A]− (B ·C)∇ ·A
A · ∇B ·C + A · ∇C ·B = ∇[(B ·C)A]− (B ·C)∇ ·A

(B.161)

CA : ∇B = ∇
(

A ·B
2

)
·C + (∇×A) · (B×C) + (∇×B) · (A×C)

A · ∇B ·C = ∇
(

A ·B
2

)
·C + (∇×A) · (B×C) + (∇×B) · (A×C)

(B.162)

2CA : ∇B = 2A · ∇B ·C = A · ∇(B ·C)−B · ∇(C ·A) + C · ∇(A ·B)

− (A×B) · (∇×C) + (B×C) · (∇×A)− (C×A) · (∇×B)
(B.163)

Note that (B.159) comes most easily from using (B.18) inside of the curl operator and then em-
ploying Einstein notation.

B.3.4 Useful Symbols

One can also use the Kronecker delta

δij = δij = δij

{
1 if i = j

0 if i 6= j
(B.164)

where only δij is in fact a tensor. The other two Kronecker deltas are more accurately called
symbols because they do not transform as covariant or contravariant tensors. Using the Einstein
summation notation then a dot product is easily given as

A ·B = δijAiB
j = δjiA

iBj (B.165)

where δij is said to contract the index on A or B. Note that δij = δji by its definition. The δ
notation is suggestive as one can think that in the limit of the continuum case (i no longer has
discrete values 1,2,3,. . . , but a continuum of values) the Kronecker delta becomes a Dirac delta
function.

For a cross product one uses the Levi-Civita symbol εijk.

εijk = εijk


1 for ijk = 123, 231, 312

−1 for ijk = 132, 321, 213

0 otherwise.
(B.166)

Once again, symbol is the appropriate word because the Levi-Civita symbol is not a third order
tensor, as it does not appropriately transform as a third order tensor of any kind. One can show
that

A×B = J εijkAjBke
i = εijkAjB

kei/J (B.167)
A×B = J εijkAiBje

k = εijkA
iBjek (B.168)
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470 Integral Identities

where sums are implied. Note that εijk = −εjik and εijk = −εjik. That is, switching any two
indices once switches the sign of the term. We see that εijkAiBje

k = −εjikAiBje
k, which is the

well-known result that A×B = −B×A.

In any case, one can also show that

εijkεimn = δjmδkn − δjnδmk (B.169)
εijkεimn = δjmδkn − δjnδmk (B.170)
εijkεimn = δjmδ

k
n − δjnδmk (B.171)

εijkε
imn = δmj δ

n
k − δnj δkm (B.172)

and also (with significantly more effort)

εijkεlmn = δil (δjmδkn − δjnδkm)− δim (δjlδkn − δjnδkl)
+ δin (δjlδkm − δjmδkl) .

(B.173)

εijkεlmn = δil
(
δjmδ

k
n − δjnδkm

)
− δim

(
δjl δ

k
n − δjnδkl

)
+ δin

(
δjl δkm − δ

j
mδ

k
l

)
.

(B.174)

A useful mnemonic (and in fact, the definition for multiple dimensions) is given by

εijkεlmn =

∣∣∣∣∣∣
δil δim δin
δjl δjm δjn
δkl δkm δkn

∣∣∣∣∣∣
= δil(δjmδkn − δjnδkm)− δim(δjlδkn − δjnδkl) + δin (δjlδkm − δjmδkl)

(B.175)

εijkεlmn =

∣∣∣∣∣∣
δil δim δin
δjl δjm δjn
δkl δkm δkn

∣∣∣∣∣∣
= δil(δ

j
mδ

k
n − δjnδkm)− δim(δjl δ

k
n − δjnδkl ) + δin

(
δjl δ

k
m − δjmδkl

) (B.176)

B.4 Integral Identities

For the following A is an arbitrary vector, f and g are scalar functions, and
↔
T is a second order

tensor. V is a volume enclosed by surface S with n̂ the unit normal vector out of the volume.

˚
dV ∇f =

‹
dS n̂f (B.177)

˚
dV ∇ ·A =

‹
dS n̂ ·A (B.178)

˚
dV ∇ ·

↔
T =

‹
dS n̂ ·

↔
T (B.179)

˚
dV ∇×A =

‹
dS n̂× A (B.180)
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In the following S is a surface (not necessarily closed) with bounding curve C with line element
d` (sometimes people use dx as the line element).

¨
S

dS n̂× ∇f =

˛
C

d` f (B.181)
¨
S

dS ∇×A =

˛
C

d` ·A (B.182)
¨
S

dS n̂ · ∇f × ∇g =

˛
C

dg f = −
˛
C

df g (B.183)

If you are curious as to how to derive the scalar values, define a constant (in space) vector c. Then
we can write ∇ · (fc) = ∇f · c +���

��f∇ · (c). So we apply the identity for ∇ · (fc) and find

c ·
˚
V

dV ∇f =

˚
V

dV ∇ · (fc) =

‹
S

dS n̂ · fc = c ·
‹
S

dS n̂f (B.184)

and because c is a constant, then the quantities it is dotted into must be equal.

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



472 Leibniz Integral Rules

B.5 Leibniz Integral Rules

This summarizes the most commonly used Leibniz integral rules. The original Leibniz integral
rule is given by

d

dx

ˆ b(x)

a(x)

dt f(x, t) = f(x, b(x))
db

dx
− f(x, a(x))

da

dx
+

ˆ b(x)

a(x)

dt
∂f(x, t)

∂x
(B.185)

Which can easily be generalized to

∂

∂x

ˆ b(x)

a(x)

dt f(x, t) = f(x, b(x))
∂b

∂x
− f(x, a(x))

∂a

∂x
+

ˆ b(x)

a(x)

dt
∂f(x, t)

∂x
(B.186)

∇
ˆ b(x)

a(x)

dt f(x, t) = f(x, b(x))∇b− f(x, a(x))∇a+

ˆ b(x)

a(x)

dt ∇f(x, t) (B.187)

More typically, we are interested in a time derivative, and so the Leibniz integral rule is written

d

dt

ˆ b(t)

a(t)

dx f(x, t) = f(b(t), t)
db

dt
− f(a(t), t)

da

dt
+

ˆ b(t)

a(t)

dx
∂f(x, t)

∂t
(B.188)

In three dimensional space the formula for integration under the integral is often more complicated
with some surprising terms from what we are used to in one dimension. Let’s list the new rules.

First, let’s look at the time derivative of a line integral with a changing path (in time). I am
unaware of any specific name given to this rule. So, for vector field W(x, t) and time dependent
path Ct we find (let V(x(t), t) be the time dependent velocity of the path)

d

dt

ˆ x1(t)

x0(t)

dx ·W ≡ d

dt

ˆ
Ct

dx ·W = −
ˆ
Ct

dx · [V × (∇×W)] +

ˆ
Ct

dx · ∂W

∂t

+ W(x1(t), t) ·V(x1(t), t)−W(x0(t), t) ·V(x0(t), t)

(B.189)

We can prove this fairly easily by using a parameterization s independent of time

d

dt

ˆ x1(t)

x0(t)

dx ·W =
d

dt

ˆ s1

s0

ds
∂x

∂s
·W(s, t) =

ˆ s1

s0

ds

[
∂ dx

dt

∂s
·W(s, t) +

∂x

∂s
· dW(s, t)

dt

]
(B.190)

The second integral is easy to manipulate. In the first we have by definition that dx
dt

= V as V
was defined above. We then find

d

dt

ˆ x1(t)

x0(t)

dx ·W =

ˆ s1

s0

ds
∂V

∂s
·W(s, t) +

ˆ
Ct

dx · dW

dt
(B.191)

=

ˆ
Ct

dx · dW

dt
+

ˆ s1

s0

ds
∂(V ·W)

∂s
−
ˆ s1

s0

ds V · ∂W

∂s
(B.192)

=

ˆ
Ct

dx · dW

dt
+ [V ·W]x1

x0
−
ˆ
Ct

dx · [∇W ·V] (B.193)
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where the final integral came from ds ∂W
∂s
· V = ds ∂x

∂s
∂W
∂x
· V. We can then use ∇W · V =

V × (∇×W) + V · ∇W. And so

d

dt

ˆ x1(t)

x0(t)

dx ·W =

ˆ
Ct

dx ·
[

dW

dt
−V × (∇×W)−V · ∇W

]
+ V(x1(t), t) ·W(x1(t), t)−V(x0(t), t) ·W(x0(t), t)

(B.194)

We can then use that dW
dt

= ∂W
∂t

+ V · ∇W and so the advective part cancels out and we indeed
get

d

dt

ˆ x1(t)

x0(t)

dx ·W ≡ d

dt

ˆ
Ct

dx ·W = −
ˆ
Ct

dx · [V × (∇×W)] +

ˆ
Ct

dx · ∂W

∂t

+ W(x1(t), t) ·V(x1(t), t)−W(x0(t), t) ·V(x0(t), t)

(B.195)

For the time derivative of a flux integral, we have the Helmholtz transport theorem, which we
proved in Chapter 2. See the discussion following (2.7.11). This states for vector field W with
velocity vector describing the change of the boundary V (as above) over the time changing surface
S with normal n̂ and bounding curve C as

d

dt

¨
S

dS n̂ ·W =

¨
S

dS n̂ ·V∇ ·W −
˛
C

d` · (V ×W) +

¨
S

dS n̂ · ∂W

∂t
(B.196)

Finally, we can consider the time derivative of a volume integral. This is usually called the Reynolds
transport theorem. This is discussed in Section 2.9.1.1. For vector field W with V describing the
change of the surface of the given volume V (t) with surface S = ∂V (t), we find

d

dt

˚
V (t)

d3x W =

˚
V (t)

d3x

[
∇ · (VW) +

∂W

∂t

]
=

˚
V (t)

d3x
∂W

∂t
+

‹
∂V (t)

dS n̂ ·VW

(B.197)

We can then summarize our identities as

∇
ˆ b(x)

a(x)

dt f(x, t) = f(x, b(x))∇b− f(x, a(x))∇a+

ˆ b(x)

a(x)

dt ∇f(x, t) (B.198)

d

dt

ˆ b(t)

a(t)

dx f(x, t) = f(b(t), t)
db

dt
− f(a(t), t)

da

dt
+

ˆ b(t)

a(t)

dx
∂f(x, t)

∂t
(B.199)

d

dt

ˆ
Ct

dx ·W = −
ˆ
Ct

dx · [V × (∇×W)] +

ˆ
Ct

dx · ∂W

∂t

+ W(x1(t), t) ·V(x1(t), t)−W(x0(t), t) ·V(x0(t), t)

(B.200)

d

dt

¨
S

dS n̂ ·W =

¨
S

dS n̂ ·V∇ ·W −
˛
C

d` · (V ×W) +

¨
S

dS n̂ · ∂W

∂t
(B.201)

d

dt

˚
V (t)

d3x W =

˚
V (t)

d3x

[
∇ · (VW) +

∂W

∂t

]
=

˚
V (t)

d3x
∂W

∂t
+

‹
∂V (t)

dS n̂ ·VW

(B.202)

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



474 Leibniz Integral Rules

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



475

Appendix C

Common Coordinate Conversions

This appendix lists the most useful curvilinear coordinate system properties and transformations.
It covers (common) cylindrical coordinates, (plasma) cylindrical coordinates, physicists’ spheri-
cal coordinates, primitive toroidal coordinates, plasma toroidal coordinates, and general toroidal
coordinates.

There are in fact quite a few variations in chosen variables, but I have tried to define a consistent
set that are minimally confusing. My common cylindrical coordinates use (r, ϕ, Z) with r axial
distance, ϕ the azimuthal angle, and Z the axial height. Mathematicians typically use (ρ, θ, z)
with ρ axial distance, θ the azimuthal angle, and z the axial height. This notation is fine, but can
cause confusion later with spherical coordinates. The plasma toroidal coordinates use (R,Z, ζ)
where R is an axial distance, Z is an axial height, and ζ is an azimuthal angle. Note that ζ and ϕ
point in opposite directions so that (R,Z, ζ) and (r, ϕ, Z) are both right-handed coordinates and
the reason for the difference is that the (R,Z, ζ) system can be easily translated into primitive
toroidal coordinates (R → r, Z → ζ, ζ → θ). The ISO standard for cylindrical coordinates is
(ρ, ϕ, z).

Physicists’ spherical coordinates (r, θ, ϕ) have r the radius, θ the polar angle, and ϕ the azimuthal
angle. The mathematician’s spherical coordinates are also often given by (r, θ, ϕ) but with θ
meaning azimuthal angle and ϕ the polar angle. This should be avoided as then (r, θ, ϕ) is not a
right-handed system. The logic is that mathematicians’ cylindrical uses θ for the azimuth and they
want to keep it there. The problems are many because of this lack of uniformity. I will always only
use the ISO standard, which is the physicists’ notation. Physicists’ notation is also the only one
consistent with how spherical harmonics are compiled. That is spherical harmonics always use θ
as the polar angle, and ϕ as the azimuthal angle. If you are used to the mathematicians’ notation,
I would strongly recommend unlearning it and becoming comfortable with the physicists’ notation
because of the right-handedness and spherical harmonics advantages.[1]

The various toroidal coordinate systems are mostly peculiar to plasma situations, though primitive
toroidal coordinates are fairly well known even in mathematics. They use (r, θ, ζ) with r the minor
radius, θ is the poloidal angle, and ζ is the toroidal angle. The other types of toroidal coordinates
are rarely used, even in plasma physics, and so are listed mostly for completeness.
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476 Generic Coordinate Conversion

C.1 Generic Coordinate Conversion
Here let’s take a coordinate system, (ξ1, ξ2, ξ3) which can be written out in Cartesian coordinates
(x, y, z) and assume we know

ξ1 = ξ1(x, y, z) (C.1)
ξ2 = ξ2(x, y, z) (C.2)
ξ3 = ξ3(x, y, z) (C.3)

and assume it is invertible (In other words the Jacobian determinant |J | 6= 0 for this coordinate
system transformation)

x = x(ξ1, ξ2, ξ3) (C.4)
y = y(ξ1, ξ2, ξ3) (C.5)
z = z(ξ1, ξ2, ξ3) (C.6)

So we can then find

J = ∇ξ1 · ∇ξ2 × ∇ξ3 (C.7)

J =
1

∇ξ1 · ∇ξ2 × ∇ξ3
(C.8)

We can then form the covariant components of the metric tensor gij = ∂x
∂ξi
· ∂x
∂ξj

with x = xx+yy+zz
a position vector. Note we could write

x = x(ξ1, ξ2, ξ3)x̂ + y(ξ1, ξ2, ξ3)ŷ + z(ξ1, ξ2, ξ3)ẑ (C.9)

and then we would have as components

g11 =

((
∂x(ξ1, ξ2, ξ3)

∂ξ1

)
ξ2,ξ3

)2

+

((
∂y(ξ1, ξ2, ξ3)

∂ξ1

)
ξ2,ξ3

)2

+

((
∂z(ξ1, ξ2, ξ3)

∂ξ1

)
ξ2,ξ3

)2

(C.10)

g11 =

(
∂x

∂ξ1

)2

+

(
∂y

∂ξ1

)2

+

(
∂z

∂ξ1

)2

(C.11)

gi′j′ =

(
∂x(ξ1, ξ2, ξ3)

∂ξi′

)
ξj′ ,ξk′

(
∂x(ξ1, ξ2, ξ3)

∂ξj′

)
ξi′ ,ξk′

+

(
∂y(ξ1, ξ2, ξ3)

∂ξi′

)
ξj′ ,ξk′

(
∂y(ξ1, ξ2, ξ3)

∂ξj′

)
ξi′ ,ξk′

+

(
∂z(ξ1, ξ2, ξ3)

∂ξi′

)
ξj′ ,ξk′

(
∂z(ξ1, ξ2, ξ3)

∂ξj′

)
ξi′ ,ξk′

(C.12)

with the i′, j′, k′ not a sum but an even permutation of 1, 2, 3. Note that g11 is the same, but
(C.10) explicitly shows the objects held constant.

Note that we would find the tangent vector basis (sometimes called the “covariant” vector basis,
but remember this is not a great name) as

e1 = eξ1 =
∂x

∂ξ1
(C.13)

e2 = eξ2 =
∂x

∂ξ2
(C.14)

e3 = eξ3 =
∂x

∂ξ3
(C.15)
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with J = e1 · e2 × e3. Then the tangent-reciprocal vector basis (again, sometimes called the
“contravariant” vector basis, but this is a poor name) as

e1 = eξ
1

= ∇ξ1 (C.16)

e2 = eξ
2

= ∇ξ2 (C.17)

e3 = eξ
3

= ∇ξ3 (C.18)

Remember we can use reciprocal relations so that [with (i′, j′, k′) an even cyclic permutation of
(1, 2, 3)]

ei
′
= ∇ξi′ =

ej′ × ek′

ei′ · ej′ × ek′
=

ej′ × ek′

J
=

∂x
∂ξj′
× ∂x

∂ξk′

∂x
∂ξi′
·
(
∂x
∂ξj′
× ∂x

∂ξk′

) (1.2.64)

ei′ =
∂x

∂ξi′
=

ej
′ × ek

′

ei′ · ej′ × ek′
= J ej

′ × ek
′
=

∇ξj′ × ∇ξk′

∇ξi′ · ∇ξj′ × ∇ξk′ (1.2.65)

We can then form the contravariant components of the metric tensor gij = ei · ej = ∇ξi · ∇ξj. We
can define x1 = x, x2 = y, and x3 = z for convenience, as well. Note we could write

g11 =

((
∂ξ1(x, y, z)

∂x

)
y,z

)2

+

((
∂ξ1(x, y, z)

∂y

)
z,x

)2

+

((
∂ξ1(x, y, z)

∂z

)
x,y

)2

(C.19)

g11 =

(
∂ξ1

∂x

)2

+

(
∂ξ1

∂y

)2

+

(
∂ξ1

∂z

)2

(C.20)

gi
′j′ =

(
∂ξ1(x1, x2, x3)

∂xi′

)
xj′ ,xk′

(
∂ξ1(x1, x2, x3)

∂xj′

)
xi′ ,xk′

+

(
∂ξ2(x1, x2, x3)

∂xi′

)
xj′ ,xk′

(
∂ξ2(x1, x2, x3)

∂xj′

)
xi′ ,xk′

+

(
∂ξ3(x1, x2, x3)

∂xi′

)
xj′ ,xk′

(
∂ξ3(x1, x2, x3)

∂xj′

)
xi′ ,xk′

(C.21)

with the i′, j′, k′ not a sum but an even permutation of 1, 2, 3.

Finally, I will list the Christoffel symbols via

Γk,ij =
1

2

[
∂gik
∂ξj

+
∂gjk
∂ξi
− ∂gij
∂ξk

]
(C.22)

Γkij = gklΓl,ij (C.23)

and list the Christoffel symbols one at a time as a matrix. Thus Γk
′
ij is listed for each k′ as a matrix

M with entries Mij given by Γk
′
ij .

C.2 (Common) Cylindrical Coordinates

We have Cartesian (x, y, z) and cylindrical (r, ϕ, Z) as our two coordinate systems. (0 ≤ r < ∞,
0 ≤ ϕ ≤ 2π, and −∞ < Z <∞)
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478 (Common) Cylindrical Coordinates

We use the equations

r2 = x2 + y2 (C.1)

tanϕ =
y

x
(C.2)

Z = z (C.3)

Thus, we find

r dr = x dx+ y dy

dr =
x

r
dx+

y

r
dy = cosϕ dx+ sinϕ dy

(C.4)

sec2 ϕ dϕ =
x dy − y dx

x2

dϕ = cos2 ϕ
x dy − y dx

x2
=

x2

x2 + y2

x dy − y dx

x2
=
x dy − y dx

x2 + y2
=

cosϕ

r
dy − sinϕ

r
dx

(C.5)

dZ = dz (C.6)

and so

J =
∂(r, ϕ, Z)

∂(x, y, z)
=


∂r
∂x

∂r
∂y

∂r
∂z

∂ϕ
∂x

∂ϕ
∂y

∂ϕ
∂z

∂Z
∂x

∂Z
∂y

∂Z
∂z

 =

 cosϕ sinϕ 0
− sinϕ

r
cosϕ
r

0
0 0 1

 (C.7)

J =
cosϕ cosϕ

r
− sinϕ sinϕ

r
=

1

r
(C.8)

Note that we then have

e1 = er = ∇r = cosϕ∇x+ sinϕ∇y (C.9)
| ∇r| = 1 (C.10)

e2 = eϕ = ∇ϕ = −sinϕ

r
∇x+

cosϕ

r
∇y (C.11)

| ∇ϕ| =
√

sin2 ϕ+ cos2 ϕ

r2
=

1

r
(C.12)

e3 = eZ = ∇Z = ∇z (C.13)
| ∇Z| = 1 (C.14)

So that

ê1 = êr = r̂ = cosϕx̂ + sinϕŷ =
x√

x2 + y2
x̂ +

y√
x2 + y2

ŷ (C.15)

ê2 = êϕ = ϕ̂ = − sinϕx̂ + cosϕŷ = − y√
x2 + y2

x̂ +
x√

x2 + y2
ŷ (C.16)

ê3 = êZ = Ẑ = ẑ (C.17)
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The metric tensor is given by gij =
∑3

k=1
∂ξi

∂xk
∂ξj

∂xk
. Thus

grr =

(
∂r

∂x

)2

+

(
∂r

∂y

)2

+

(
∂r

∂z

)2

= cos2 ϕ+ sin2 ϕ+ 02 = 1

(C.18)

gϕϕ =

(
∂ϕ

∂x

)2

+

(
∂ϕ

∂y

)2

+

(
∂ϕ

∂z

)2

=
sin2 ϕ

r2
+

cos2 ϕ

r2
+ 0 =

1

r2

(C.19)

gZZ =

(
∂Z

∂x

)2

+

(
∂Z

∂y

)2

+

(
∂Z

∂z

)2

= 0 + 0 + 1 = 1

(C.20)

grϕ =
∂r

∂x

∂ϕ

∂x
+
∂r

∂y

∂ϕ

∂y
+
∂r

∂z

∂ϕ

∂z

= cosϕ
− sinϕ

r
+ sinϕ

cosϕ

r
+ 0 = 0

(C.21)

grZ =
∂r

∂x

∂Z

∂x
+
∂r

∂y

∂Z

∂y
+
∂r

∂z

∂Z

∂z

= cosϕ(0) + sinϕ(0) + 0(1) = 0

(C.22)

gϕZ =
∂ϕ

∂x

∂Z

∂x
+
∂ϕ

∂y

∂Z

∂y
+
∂ϕ

∂z

∂Z

∂z

=
− sinϕ

r
(0) +

cosϕ

r
(0) + 0(1) = 0

(C.23)

Thus

gij =

 1 0 0
0 1

r2 0
0 0 1

 (C.24)

In the other direction we would use

x = r cosϕ (C.25)
y = r sinϕ (C.26)
z = Z (C.27)

and so

dx = cosϕ dr − r sinϕ dϕ (C.28)
dy = sinϕ dr + r cosϕ dϕ (C.29)
dz = dZ (C.30)

e1 = er =

(
∂x

∂r

)
θ,ϕ

= cosϕ sin θ∇x+ sinϕ sin θ∇y + cos θ (C.31)

e2 = eθ =
∂x

∂θ
= r cosϕ cos θ∇x+ r sinϕ cos θ∇y − r sin θ∇z (C.32)

e3 = eϕ =
∂x

∂ϕ
= −r sinϕ sin θ∇x+ r cosϕ sin θ∇y (C.33)
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480 (Common) Cylindrical Coordinates

and so we then have

J = J−1 =
∂(x, y, z)

∂(r, ϕ, Z)
=


∂x
∂r

∂x
∂ϕ

∂x
∂Z

∂y
∂r

∂y
∂ϕ

∂y
∂Z

∂z
∂r

∂z
∂ϕ

∂z
∂Z

 =

 cosϕ −r sinϕ 0
sinϕ r cosϕ 0

0 0 1

 (C.34)

J = r cosϕ cosϕ+ r sinϕ sinϕ = r (C.35)

Note that we then have

x̂ = cosϕ∇r − r sinϕ∇ϕ = cosϕr̂− sinϕϕ̂ =
x√

x2 + y2
r̂− y√

x2 + y2
ϕ̂ (C.36)

ŷ = sinϕ∇r + r cosϕ∇ϕ = sinϕr̂ + cosϕϕ̂ =
y√

x2 + y2
r̂ +

x√
x2 + y2

ϕ̂ (C.37)

ẑ = ∇Z = Ẑ (C.38)

The other metric tensor is given by gij =
∑3

k=1
∂xk

∂ξi
∂xk

∂ξj
. Thus

grr =

(
∂x

∂r

)2

+

(
∂y

∂r

)2

+

(
∂z

∂r

)2

= cos2 ϕ+ sin2 ϕ+ 02 = 1

(C.39)

gϕϕ =

(
∂x

∂ϕ

)2

+

(
∂y

∂ϕ

)2

+

(
∂z

∂ϕ

)2

= r2 sin2 ϕ+ r2 cos2 ϕ+ 0 = r2

(C.40)

gZZ =

(
∂x

∂Z

)2

+

(
∂y

∂Z

)2

+

(
∂z

∂Z

)2

= 0 + 0 + 1 = 1

(C.41)

grϕ =
∂x

∂r

∂x

∂ϕ
+
∂y

∂r

∂y

∂ϕ
+
∂z

∂r

∂z

∂ϕ

= cosϕ(−r sinϕ) + sinϕ(r cosϕ) + 0 = 0

(C.42)

grZ =
∂x

∂r

∂x

∂Z
+
∂y

∂r

∂y

∂Z
+
∂z

∂r

∂z

∂Z
= cosϕ(0) + sinϕ(0) + 0(1) = 0

(C.43)

gϕZ =
∂x

∂ϕ

∂x

∂Z
+
∂y

∂ϕ

∂y

∂Z
+
∂z

∂ϕ

∂z

∂Z

= −r sinϕ(0) + r cosϕ(0) + 0(1) = 0

(C.44)

Thus

gij =

 1 0 0
0 r2 0
0 0 1

 (C.45)
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Thus we find for the Christoffel symbols that

Γk,ij =
1

2

[
∂gik
∂ξj

+
∂gjk
∂ξi
− ∂gij
∂ξk

]
(C.46)

Γr,ij =

0 0 0
0 −r 0
0 0 0

 (C.47)

Γϕ,ij =

0 r 0
r 0 0
0 0 0

 (C.48)

ΓZ,ij =

0 0 0
0 0 0
0 0 0

 (C.49)

and

Γkij = gklΓl,ij (C.50)

Γrij =

0 0 0
0 −r 0
0 0 0

 (C.51)

Γϕij =

0 1
r

0
1
r

0 0
0 0 0

 (C.52)

ΓZij =

0 0 0
0 0 0
0 0 0

 (C.53)

C.3 (Plasma/Toroidal System) Cylindrical Coordinates
We have Cartesian (x, y, z) and cylindrical (R,Z, ζ) as our two coordinate systems. (0 ≤ R <∞,
−∞ < Z <∞, and 0 ≤ ζ ≤ 2π)

We use the equations

R2 = x2 + y2 (C.1)

tan(−ζ) =
y

x
(C.2)

Z = z (C.3)

Thus, we find

R dR = x dx+ y dy

dR =
x

R
dx+

y

R
dy = cos(−ζ) dx+ sin(−ζ) dy = cos ζ dx− sin ζ dy

(C.4)

− sec2 ζ dζ =
x dy − y dx

x2

dζ = cos2 ζ
y dx− x dy

x2
=

x2

x2 + y2

y dx− x dy

x2
=
y dx− x dy

x2 + y2

=
sin(−ζ)

R
dx− cos(−ζ)

R
dy = −sin ζ

R
dx− cos ζ

R
dy

(C.5)
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482 (Plasma/Toroidal System) Cylindrical Coordinates

dZ = dz (C.6)

and so

J =
∂(R,Z, ζ)

∂(x, y, z)
=


∂R
∂x

∂R
∂y

∂R
∂z

∂Z
∂x

∂Z
∂y

∂Z
∂z

∂ζ
∂x

∂ζ
∂y

∂ζ
∂z

 =

 cos ζ − sin ζ 0
0 0 1

− sin ζ
R

− cos ζ
R

0

 (C.7)

J = −(
− cos ζ cos ζ

R
− sin ζ sin ζ

R
) =

1

R
(C.8)

Note that we then have

e1 = eR = ∇R = cos ζ∇x− sin ζ∇y (C.9)
| ∇R| = 1 (C.10)

e2 = eζ = ∇ζ = −sin ζ

R
∇x− cos ζ

R
∇y (C.11)

| ∇ζ| =
√

sin2 ζ + cos2 ζ

R2
=

1

R
(C.12)

e3 = eZ = ∇Z = ∇z (C.13)
| ∇Z| = 1 (C.14)

So that

ê1 = êR = R̂ = cos ζx̂− sin ζŷ =
x√

x2 + y2
x̂ +

y√
x2 + y2

ŷ (C.15)

ê2 = êζ = ζ̂ = − sin ζx̂− cos ζŷ =
y√

x2 + y2
x̂− x√

x2 + y2
ŷ (C.16)

ê3 = êZ = Ẑ = ẑ (C.17)

The metric tensor is given by gij =
∑3

k=1
∂ξi

∂xk
∂ξj

∂xk
. Thus

gRR =

(
∂R

∂x

)2

+

(
∂R

∂y

)2

+

(
∂R

∂z

)2

= cos2 ζ + sin2 ζ + 02 = 1

(C.18)

gZZ =

(
∂Z

∂x

)2

+

(
∂Z

∂y

)2

+

(
∂Z

∂z

)2

= 0 + 0 + 1 = 1

(C.19)

gζζ =

(
∂ζ

∂x

)2

+

(
∂ζ

∂y

)2

+

(
∂ζ

∂z

)2

=
sin2 θ

R2
+

cos2 ζ

R2
+ 0 =

1

R2

(C.20)

gRZ =
∂R

∂x

∂Z

∂x
+
∂R

∂y

∂Z

∂y
+
∂R

∂z

∂Z

∂z

= cos ζ(0) + sin ζ(0) + 0(1) = 0

(C.21)
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Common Coordinate Conversions 483

gRζ =
∂R

∂x

∂ζ

∂x
+
∂R

∂y

∂ζ

∂y
+
∂R

∂z

∂ζ

∂z

= cos ζ
− sin ζ

R
− sin ζ

− cos ζ

R
+ 0 = 0

(C.22)

gZζ =
∂Z

∂x

∂ζ

∂x
+
∂Z

∂y

∂ζ

∂y
+
∂Z

∂z

∂ζ

∂z

= (0)
− sin ζ

R
+ (0)

− cosϕ

R
+ (1)0 = 0

(C.23)

Thus

gij =

 1 0 0
0 1 0
0 0 1

R2

 (C.24)

In the other direction we would use

x = R cos ζ (C.25)
y = −R sin ζ (C.26)
z = Z (C.27)

e1 = er =

(
∂x

∂R

)
Z,ζ

= cos ζ∇x− sin ζ∇y (C.28)

e2 = eZ =
∂x

∂Z
= ∇z (C.29)

e3 = eζ =
∂x

∂ζ
= −R sin ζ∇x−R cos ζ∇y (C.30)

and so

dx = cos ζ dR−R sin ζ dζ (C.31)
dy = − sin ζ dR−R cos ζ dζ (C.32)
dz = dZ (C.33)

and so we then have

J = J−1 =
∂(x, y, z)

∂(R,Z, ζ)
=


∂x
∂R

∂x
∂Z

∂x
∂ζ

∂y
∂R

∂y
∂Z

∂y
∂ζ

∂z
∂R

∂z
∂Z

∂z
∂ζ

 =

 cos ζ 0 −R sin ζ
− sin ζ 0 −R cos ζ

0 1 0

 (C.34)

J = −(−R cos ζ cos ζ +R sin ζ sin ζ) = R (C.35)

Note that we then have

x̂ = cos ζ∇R−R sin ζ∇ζ = cos ζR̂− sin ζζ̂ =
x√

x2 + y2
R̂ +

y√
x2 + y2

ζ̂ (C.36)

ŷ = − sin ζ∇R−R cos ζ∇ζ = − sin ζR̂− cos ζζ̂ =
y√

x2 + y2
R̂− x√

x2 + y2
ζ̂ (C.37)

ẑ = ∇Z = Ẑ (C.38)
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484 (Plasma/Toroidal System) Cylindrical Coordinates

The other metric tensor is given by gij =
∑3

k=1
∂xk

∂ξi
∂xk

∂ξj
. Thus

gRR =

(
∂x

∂R

)2

+

(
∂y

∂R

)2

+

(
∂z

∂R

)2

= cos2 ζ + sin2 ζ + 02 = 1

(C.39)

gZZ =

(
∂x

∂Z

)2

+

(
∂y

∂Z

)2

+

(
∂z

∂Z

)2

= 0 + 0 + 1 = 1

(C.40)

gζζ =

(
∂x

∂ζ

)2

+

(
∂y

∂ζ

)2

+

(
∂z

∂ζ

)2

= R2 sin2 ζ +R2 cos2 ζ + 0 = R2

(C.41)

gRZ =
∂x

∂R

∂x

∂Z
+
∂y

∂R

∂y

∂Z
+
∂z

∂R

∂z

∂Z
= cos ζ(0) + (− sin ζ)(0) + 0(1) = 0

(C.42)

gRζ =
∂x

∂R

∂x

∂ζ
+
∂y

∂R

∂y

∂ζ
+
∂z

∂R

∂z

∂ζ

= cosϕ(−R sin ζ)− sinϕ(−R cos ζ) + 0 = 0

(C.43)

gZζ =
∂x

∂Z

∂x

∂ζ
+
∂y

∂Z

∂y

∂ζ
+
∂z

∂Z

∂z

∂ζ

= (0)(−R sin ζ) + (0)(−R cos ζ) + (1)0 = 0

(C.44)

Thus

gij =

 1 0 0
0 1 0
0 0 R2

 (C.45)

Thus we find for the Christoffel symbols that

Γk,ij =
1

2

[
∂gik
∂ξj

+
∂gjk
∂ξi
− ∂gij
∂ξk

]
(C.46)

ΓR,ij =

0 0 0
0 0 0
0 0 −R

 (C.47)

ΓZ,ij =

0 0 0
0 0 0
0 0 0

 (C.48)

Γζ,ij =

0 0 R
0 0 0
R 0 0

 (C.49)

and

Γkij = gklΓl,ij (C.50)
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Common Coordinate Conversions 485

ΓRij =

0 0 0
0 0 0
0 0 −R

 (C.51)

ΓZij =

0 0 0
0 0 0
0 0 0

 (C.52)

Γζij =

0 0 1
R

0 0 0
1
R

0 0

 (C.53)

C.4 (Physicists’) Spherical Coordinates

We have Cartesian (x, y, z) and spherical (r, θ, ϕ) as our two coordinate systems. (0 ≤ r < ∞,
0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π)

We use the equations

r2 = x2 + y2 + z2 (C.1)

tan θ =

√
x2 + y2

z
⇔ cos θ =

z

r
(C.2)

tanϕ =
y

x
(C.3)

Thus, we find (using x
r

= x√
x2+y2

√
x2+y2

r
= cosϕ sin θ and similarly for y and that z = r cos θ so

that
√
x2 + y2 = r sin θ)

r dr = x dx+ y dy + z dz

dr =
x

r
dx+

y

r
dy =

z

r
dz = cosϕ sin θ dx+ sinϕ sin θ dy + cos θ dz

(C.4)

sec2 θ dθ =

zx dx+zy dy√
x2+y2

−
√
x2 + y2 dz

z2
=

x

z
√
x2 + y2

dx+
y

z
√
x2 + y2

dy −
√
x2 + y2

z2
dz

dθ =
zx

r2
√
x2 + y2

dx+
zy

r2
√
x2 + y2

dy −
√
x2 + y2

r2
dz

dθ =
(r cos θ)(r sin θ cosϕ)

r3 sin θ
dx+

(r cos θ)(r sin θ sinϕ)

r3 sin θ
dy − r sin θ

r2
dz

=
cosϕ cos θ

r
dx+

sinϕ cos θ

r
dy − sin θ

r
dz

(C.5)

sec2 ϕ dϕ =
x dy − y dx

x2

dϕ = cos2 ϕ
x dy − y dx

x2
=

x2

x2 + y2

x dy − y dx

x2
=
x dy − y dx

x2 + y2
= − sinϕ

r sin θ
dx+

cosϕ

r sin θ
dy

(C.6)
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486 (Physicists’) Spherical Coordinates

and so

J =
∂(r, θ, ϕ)

∂(x, y, z)
=


∂r
∂x

∂r
∂y

∂r
∂z

∂θ
∂x

∂θ
∂y

∂θ
∂z

∂ϕ
∂x

∂ϕ
∂y

∂ϕ
∂z

 =

 cosϕ sin θ sinϕ sin θ cos θ
cosϕ cos θ

r
sinϕ cos θ

r
− sin θ

r
− sinϕ
r sin θ

cosϕ
r sin θ

0

 (C.7)

J =
sin θ

r

(
cosϕ sin θ

cosϕ

r sin θ
− sinϕ sin θ

− sinϕ

r sin θ

)
+ cos θ

(
cosϕ cos θ

r

cosϕ

r sin θ
− sinϕ cos θ

r

− sinϕ

r sin θ

)
(C.8)

=
sin θ

r

cos2 ϕ+ sin2 ϕ

r
+

cos2 θ

r2 sin θ

(
cos2 ϕ+ sin2 ϕ

)
=

sin2 θ + cos2 θ

r2 sin θ
=

1

r2 sin θ
(C.9)

Note that we then have

e1 = er = ∇r = cosϕ sin θ∇x+ sinϕ sin θ∇y + cos θ∇z (C.10)
| ∇r| = 1 (C.11)

e2 = eθ = ∇θ =
cosϕ cos θ

r
∇x+

sinϕ cos θ

r
∇y − sin θ

r
∇z (C.12)

| ∇θ| =
√

(cos2 ϕ+ sin2 ϕ) cos2 θ + sin2 θ

r2
=

√
1

r2
=

1

r
(C.13)

e3 = eϕ = ∇ϕ = − sinϕ

r sin θ
∇x+

cosϕ

r sin θ
∇y (C.14)

| ∇ϕ| =

√
sin2 ϕ+ cos2 ϕ

r2 sin2 θ
=

√
1

r2 sin2 θ
=

1

r sin θ
(C.15)

So that

ê1 = êr = r̂ = cosϕ sin θx̂ + sinϕ sin θŷ + cos θẑ (C.16)

ê2 = êθ = θ̂ = cosϕ cos θx̂ + sinϕ cos θŷ − sin θẑ (C.17)
ê3 = êϕ = ϕ̂ = − sinϕx̂ + cosϕŷ (C.18)

(C.19)

The metric tensor is given by gij =
∑3

k=1
∂ξi

∂xk
∂ξj

∂xk
. Thus

grr =

(
∂r

∂x

)2

+

(
∂r

∂y

)2

+

(
∂r

∂z

)2

= cos2 ϕ sin2 θ + sin2 ϕ sin2 θ + cos2 θ = 1

(C.20)

gθθ =

(
∂θ

∂x

)2

+

(
∂θ

∂y

)2

+

(
∂θ

∂z

)2

=
cos2 ϕ cos2 θ

r2
+

sin2 ϕ cos2 θ

r2
+

sin2 θ

r2
=

1

r2

(C.21)

gϕϕ =

(
∂ϕ

∂x

)2

+

(
∂ϕ

∂y

)2

+

(
∂ϕ

∂z

)2

=
sin2 ϕ

r2 sin2 θ
+

cos2 ϕ

r2 sin2 θ
=

1

r2 sin2 θ

(C.22)
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grθ =
∂r

∂x

∂θ

∂x
+
∂r

∂y

∂θ

∂y
+
∂r

∂z

∂θ

∂z

= cosϕ sin θ
cosϕ cos θ

r
+ sinϕ sin θ

sinϕ cos θ

r
+ cos θ

− sin θ

r
= 0

(C.23)

grϕ =
∂r

∂x

∂ϕ

∂x
+
∂r

∂y

∂ϕ

∂y
+
∂r

∂z

∂ϕ

∂z

= cosϕ sin θ
− sinϕ

r sin θ
+ sinϕ sin θ

cosϕ

r sin θ
+ cos θ(0) = 0

(C.24)

gθϕ =
∂θ

∂x

∂ϕ

∂x
+
∂θ

∂y

∂ϕ

∂y
+
∂θ

∂z

∂ϕ

∂z

=
cosϕ cos θ

r

− sinϕ

r sin θ
+

sinϕ cos θ

r

cosϕ

r sin θ
+
− sin θ

r
(0) = 0

(C.25)

Thus

gij =

 1 0 0
0 1

r2 0
0 0 1

r2 sin2 θ

 (C.26)

In the other direction we would use

x = r cosϕ sin θ (C.27)
y = r sinϕ sin θ (C.28)
z = r cos θ (C.29)

e1 = er =

(
∂x

∂r

)
θ,ϕ

= cosϕ sin θ∇x− sinϕ sin θ∇y (C.30)

e2 = eθ =
∂x

∂θ
= r cosϕ cos θ∇x+ r sinϕ cos θ∇y − r sin θ∇z (C.31)

e3 = eϕ =
∂x

∂ϕ
= −r sinϕ sin θ∇x+ r cosϕ sin θ∇y (C.32)

and so

dx = cosϕ sin θ dr + r cosϕ cos θ dθ − r sinϕ sin θ dϕ (C.33)
dy = sinϕ sin θ dr + r sinϕ cos θ dθ + r cosϕ sin θ dϕ (C.34)
dz = cos θ dr − r sin θ dθ (C.35)

and so we then have

J = J−1 =
∂(x, y, z)

∂(r, θ, ϕ)
=


∂x
∂r

∂x
∂θ

∂x
∂ϕ

∂y
∂r

∂y
∂θ

∂y
∂ϕ

∂z
∂r

∂z
∂θ

∂z
∂ϕ

 =

 cosϕ sin θ r cosϕ cos θ −r sinϕ sin θ
sinϕ sin θ r sinϕ cos θ r cosϕ sin θ

cos θ −r sin θ 0

 (C.36)

J = cos θ ((r cosϕ cos θ)(r cosϕ sin θ)− (−r sinϕ sin θ)(r sinϕ cos θ))

−−r sin θ ((cosϕ sin θ)(r cosϕ sin θ)− (−r sinϕ sin θ)(sinϕ sin θ))

= r2 cos2 θ sin θ + r2 sin3 θ = r2 sin θ

(C.37)
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488 (Physicists’) Spherical Coordinates

Note that we then have

x̂ = cosϕ sin θ∇r + r cosϕ cos θ∇θ − r sinϕ sin θ∇ϕ
= cosϕ sin θr̂ + cosϕ cos θθ̂ − sinϕϕ̂

=
x√

x2 + y2 + z2
r̂ +

xz√
x2 + y2

√
x2 + y2 + z2

θ̂ − y√
x2 + y2

ϕ̂

(C.38)

ŷ = sinϕ sin θ∇r + r sinϕ cos θ∇θ + r cosϕ sin θ∇ϕ
= sinϕ sin θr̂ + sinϕ cos θθ̂ + cosϕϕ̂

=
y√

x2 + y2 + z2
r̂ +

yz√
x2 + y2

√
x2 + y2 + z2

θ̂ +
x√

x2 + y2
ϕ̂

(C.39)

ẑ = cos θ∇r − r sin θ∇θ = cos θr̂− sin θθ̂

=
z√

x2 + y2 + z2
r̂−

√
x2 + y2√

x2 + y2 + z2
θ̂

(C.40)

The other metric tensor is given by gij =
∑3

k=1
∂xk

∂ξi
∂xk

∂ξj
. Thus

grr =

(
∂x

∂r

)2

+

(
∂y

∂r

)2

+

(
∂z

∂r

)2

= cos2 ϕ sin2 θ + sin2 ϕ sin2 θ + cos2 θ = 1

(C.41)

gθθ =

(
∂x

∂θ

)2

+

(
∂y

∂θ

)2

+

(
∂z

∂θ

)2

= r2 cos2 ϕ cos2 θ + r2 sin2 ϕ cos2 θ + r2 sin2 θ = r2

(C.42)

gϕϕ =

(
∂x

∂ϕ

)2

+

(
∂y

∂ϕ

)2

+

(
∂z

∂ϕ

)2

= r2 sin2 ϕ sin2 θ + r2 cos2 ϕ sin2 θ = r2 sin2 θ

(C.43)

grθ =
∂x

∂r

∂x

∂θ
+
∂y

∂r

∂y

∂θ
+
∂z

∂r

∂z

∂θ
= cosϕ sin θ(r cosϕ cos θ) + sinϕ sin θ(r sinϕ cos θ) + cos θ(−r sin θ) = 0

(C.44)

grϕ =
∂x

∂r

∂x

∂ϕ
+
∂y

∂r

∂y

∂ϕ
+
∂z

∂r

∂z

∂ϕ

= cosϕ sin θ(−r sinϕ sin θ) + sinϕ sin θ(r cosϕ sin θ) + cos θ(0) = 0

(C.45)

gθϕ =
∂x

∂θ

∂x

∂ϕ
+
∂y

∂θ

∂y

∂ϕ
+
∂z

∂θ

∂z

∂ϕ

= r cosϕ cos θ(−r sinϕ sin θ) + r sinϕ cos θ(r cosϕ sin θ) +−r sin θ(0) = 0

(C.46)

Thus

gij =

 1 0 0
0 r2 0
0 0 r2 sin2 θ

 (C.47)
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Thus we find for the Christoffel symbols that

Γk,ij =
1

2

[
∂gik
∂ξj

+
∂gjk
∂ξi
− ∂gij
∂ξk

]
(C.48)

Γr,ij =

0 0 0
0 −r 0
0 0 −r sin2 θ

 (C.49)

Γθ,ij =

0 r 0
r 0 0
0 0 r2 sin θ cos θ

 (C.50)

Γϕ,ij =

 0 0 r sin2 θ
0 0 r2 sin θ cos θ

r sin2 θ r2 sin θ cos θ 0

 (C.51)

and

Γkij = gklΓl,ij (C.52)

Γrij =

0 0 0
0 −r 0
0 0 −r sin2 θ

 (C.53)

Γθij =

0 1
r

0
1
r

0 0
0 0 − sin θ cos θ

 (C.54)

Γϕij =

0 0 1
r

0 0 cot θ
1
r

cot θ 0

 (C.55)

C.5 Primitive Toroidal Coordinates

We have Cartesian (x, y, z) and primitive toroidal coordinates (r, θ, ζ) as our two coordinate sys-
tems. (0 ≤ r <∞, 0 ≤ θ ≤ 2π, and 0 ≤ ζ ≤ 2π)

We use

r2 = (R−R0)2 + z2 = (
√
x2 + y2 −R0)2 + z2 (C.1)

tan θ =
z

R−R0

=
z√

x2 + y2 −R0

(C.2)

tan(−ζ) =
y

x
(C.3)

R =
√
x2 + y2 (C.4)

(C.5)

where
√
x2

0 + y2
0 = R0 > 0 is a given constant.
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490 Primitive Toroidal Coordinates

Thus, we find

dr =

2
(√

x2 + y2 −R0

)(
2xdx+2y dy

2
√
x2+y2

)
+ 2z dz

2

√(√
x2 + y2 −R0

)2

+ z2

=

(√
(x2 + y2)−R0

)(
xdx+y dy√

x2+y2

)
+ z dz√

(
√
x2 + y2 −R0)2 + z2

=
(1− R0√

x2+y2
)(x dx+ y dy) + z dz√

(
√
x2 + y2 −R0)2 + z2

=
(R−R0) cos ζ

r
dx− (R−R0) sin ζ

r
dy + sin θ dz

= cos θ cos ζ dx− cos ζ sin ζ dy + sin θ dz

(C.6)

sec2 θ dθ =
(
√
x2 + y2 −R0) dz − z xdx+y dy√

x2+y2

(
√
x2 + y2 −R0)2

(C.7)

dθ =
(
√
x2 + y2 −R0) dz − z xdx+y dy√

x2+y2

(
√
x2 + y2 −R0)2 + z2

(C.8)

= −cos ζ sin θ

r
dx+

sin ζ sin θ

r
dy +

cos θ

r
dz (C.9)

sec2(−ζ)(− dζ) =
x dy − y dx

x2
(C.10)

dζ = cos2(ζ)
y dx− x dy

x2
=

y

x2 + y2
dx− x

x2 + y2
dy

= −sin ζ

R
dx− cos ζ

R
dy

(C.11)

and so

J =
∂(r, θ, ζ)

∂(x, y, z)
=


∂r
∂x

∂r
∂y

∂r
∂z

∂θ
∂x

∂θ
∂y

∂θ
∂z

∂ζ
∂x

∂ζ
∂y

∂ζ
∂z

 =

 cos θ cos ζ − cos θ sin ζ sin θ
− cos ζ sin θ

r
sin ζ sin θ

r
cos θ
r

− sin ζ
R

− cos ζ
R

0

 (C.12)

J = sin θ

(
− cos ζ sin θ

r
(
− cos ζ

R
)− sin ζ sin θ

r
(
− sin ζ

R
)

)
− cos θ

r

(
cos θ cos ζ(

− cos ζ

R
)− (− cos θ sin ζ)(

− sin ζ

R
)

)
=

sin2 θ

rR
+

cos2 θ

rR
=

1

rR

(C.13)

Note that we then have

ê1 = êr = ∇r = cos θ cos ζ∇x− cos θ sin ζ∇y + sin θ∇z (C.14)
| ∇r| = 1 (C.15)

ê2 = êθ = ∇θ = −cos ζ sin θ

r
∇x+

sin ζ sin θ

r
∇y +

cos θ

r
∇z (C.16)
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| ∇θ| =
√

cos2 ζ sin2 θ + sin2 ζ sin2 θ + cos2 θ

r2
=

√
1

r2
=

1

r
(C.17)

ê3 = êζ = ∇ζ = −sin ζ

R
∇x− cos ζ

R
∇y (C.18)

| ∇ζ| =
√

sin2 ζ + cos2 ζ

R2
=

√
1

R2
=

1

R
(C.19)

So that

ê1 = êr = r̂ = cos θ cos ζx̂− cos θ sin ζŷ + sin θẑ (C.20)

ê2 = êθ = θ̂ = − cos ζ sin θx̂ + sin ζ sin θŷ + cos θẑ (C.21)

ê3 = êζ = ζ̂ = − sin ζx̂− cos ζŷ (C.22)
(C.23)

The metric tensor is given by gij =
∑3

k=1
∂ξi

∂xk
∂ξj

∂xk
. Thus

grr =

(
∂r

∂x

)2

+

(
∂r

∂y

)2

+

(
∂r

∂z

)2

= cos2 θ cos2 ζ + cos2 θ sin2 ζ + sin2 θ = 1

(C.24)

gθθ =

(
∂θ

∂x

)2

+

(
∂θ

∂y

)2

+

(
∂θ

∂z

)2

=
cos2 ζ sin2 θ

r2
+

sin2 ζ sin2 θ

r2
+

cos2 θ

r2
=

1

r2

(C.25)

gζζ =

(
∂ζ

∂x

)2

+

(
∂ζ

∂y

)2

+

(
∂ζ

∂z

)2

=
sin2 ζ

R2
+

cos2 ζ

R2
=

1

R2

(C.26)

grθ =
∂r

∂x

∂θ

∂x
+
∂r

∂y

∂θ

∂y
+
∂r

∂z

∂θ

∂z

= cos ζ cos θ
− cos ζ sin θ

r
− sin ζ cos θ

sin ζ sin θ

r
+ sin θ

cos θ

r
= 0

(C.27)

grζ =
∂r

∂x

∂ζ

∂x
+
∂r

∂y

∂ζ

∂y
+
∂r

∂z

∂ζ

∂z

= cos ζ cos θ
− sin ζ

R
− sin ζ cos θ

− cos ζ

R
+ sin θ(0) = 0

(C.28)

gθζ =
∂θ

∂x

∂ζ

∂x
+
∂θ

∂y

∂ζ

∂y
+
∂θ

∂z

∂ζ

∂z

=
− cos ζ sin θ

r

− sin ζ

R
+

sin ζ sin θ

r

− cos ζ

R
+

cos θ

r
(0) = 0

(C.29)

Thus

gij =

 1 0 0
0 1

r2 0
0 0 1

R2

 (C.30)
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492 Primitive Toroidal Coordinates

In the other direction we would use

x = R cos ζ (C.31)
y = −R sin ζ (C.32)
z = r sin θ (C.33)

R−R0 = r cos θ (C.34)

or combining, if we so wish

x = (R0 + r cos θ) cos ζ (C.35)
y = −(R0 + r cos θ) sin ζ (C.36)
z = r sin θ (C.37)

e1 = eR =

(
∂x

∂r

)
θ,ζ

= cos θ cos ζ∇x− cos θ sin ζ∇y + sin θ∇z (C.38)

e2 = eθ =
∂x

∂θ
= −r sin θ cos ζ∇x+ r sin θ sin ζ∇y + r cos θ∇z (C.39)

e3 = eζ =
∂x

∂ζ
= −(R0 + r cos θ) sin ζ∇x− (R0 + r cos θ) cos ζ∇y (C.40)

and so

dx = cos ζ dR−R sin ζ dζ (C.41)
dy = − sin ζ dR−R cos ζ dζ (C.42)
dz = sin θ dr + r cos θ dθ (C.43)
dR = cos θ dr − r sin θ dθ (C.44)
dx = cos θ cos ζ dr − r sin θ cos ζ dθ −R sin ζ dζ (C.45)
dy = − cos θ sin ζ dr + r sin θ sin ζ dθ −R cos ζ dζ (C.46)

and so we then have

J = J−1 =
∂(x, y, z)

∂(r, θ, ζ)
=


∂x
∂r

∂x
∂θ

∂x
∂ζ

∂y
∂r

∂y
∂θ

∂y
∂ζ

∂z
∂r

∂z
∂θ

∂z
∂ζ

 =

 cos θ cos ζ −r sin θ cos ζ −R sin ζ
− cos θ sin ζ r sin θ sin ζ −R cos ζ

sin θ r cos θ 0

 (C.47)

J = sin θ ((−r sin θ cos ζ)(−R cos ζ)− (−R sin ζ)(r sin θ sin ζ))

− r cos θ (cos θ cos ζ(−R cos ζ)− (−R sin ζ)(− cos θ sin ζ))

= rR sin2 θ + rR cos2 θ = rR

(C.48)

Note that we then have

x̂ = cos θ cos ζ∇r − r sin θ cos ζ∇θ −R sin ζ∇ζ
= cos θ cos ζ r̂− sin θ cos ζθ̂ − sin ζζ̂

=
(R−R0)x

rR
r̂− zx

rR
θ̂ +

y

R
ζ̂

=
(
√
x2 + y2 −R0)x√

x2 + y2
√
x2 + y2 + z2

r̂− xz√
x2 + y2

√
x2 + y2 + z2

θ̂ +
y√

x2 + y2
ζ̂

(C.49)
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ŷ = − cos θ sin ζ∇r + r sin θ sin ζ∇θ −R cos ζ∇ζ
= − cos θ sin ζ r̂ + sin θ sin ζθ̂ − cos ζζ̂

=
(R−R0)y

rR
r̂− yz

rR
θ̂ − x

R
ζ̂

=
(
√
x2 + y2 −R0)y√

x2 + y2
√
x2 + y2 + z2

r̂− yz√
x2 + y2

√
x2 + y2 + z2

θ̂ − x√
x2 + y2

ζ̂

(C.50)

ẑ = sin θ∇r + r cos θ∇θ
= sin θr̂ + cos θθ̂

=
z

r
r̂ +

R−R0

r
θ̂

=
z√

x2 + y2 + z2
r̂ +

√
x2 + y2 −R0√
x2 + y2 + z2

θ̂

(C.51)

The other metric tensor is given by gij =
∑3

k=1
∂xk

∂ξi
∂xk

∂ξj
. Thus

grr =

(
∂x

∂r

)2

+

(
∂y

∂r

)2

+

(
∂z

∂r

)2

= cos2 θ cos2 ζ + cos2 θ sin2 ζ + sin2 θ = 1

(C.52)

gθθ =

(
∂x

∂θ

)2

+

(
∂y

∂θ

)2

+

(
∂z

∂θ

)2

= r2 sin2 θ cos2 ζ + r2 sin2 θ sin2 ζ + r2 cos2 θ = r2

(C.53)

gζζ =

(
∂x

∂ζ

)2

+

(
∂y

∂ζ

)2

+

(
∂z

∂ζ

)2

= R2 sin2 ζ +R2 cos2 ζ + 0 = R2

(C.54)

grθ =
∂x

∂r

∂x

∂θ
+
∂y

∂r

∂y

∂θ
+
∂z

∂r

∂z

∂θ
= cos θ cos ζ(−r sin θ cos ζ)− cos θ sin ζ(r sin θ sin ζ) + r sin θ cos θ = 0

(C.55)

grζ =
∂x

∂r

∂x

∂ζ
+
∂y

∂r

∂y

∂ζ
+
∂z

∂r

∂z

∂ζ

= cos θ cos ζ(−R sin ζ) + cos θ sin ζR cos ζ + sin θ(0) = 0

(C.56)

gθζ =
∂x

∂θ

∂x

∂ζ
+
∂y

∂θ

∂y

∂ζ
+
∂z

∂θ

∂z

∂ζ

= −r sin θ cos ζ(−R sin ζ) + r sin θ sin ζ(−R cos ζ) + r cos θ(0) = 0

(C.57)

Thus

gij =

 1 0 0
0 r2 0
0 0 R2

 (C.58)

Thus we find for the Christoffel symbols that

Γk,ij =
1

2

[
∂gik
∂ξj

+
∂gjk
∂ξi
− ∂gij
∂ξk

]
(C.59)
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494 Plasma Toroidal Coordinates

Γr,ij =

0 0 0
0 −r 0
0 0 −R cos θ

 (C.60)

Γθ,ij =

0 r 0
r 0 0
0 0 rR sin θ

 (C.61)

Γζ,ij =

 0 0 R cos θ
0 0 −rR sin θ

R cos θ −rR sin θ 0

 (C.62)

and

Γkij = gklΓl,ij (C.63)

Γrij =

0 0 0
0 −r 0
0 0 −R cos θ

 (C.64)

Γθij =

0 1
r

0
1
r

0 0
0 0 R

r
sin θ

 (C.65)

Γζij =

 0 0 cos θ
R

0 0 − r sin θ
R

cos θ
R
− r sin θ

R
0

 (C.66)

C.6 Plasma Toroidal Coordinates
We have Cartesian (x, y, z) and plasma toroidal coordinates (ψ, θ, ζ) as our two coordinate systems.
(1 < ψ <∞, 0 < θ < 2π, and 0 < ζ < 2π)

We use

x = a

√
ψ2 − 1

ψ − cos θ
cos ζ (C.1)

y = a

√
ψ2 − 1

ψ − cos θ
sin ζ (C.2)

z = a
sin θ

ψ − cos θ
(C.3)

which means

e1 = eψ =

(
∂x

∂ψ

)
θ,ζ

=
a cos ζ(1− ψ cos θ)√
ψ2 − 1(ψ − cos θ)2

∇x+
a sin ζ(1− ψ cos θ)√
ψ2 − 1(ψ − cos θ)2

∇y − a sin θ

(ψ − cos θ)2
∇z

(C.4)

e2 = eθ =
∂x

∂θ
= −a

√
ψ2 − 1 cos ζ sin θ

(ψ − cos θ)2
∇x− a

√
ψ2 − 1 sin ζ sin θ

(ψ − cos θ)2
∇y +

a(ψ cos θ − 1)

(ψ − cos θ)2
∇z (C.5)

e3 = eζ =
∂x

∂ζ
= −a

√
ψ2 − 1

ψ − cos θ
∇x+

a
√
ψ2 − 1

ψ − cos θ
∇y (C.6)
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Taking (define β = z2

x2+y2 and γ = (1+r2/a2)2

(1−r2/a2)2 where r2 = x2 + y2 + z2)

x2 + y2 + z2

a2
=
r2

a2
=
ψ2 − 1 + sin2 θ

(ψ − cos θ)2
=

ψ2 − cos2 θ

(ψ − cos θ)2
=

(ψ + cos θ)���
���(ψ − cos θ)

(ψ − cos θ)�2
=
ψ + cos θ

ψ − cos θ
(C.7)

ψ =
− cos θ(1 + r2

a2 )

1− r2

a2

⇒ ψ2 = γ cos2 θ (C.8)

y

z
=

√
ψ2 − 1

sin θ
sin ζ =

√
ψ2 − 1

sin θ

y√
x2 + y2

⇒
√
x2 + y2

z
=

√
ψ2 − 1

sin θ
(C.9)

sin2 θ =
z2

x2 + y2
(ψ2 − 1) = β[(1− sin2 θ)γ − 1] (C.10)

sin2 θ =
β(γ − 1)

1 + γβ
=

4a2z2

(−a2 + x2 + y2)2 + 2(a2 + x2 + y2)z2 + z4
(C.11)

sin θ =
2az√

(−a2 + x2 + y2)2 + 2(a2 + x2 + y2)z2 + z4
(C.12)

ψ2 =

(
1 + r2/a2

1− r2/a2

)2(
1− 4a2z2

(−a2 + x2 + y2)2 + 2(a2 + x2 + y2)z2 + z4

)
=

(a2 + x2 + y2 + z2)
2

2z2 (a2 + x2 + y2) + (−a2 + x2 + y2)2 + z4

(C.13)

Thus we can rewrite our expressions as the ugly

ψ2 =
(a2 + x2 + y2 + z2)

2

2z2 (a2 + x2 + y2) + (−a2 + x2 + y2)2 + z4
(C.14)

sin2 θ =
β(γ − 1)

1 + γβ
=

4a2z2

(−a2 + x2 + y2)2 + 2(a2 + x2 + y2)z2 + z4
(C.15)

tan ζ =
y

x
(C.16)

So we find

dx =
a cos ζ(1− ψ cos θ)√
ψ2 − 1(ψ − cos θ)2

dψ − a
√
ψ2 − 1 cos ζ sin θ

(ψ − cos θ)2
dθ − a

√
ψ2 − 1

ψ − cos θ
sin ζ dζ (C.17)

dy =
a sin ζ(1− ψ cos θ)√
ψ2 − 1(ψ − cos θ)2

dψ − a
√
ψ2 − 1 sin ζ sin θ

(ψ − cos θ)2
dθ +

a
√
ψ2 − 1

ψ − cos θ
cos ζ dζ (C.18)

dz = a
cos θ(ψ − cos θ) dθ − sin θ( dψ + sin θ dθ)

(ψ − cos θ)2

= −a sin θ

(ψ − cos θ)2
dψ + a

ψ cos θ − 1

(ψ − cos θ)2
dθ

(C.19)
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We of course then have

J = J −1 =
∂(ψ, θ, ζ)

∂(x, y, z)
=


∂ψ
∂x

∂ψ
∂y

∂ψ
∂z

∂θ
∂x

∂θ
∂y

∂θ
∂z

∂ζ
∂x

∂ζ
∂y

∂ζ
∂z



=


√
ψ2−1 cos ζ(1−ψ cos θ)

a

√
ψ2−1(1−ψ cos θ) sin ζ

a
−(ψ2−1) sin θ

a

−
√
ψ2−1 cos ζ sin θ

a
−
√
ψ2−1 sin ζ sin θ

a
ψ cos θ−1

a
(cos θ−ψ) sin ζ

a
√
ψ2−1

cos ζ(ψ−cos θ)

a
√
ψ2−1

0


(C.20)

J =
1

J
=

(ψ − cos θ)3

a3
(C.21)

Because of the ugliness of calculating gij directly, I use the results of gij below (C.56) and invert
it to find.

gij =

[(ψ2 − 1)(ψ − cos θ)2] 0 0
0 (ψ − cos θ)2 0
0 0 (ψ2 − 1)(ψ − cos θ)2

 (C.22)

We can now note that

e1 = eψ = ∇ψ =

√
ψ2 − 1(1− ψ cos θ) cos ζ

a
∇x+

√
ψ2 − 1(1− ψ cos θ) sin ζ

a
∇y − sin θ(ψ2 − 1)

a
∇z

(C.23)

| ∇ψ|2 =
(ψ2 − 1)(1− ψ cos θ)2 cos2 ζ + (ψ2 − 1)(1− ψ cos θ)2 sin2 ζ + (ψ2 − 1)2 sin2 θ

a2

=
(ψ2 − 1)(1− ψ cos θ)2 + (ψ2 − 1)2 sin2 θ

a2

=
(ψ2 − 1) [�1− 2ψ cos θ +

XXXXXψ2 cos2 θ + ψ2 −XXXXXψ2 cos2 θ − �1 + cos2 θ]

a2

=
(ψ2 − 1)(ψ − cos θ)2

a2

(C.24)

| ∇ψ| =
√
ψ2 − 1(ψ − cos θ)

a
(C.25)

e2 = eθ = ∇θ = −
√
ψ2 − 1 cos ζ sin θ

a
∇x+−

√
ψ2 − 1 sin ζ sin θ

a
∇y +

ψ cos θ − 1

a
∇z (C.26)

| ∇θ|2 =
(ψ2 − 1) cos2 ζ sin2 θ + (ψ2 − 1) sin2 ζ sin2 θ + (1− ψ cos θ)2

a2

=
(ψ2 − 1) sin2 θ + (1− ψ cos θ)2

a2
=

(ψ − cos θ)2

a2

(C.27)

| ∇θ| = ψ − cos θ

a
(C.28)
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e3 = eζ = ∇ζ =
(cos θ − ψ) sin ζ

a
√
ψ2 − 1

∇x+
cos ζ(ψ − cos θ)

a
√
ψ2 − 1

∇y (C.29)

| ∇ζ|2 =
(ψ − cos θ)2 sin2 ζ + (ψ − cos θ)2 cos2 ζ

a2(ψ2 − 1)
=

(ψ − cos θ)2

a2(ψ2 − 1)
(C.30)

| ∇ζ| = ψ − cos θ

a
√
ψ2 − 1

(C.31)

J = J−1 =
∂(x, y, z)

∂(ψ, θ, ζ)
=


∂x
∂ψ

∂x
∂θ

∂x
∂ζ

∂y
∂ψ

∂y
∂θ

∂y
∂ζ

∂z
∂ψ

∂z
∂θ

∂z
∂ζ

 =


a cos ζ(1−ψ cos θ)√
ψ2−1(ψ−cos θ)2

−a
√
ψ2−1 cos ζ sin θ

(ψ−cos θ)2 −a
√
ψ2−1 sin ζ

ψ−cos θ

a sin ζ(1−ψ cos θ)√
ψ2−1(ψ−cos θ)2

−a
√
ψ2−1 sin ζ sin θ

(ψ−cos θ)2

a
√
ψ2−1 cos ζ

ψ−cos θ

−a sin θ
(ψ−cos θ)2

a(ψ cos θ−1)
(ψ−cos θ)2 0


(C.32)

J =
−a sin θ

(ψ − cos θ)2

(
−a
√
ψ2 − 1 cos ζ sin θ

(ψ − cos θ)2

a
√
ψ2 − 1 cos ζ

ψ − cos θ
− a

√
ψ2 − 1 sin ζ

ψ − cos θ

a
√
ψ2 − 1 sin ζ sin θ

(ψ − cos θ)2

)

− a(ψ cos θ − 1)

(ψ − cos θ)2

(
a cos ζ(1− ψ cos θ)√
ψ2 − 1(ψ − cos θ)2

a
√
ψ2 − 1 cos ζ

ψ − cos θ
− −a

√
ψ2 − 1 sin ζ

ψ − cos θ

a sin ζ(1− ψ cos θ)√
ψ2 − 1(ψ − cos θ)2

)

=
a3 sin2 θ(ψ2 − 1)

(ψ − cos θ)5

(
cos2 ζ + sin2 ζ

)
+
a3(1− ψ cos θ)2

(ψ − cos θ)5

(
cos ζ2 + sin2 ζ

)
=

a3

(ψ − cos θ)5

(
(ψ2 − 1) sin2 θ + (1− ψ cos θ)2

)
=

a3

(ψ − cos θ)5

(
(ψ2 − 1)(1− cos2 θ) + 1 + 2ψ cos θ + ψ2 cos2 θ

)
=

a3

(ψ − cos θ)5

(
ψ2 + 2ψ cos θ + cos2 θ

)
=
a3 (ψ − cos θ)2

(ψ − cos θ)5
=

a3

(ψ − cos θ)3

(C.33)

Note that we then have (using (C.23) and the following)

x̂ =
a cos ζ(1− ψ cos θ)√
ψ2 − 1(ψ − cos θ)2

∇ψ − a
√
ψ2 − 1 cos ζ sin θ

(ψ − cos θ)2
∇θ − a

√
ψ2 − 1

ψ − cos θ
sin ζ∇ζ

=
cos ζ(1− ψ cos θ)

ψ − cos θ
ψ̂ −

√
ψ2 − 1 cos ζ sin θ

ψ − cos θ
θ̂ − sin ζζ̂

(C.34)

ŷ =
a sin ζ(1− ψ cos θ)√
ψ2 − 1(ψ − cos θ)2

∇ψ − a
√
ψ2 − 1 sin ζ sin θ

(ψ − cos θ)2
∇θ +

a
√
ψ2 − 1

ψ − cos θ
cos ζ∇ζ

=
sin ζ(1− ψ cos θ)

ψ − cos θ
ψ̂ −

√
ψ2 − 1 sin ζ sin θ

ψ − cos θ
θ̂ + cos ζζ̂

(C.35)

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



498 Plasma Toroidal Coordinates

ẑ = −a sin θ

(ψ − cos θ)2
∇ψ + a

ψ cos θ − 1

(ψ − cos θ)2
∇θ

= −
√
ψ2 − 1 sin θ

ψ − cos θ
ψ̂ +

ψ cos θ − 1

ψ − cos θ
θ̂

(C.36)

The metric tensor is given by gij =
∑3

k=1
∂xk

∂ξi
∂xk

∂ξj
. Thus

gψψ =
∂x

∂ψ

∂x

∂ψ
+
∂y

∂ψ

∂y

∂ψ
+
∂z

∂ψ

∂z

∂ψ
(C.37)

=
(1− ψ cos θ)2

(ψ2 − 1)(ψ − cos θ)4
cos2 ζ +

(1− ψ cos θ)2

(ψ2 − 1)(ψ − cos θ)4
sin2 ζ +

sin2 θ

(ψ − cos θ)4
(C.38)

=
(1− ψ cos θ)2

(ψ2 − 1)(ψ − cos θ)4
+

sin2 θ(ψ2 − 1)

(ψ2 − 1)(ψ − cos θ)4
=

1 + ψ2 cos2 θ − 2ψ cos θ + ψ2 sin2 θ − sin2 θ

(ψ2 − 1)(ψ − cos θ)4

(C.39)

gψψ =
cos2 θ − 2ψ cos θ + ψ2

(ψ2 − 1)(ψ − cos θ)4
=

(ψ − cos θ)2

(ψ2 − 1)(ψ − cos θ)4
=

1

(ψ2 − 1)(ψ − cos θ)2
(C.40)

gθθ =
∂x

∂θ

∂x

∂θ
+
∂y

∂θ

∂y

∂θ
+
∂z

∂θ

∂z

∂θ
(C.41)

=
(ψ2 − 1) sin2 θ

(ψ − cos θ)4
cos2 ζ +

(ψ2 − 1) sin2 θ

(ψ − cos θ)4
sin2 ζ +

(1− ψ cos θ)2

(ψ − cos θ)4
(C.42)

=
ψ2 sin2 θ − sin2 θ + 1− 2ψ cos θ + ψ2 cos2 θ

(ψ − cos θ)4
=

cos2 θ − 2ψ cos θ + ψ2

(ψ − cos θ)4
(C.43)

gθθ =
(ψ − cos θ)2

(ψ − cos θ)4
=

1

(ψ − cos θ)2
(C.44)

gζζ =
∂x

∂ζ

∂x

∂ζ
+
∂y

∂ζ

∂y

∂ζ
+
∂z

∂ζ

∂z

∂ζ
(C.45)

gζζ =
ψ2 − 1

(ψ − cos θ)2
sin2 ζ +

ψ2 − 1

(ψ − cos θ)2
cos2 ζ =

ψ2 − 1

(ψ − cos θ)2
(C.46)

gψθ =
∂x

∂ψ

∂x

∂θ
+
∂y

∂ψ

∂y

∂θ
+
∂z

∂ψ

∂z

∂θ
(C.47)

=

(
1− ψ cos θ√

ψ2 − 1(ψ − cos θ)2
cos ζ

)(
−
√
ψ2 − 1 sin θ

(ψ − cos θ)2
cos ζ

)

+

(
1− ψ cos θ√

ψ2 − 1(ψ − cos θ)2
sin ζ

)(
−
√
ψ2 − 1 sin θ

(ψ − cos θ)2
sin ζ

)

+

(
− sin θ

(ψ − cos θ)2

)(
ψ cos θ − 1

(ψ − cos θ)2

)
(C.48)

gψθ =
(ψ cos θ − 1)

√
ψ2 − 1 sin θ√

ψ2 − 1(ψ − cos θ)4
− sin θ(ψ sin θ cos θ − 1

(ψ − cos θ)4
= 0 (C.49)

gψζ =
∂x

∂ψ

∂x

∂ζ
+
∂y

∂ψ

∂y

∂ζ
+
∂z

∂ψ

∂z

∂ζ
(C.50)

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



Common Coordinate Conversions 499

=

(
1− ψ cos θ√

ψ2 − 1(ψ − cos θ)2
cos ζ

)(
−
√
ψ2 − 1

ψ − cos θ
sin ζ

)

+

(
1− ψ cos θ√

ψ2 − 1(ψ − cos θ)2
sin ζ

)(√
ψ2 − 1

ψ − cos θ
cos ζ

)

+

(
− sin θ

(ψ − cos θ)2

)
(0) (C.51)

gψζ = − 1− ψ cos θ

(ψ − cos θ)3
sin ζ cos ζ +

1− ψ cos θ

(ψ − cos θ)3
sin ζ cos ζ = 0 (C.52)

gθζ =
∂x

∂θ

∂x

∂ζ
+
∂y

∂θ

∂y

∂ζ
+
∂z

∂θ

∂z

∂ζ
(C.53)

=

(
−
√
ψ2 − 1 sin θ

(ψ − cos θ)2
cos ζ

)(
−
√
ψ2 − 1

ψ − cos θ
sin ζ

)
+

(
−
√
ψ2 − 1 sin θ

(ψ − cos θ)2
sin ζ

)(√
ψ2 − 1

ψ − cos θ
cos ζ

)

+

(
ψ cos θ − 1

(ψ − cos θ)2

)
(0) (C.54)

gθζ =
(ψ2 − 1) sin θ

(ψ − cos θ)3
(sin ζ cos ζ − sin ζ cos ζ) = 0. (C.55)

Hence we have altogether

gij =

[(ψ2 − 1)(ψ − cos θ)2]
−1

0 0
0 (ψ − cos θ)−2 0
0 0 (ψ2 − 1)(ψ − cos θ)−2

 (C.56)

Thus we find for the Christoffel symbols that

Γk,ij =
1

2

[
∂gik
∂ξj

+
∂gjk
∂ξi
− ∂gij
∂ξk

]
(C.57)

Γψ,ij =

 0 − sin θ
(ψ−cos θ)3(ψ2−1)

0
− sin θ

(ψ−cos θ)3(ψ2−1)
0 0

0 0 0

 (C.58)

Γθ,ij =


sin θ

(ψ−cos θ)3(ψ2−1)
0 0

0 − sin θ
(ψ−cos θ)3 0

0 0 (ψ2−1) sin θ
(ψ−cos θ)3

 (C.59)

Γζ,ij =

0 0 0

0 0 −(ψ2−1) sin θ
(ψ−cos θ)3

0 −(ψ2−1) sin θ
(ψ−cos θ)3 0

 (C.60)

and

Γkij = gklΓl,ij (C.61)

Γψij =

 0 − sin θ
ψ−cos θ

0
− sin θ
ψ−cos θ

0 0

0 0 0

 (C.62)
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Γθij =


sin θ

(ψ−cos θ)(ψ2−1)
0 0

0 − sin θ
ψ−cos θ

0

0 0 (ψ2−1) sin θ
ψ−cos θ

 (C.63)

Γζij =

0 0 0
0 0 − sin θ

ψ−cos θ

0 − sin θ
ψ−cos θ

0

 (C.64)

C.7 General Toroidal Coordinates

We have Cartesian (x, y, z) and plasma toroidal coordinates (τ, θ, ζ) as our two coordinate systems.
(−∞ < τ <∞, 0 ≤ θ ≤ 2π, and 0 ≤ ζ ≤ 2π)

We use

x = a
sinh τ

cosh τ − cos θ
cos ζ (C.1)

y = a
sinh τ

cosh τ − cos θ
sin ζ (C.2)

z = a
sin θ

cosh τ − cos θ
(C.3)

Note that we then have sinh τ =
√
ψ2 − 1 and cosh τ =

√
1 + sinh2 τ =

√
ψ2 = ψ as a connection

to our previous coordinates (this would then restrict 0 < τ < ∞, which is actually nicer as it
removes the sgn(τ) functions in some relations).

Thus we can rewrite our expressions as the ugly

cosh2 τ =
(a2 + x2 + y2 + z2)

2

2z2 (a2 + x2 + y2) + (−a2 + x2 + y2)2 + z4
(C.4)

sin2 θ =
β(γ − 1)

1 + γβ
=

4a2z2

(−a2 + x2 + y2)2 + 2(a2 + x2 + y2)z2 + z4
(C.5)

tan ζ =
y

x
(C.6)

These are so painfully ugly that we will calculate the Jacobian matrix via determining the results
the “other way” first and inverting the matrix.

Note that one can write

ρ2 = x2 + y2 (C.7)
d2

1 = (ρ+ a)2 + z2 (C.8)
d2

2 = (ρ− a)2 + z2 (C.9)

eτ =
d1

d2

(C.10)

cos θ =
d2

1 + d2
2 − 4a2

d1d2

(C.11)
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So we find

dx = a
1− cosh τ cos θ

(cosh τ − cos θ)2
cos ζ dτ − a sinh τ sin θ

(cosh τ − cos θ)2
cos ζ dθ − a sinh τ

cosh τ − cos θ
sin ζ dζ (C.12)

dy = a
1− cosh τ cos θ

(cosh τ − cos θ)2
sin ζ dτ − a sinh τ sin θ

(cosh τ − cos θ)2
sin ζ dθ + a

sinh τ

cosh τ − cos θ
cos ζ dζ (C.13)

dz = −a sin θ sinh τ

(cosh τ − cos θ)2
dτ + a

cos θ cosh τ − 1

(cosh τ − cos θ)2
dθ (C.14)

which means

e1 = eτ =

(
∂x

∂ψ

)
θ,ζ

= a
1− cosh τ cos θ

(cosh τ − cos θ)2
cos θ∇x+ a

1− cosh τ cos θ

(cosh τ − cos θ)2
sin ζ∇y − a sin θ sinh τ

(cosh τ − cos θ)2
∇z

(C.15)

e2 = eθ =
∂x

∂θ
= −a sinh τ sin θ cos ζ

(cosh τ − cos θ)2
∇x− a sinh τ sin θ sin ζ

(cosh τ − cos θ)2
∇y + a

cos θ cosh τ − 1

(cosh τ − cos θ)2
(C.16)

e3 = eζ =
∂x

∂ζ
= − a sinh τ sin ζ

cosh τ − cos θ
∇x+

a sinh τ cos ζ

cosh τ − cos θ
(C.17)

J = J−1 =
∂(x, y, z)

∂(τ, θ, ζ)
=


∂x
∂τ

∂x
∂θ

∂x
∂ζ

∂y
∂τ

∂y
∂θ

∂y
∂ζ

∂z
∂τ

∂z
∂θ

∂z
∂ζ

 =

 a 1−cosh τ cos θ
(cosh τ−cos θ)2 cos ζ −a sinh τ sin θ

(cosh τ−cos θ)2 cos ζ −a sinh τ
cosh τ−cos θ

sin ζ

a 1−cosh τ cos θ
(cosh τ−cos θ)2 sin ζ −a sinh τ sin θ

(cosh τ−cos θ)2 sin ζ a sinh τ
cosh τ−cos θ

cos ζ

−a sin θ sinh τ
(cosh τ−cos θ)2 a cos θ cosh τ−1

(cosh τ−cos θ)2 0


(C.18)

J = −a sin θ sinh τ

(cosh τ − cos θ)2

(
− a sinh τ sin θ

(cosh τ − cos θ)2
cos ζ

a sinh τ

cosh τ − cos θ
cos ζ

− a sinh τ sin ζ

cosh τ − cos θ

a sinh τ sin θ sin ζ

(cosh τ − cos θ)2

)
− a cos θ cosh τ − 1

(cosh τ − cos θ)2

(
a(1− cosh τ cos θ) cos ζ

(cosh τ − cos θ)2

a sinh τ cos ζ

cosh τ − cos θ

+
a sinh τ sin ζ

cosh τ − cos θ

a(1− cosh τ cos θ) sin ζ

(cosh τ − cos θ)2

)
=

a3 sin2 θ sinh3 τ

(cosh τ − cos θ)5

(
cos2 ζ + sin2 ζ

)
+
a3(1− cosh τ cos θ)2 sinh τ

(cosh τ − cos θ)5

(
cos ζ2 + sin2 ζ

)
=

a3 sinh τ

(cosh τ − cos θ)5

(
(cosh2 τ − 1)(1− cos2 θ) + (1− cos θ cosh τ)2

)
=

a3 sinh τ

(cosh τ − cos θ)5
(cosh τ − cos θ)2 =

a3 sinh τ

(cosh τ − cos θ)3

(C.19)
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Note that we then have (using (C.32) and the following equations)

x̂ = a
1− cosh τ cos θ

(cosh τ − cos θ)2
cos ζ∇τ − a sinh τ sin θ

(cosh τ − cos θ)2
cos ζ∇θ − a sinh τ

cosh τ − cos θ
sin ζ∇ζ

=
1− cosh τ cos θ

cosh τ − cos θ
cos ζτ̂ − sinh τ sin θ

cosh τ − cos θ
cos ζθ̂ − sgn(τ) sin ζζ̂

(C.20)

ŷ = a
1− cosh τ cos θ

(cosh τ − cos θ)2
sin ζ∇τ − a sinh τ sin θ

(cosh τ − cos θ)2
sin ζ∇θ + a

sinh τ

cosh τ − cos θ
cos ζ∇ζ

=
1− cosh τ cos θ

cosh τ − cos θ
sin ζτ̂ − sinh τ sin θ

cosh τ − cos θ
sin ζθ̂ + sgn(τ) cos ζζ̂

(C.21)

ẑ = −a sin θ sinh τ

(cosh τ − cos θ)2
∇τ + a

cos θ cosh τ − 1

(cosh τ − cos θ)2
∇θ

= − sin θ sinh τ

cosh τ − cos θ
τ̂ +

cos θ cosh τ − 1

cosh τ − cos θ
θ̂

(C.22)

The metric tensor is given by gij =
∑3

k=1
∂xk

∂ξi
∂xk

∂ξj
. Thus

gττ
a2

=
∂x

∂τ

∂x

∂τ
+
∂y

∂τ

∂y

∂τ
+
∂z

∂τ

∂z

∂τ

=

(
1− cosh τ cos θ

(cosh τ − cos θ)2
cos ζ

)2

+

(
1− cosh τ cos θ

(cosh τ − cos θ)2
sin ζ

)2

+

(
− sin θ sinh τ

(cosh τ − cos θ)2

)2

=
(1− cosh τ cos θ)2 + sin2 θ sinh2 τ

(cosh τ − cos θ)4
=

1− 2 cosh τ cos θ + cosh2 τ cos2 θ + sin2 θ sinh2 τ

(cosh τ − cos θ)4

=
1− 2 cosh τ cos θ + cosh2 τ + sin2 θ(sinh2 τ − cosh2 τ)

(cosh τ − cos θ)4
=

1− 2 cosh τ cos θ + cosh2 τ − sin2 θ

(cosh τ − cos θ)4

=
cos2 θ − 2 cosh τ cos θ + cosh2 τ

(cosh τ − cos θ)4
=

(cosh τ − cos θ)2

(cosh τ − cos θ)4
=

1

(cosh τ − cos θ)2

(C.23)
gτθ
a2

=
∂x

∂τ

∂x

∂θ
+
∂y

∂τ

∂y

∂θ
+
∂z

∂τ

∂z

∂θ

=
1− cosh τ cos θ

(cosh τ − cos θ)2
cos ζ

− sinh τ sin θ

(cosh τ − cos θ)2
cos ζ

+
1− cosh τ cos θ

(cosh τ − cos θ)2
sin ζ

− sinh τ sin θ

(cosh τ − cos θ)2
sin ζ

+
− sin θ sinh τ

(cosh τ − cos θ)2

cos θ cosh τ − 1

(cosh τ − cos θ)2

=
(1− cos θ cosh τ)(sin θ sinh τ)

(cosh τ − cos θ)4

(
cos2 ζ + sin2 ζ − 1

)
= 0

(C.24)

gτζ
a2

=
∂x

∂τ

∂x

∂ζ
+
∂y

∂τ

∂y

∂ζ
+
∂z

∂τ

∂z

∂ζ

= − 1− cosh τ cos θ

(cosh τ − cos θ)2
cos ζ

sinh τ

cosh τ − cos θ
sin ζ +

1− cosh τ cos θ

(cosh τ − cos θ)2
sin ζ

sinh τ

cosh τ − cos θ
cos ζ + 0

=
(1− cosh τ cos θ)

(cosh τ − cos θ)2
sin ζ cos ζ (−1 + 1) = 0

(C.25)
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gθθ
a2

=
∂x

∂θ

∂x

∂θ
+
∂y

∂θ

∂y

∂θ
+
∂z

∂θ

∂z

∂θ

=

(
− sinh τ sin θ

(cosh τ − cos θ)2
cos ζ

)2

+

(
− sinh τ sin θ

(cosh τ − cos θ)2
sin ζ

)2

+

(
cos θ cosh τ − 1

(cosh τ − cos θ)2

)2

=
sinh2 τ sin2 θ + (1− cos θ cosh τ)2

(cosh τ − cos θ)4
=

sinh2 τ sin2 θ + 1− 2 cosh τ cos θ + cos2 θ cosh2 τ

(cosh τ − cos θ)4

=
sinh2 τ sin2 θ + (1− sin2 θ) cosh2 τ + 1− 2 cosh τ cos θ

(cosh τ − cos θ)4
=
− sin2 θ + cosh2 τ + 1− 2 cosh τ cos θ

(cosh τ − cos θ)4

=
cosh2 τ − 2 cosh τ cos θ + cos2 θ

(cosh τ − cos θ)4
=

(cosh τ − cos θ)2

(cosh τ − cos θ)4
=

1

(cosh τ − cos θ)2

(C.26)
gθζ
a2

=
∂x

∂θ

∂x

∂ζ
+
∂y

∂θ

∂y

∂ζ
+
∂z

∂θ

∂z

∂ζ
=
g2

32

a2
= 0 (C.27)

gζζ
a2

=
∂x

∂ζ

∂x

∂ζ
+
∂y

∂ζ

∂y

∂ζ
+
∂z

∂ζ

∂z

∂ζ

=

(
− sinh τ

cosh τ − cos θ
sin ζ

)2

+

(
sinh τ

cosh τ − cos θ
cos ζ

)2

+ 0 =
sinh2 τ

(cosh τ − cos θ)2

(C.28)

Thus, we find

gij =


a2

(cosh τ−cos θ)2 0 0

0 a2

(cosh τ−cos θ)2 0

0 0 a2 sinh2 τ
(cosh τ−cos θ)2

 . (C.29)

We of course then have

J = J −1 =
∂(τ, θ, ζ)

∂(x, y, z)
=


∂τ
∂x

∂τ
∂y

∂τ
∂z

∂θ
∂x

∂θ
∂y

∂θ
∂z

∂ζ
∂x

∂ζ
∂y

∂ζ
∂z


=

 cos ζ(1−cos θ cosh τ)
a

sin ζ(1−cos θ cosh τ)
a

− sin θ sinh τ
a

− cos ζ sin θ sinh τ
a

− sin ζ sin θ sinh τ
a

cos θ cosh τ−1
a

(cos θ−cosh τ) csch τ sin ζ
a

(cosh τ−cos θ) csch τ cos ζ
a

0


(C.30)

J =
1

J
=

(cosh τ − cos θ)3

a3 sinh τ
(C.31)

This then gives us (utilizing (1− xy)2 + (1− x2)(y2 − 1) = (x− y)2)

e1 = eτ = ∇τ =
cos ζ(1− cos θ cosh τ)

a
∇x+

sin ζ(1− cos θ cosh τ)

a
∇y +−sin θ sinh τ

a
∇z (C.32)

| ∇τ |2 =
(1− cos θ cosh τ)2 cos2 ζ + (1− cos θ cosh τ)2 sin2 ζ + sin2 θ sinh2 τ

a2

=
(1− cos θ cosh τ)2 + sin2 θ sinh2 τ

a2
=

(1− cos θ cosh τ)2 + (1− cos2 θ)(cosh2 τ − 1)

a2

=
(cosh τ − cos θ)2

a2

(C.33)
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| ∇τ | = cosh τ − cos θ

a
(C.34)

e2 = eθ = ∇θ = −cos ζ sin θ sinh τ

a
∇x+−sin ζ sin θ sinh τ

a
∇y +

cos θ cosh τ − 1

a
∇z (C.35)

| ∇θ|2 =
sinh2 τ sin2 θ cos2 ζ + sinh2 τ sin2 θ sin2 ζ + (1− cosh τ cos θ)2

a2

=
sinh2 τ sin2 θ + (1− cosh τ cos θ)2

a2
=

(cosh τ − cos θ)2

a2

(C.36)

| ∇θ| = cosh τ − cos θ

a
(C.37)

e3 = eζ = ∇ζ =
(cos θ − cosh τ) csch τ sin ζ

a
∇x+

(cosh τ − cos θ) csch τ cos ζ

a
∇y (C.38)

| ∇ζ|2 =
(cosh τ − cos θ)2 csch2 τ sin2 ζ + (cosh τ − cos θ)2 csch2 τ cos2 ζ

a2
=

(cosh τ − cos θ)2

a2 sinh2 τ
(C.39)

| ∇ζ| = cosh τ − cos θ

a| sinh τ |
(C.40)

Note that

gij =


(cosh τ−cos θ)2

a2 0 0

0 (cosh τ−cos θ)2

a2 0

0 0 (cosh τ−cos θ)2

a2 sinh2 τ

 (C.41)

Thus we find for the Christoffel symbols that

Γk,ij =
1

2

[
∂gik
∂ξj

+
∂gjk
∂ξi
− ∂gij
∂ξk

]
(C.42)

Γτ,ij =


−a2 sinh2 τ

(cosh τ−cos θ)3
−a2 sin2 θ

(cosh τ−cos θ)3 0
−a2 sin2 θ

(cosh τ−cos θ)3
a2 sinh2 τ

(cosh τ−cos θ)3 0

0 0 a2 sinh τ(cosh τ cos θ−1)
(cosh τ−cos θ)3

 (C.43)

Γθ,ij =


a2 sin2 θ

(cosh τ−cos θ)3
−a2 sinh τ

(cosh τ−cos θ)3 0
−a2 sinh τ

(cosh τ−cos θ)3
a2 sin2 θ

(cosh τ−cos θ)3 0

0 0 a2 sin θ sinh2 τ
(cosh τ−cos θ)3

 (C.44)

Γζ,ij =

 0 0 a2 sinh τ(1−cosh τ cos θ)
(cosh τ−cos θ)3

0 0 −a2 sin θ sinh2 τ
(cosh τ−cos θ)3

a2 sinh τ(1−cosh τ cos θ)
(cosh τ−cos θ)3

−a2 sin θ sinh2 τ
(cosh τ−cos θ)3 0

 (C.45)

and

Γkij = gklΓl,ij (C.46)

Γτij =

 − sinh τ
cosh τ−cos θ

− sin θ
cosh τ−cos θ

0
− sin θ

cosh τ−cos θ
sinh τ

cosh τ−cos θ
0

0 0 sinh τ(cos θ cosh τ−1)
cosh τ−cos θ

 (C.47)
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Γθij =

 sin θ
cosh τ−cos θ

− sinh τ
cosh τ−cos θ

0
− sinh τ

cosh τ−cos θ
− sin θ

cosh τ−cos θ
0

0 0 sinh τ sin θ
cosh τ−cos θ

 (C.48)

Γζij =

 0 0 1−cosh τ cos θ
sinh τ(cosh τ−cos θ)

0 0 − sin θ
cosh τ−cos θ

1−cosh τ cos θ
sinh τ(cosh τ−cos θ)

− sin θ
cosh τ−cos θ

0

 (C.49)

C.8 Differential Operators in Coordinate Systems
The following will show the gradient, curl, and divergence of quantities in various coordinate
systems. To summarize, for scalar f , vector A, and second order tensor

↔
T we find

∇f = ei
∂f

∂ξi
(C.1)

∇A =

(
∂Ak
∂ξj
− AiΓikj

)
ejek (C.2)

∇ ·A =
1

J
∂

∂ξi
(
JAi

)
(C.3)

(∇×A)k =
εijk

J
∂Aj
∂ξi

(C.4)

∇ ·
↔
T =

(
1

J
∂J T ij

∂ξi
+ T ilΓjil

)
ej (C.5)

∇×
↔
T =

εijk

J
eke

l

(
∂Tjl
∂ξi

+ TipΓ
p
jl

)
(C.6)

I will use that

A = A(1)ê1 + A(2)ê2 + A(3)ê3 (C.7)

↔
T =

3∑
i,j=1

T (i, j)êiêj (C.8)

to put vectors and tensors in their standard form (the basis vectors are the normalized tangent-
reciprocal basis vectors).

C.8.1 (Common) Cylindrical Coordinates

We use the right handed coordinates (r, ϕ, Z). Here J = r.

C.8.1.1 Gradient

First the gradient of a scalar is found via

∇f = er
∂f

∂r
+ eϕ

∂f

∂ϕ
+ eZ

∂f

∂Z

=
∂f

∂r
r̂ +

1

r

∂f

∂ϕ
ϕ̂+

∂f

∂Z
Ẑ

(C.9)
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506 Differential Operators in Coordinate Systems

The gradient of a vector is given by

(∇A)(r, r) = (∇A)rr =
∂Ar
∂r

=
∂A(r)

∂r
(C.10)

(∇A)(r, ϕ) =
1

r
(∇A)rϕ =

1

r

∂Aϕ
∂r
− Aϕ

r2
=

1

r

∂[rA(ϕ)]

∂r
− A(ϕ)

r
=
∂A(ϕ)

∂r
(C.11)

(∇A)(r, Z) = (∇A)rZ =
∂AZ
∂r

=
∂A(Z)

∂r
(C.12)

(∇A)(ϕ, r) =
1

r
(∇A)ϕr =

1

r

(
∂Ar
∂ϕ
− Aϕ

r

)
=
∂A(r)

∂ϕ
− A(ϕ)

r
(C.13)

(∇A)(ϕ, ϕ) =
1

r2
(∇A)ϕϕ =

1

r2

(
rAr +

∂Aϕ
∂ϕ

)
=

1

r

∂A(ϕ)

∂ϕ
+
A(r)

r
(C.14)

(∇A)(ϕ,Z) =
1

r
(∇A)ϕZ =

1

r

∂AZ
∂ϕ

=
1

r

∂A(Z)

∂ϕ
(C.15)

(∇A)(Z, r) = (∇A)Zr =
∂Ar
∂Z

=
∂A(r)

∂Z
(C.16)

(∇A)(Z, ϕ) =
1

r
(∇A)Zϕ =

1

r

(
∂Aϕ
∂Z

)
=
∂A(ϕ)

∂Z
(C.17)

(∇A)(Z,Z) = (∇A)ZZ =
∂AZ
∂Z

=
∂A(Z)

∂Z
(C.18)

As a matrix where rows represent the first index and columns the second index
∂A(r)
∂r

∂A(ϕ)
∂r

∂A(Z)
∂r

1
r
∂A(r)
∂ϕ
− A(ϕ)

r
1
r
∂A(ϕ)
∂ϕ

+ A(r)
r

1
r
∂A(Z)
∂φ

∂A(r)
∂z

∂A(ϕ)
∂Z

∂A(Z)
∂Z

 (C.19)

C.8.1.2 Divergence

The divergence of a vector is found by

∇ ·A =
1

r

∂(rAr)

∂r
+

1

r

∂(rAϕ)

∂ϕ
+

1

r

∂(rAZ)

∂Z

=
1

r

∂(rA(r))

∂r
+

1

r

∂A(ϕ)

∂ϕ
+
∂A(Z)

∂Z

(C.20)

The divergence of a second order tensor is found by

(∇ ·
↔
T)(r) = (∇ ·

↔
T)r =

1

r

(
∂(rT rr)

∂r
+
∂(rTϕr)

∂ϕ
+
∂(rTZr)

∂Z

)
− rTϕϕ

=
1

r

∂[rT (r, r)]

∂r
+

1

r

∂T (ϕ, r)

∂ϕ
+
∂T (Z, r)

∂Z
− T (ϕ, ϕ)

r

(C.21)

(∇ ·
↔
T)(ϕ) = r(∇ ·

↔
T)ϕ = r

1

r

(
∂(rT rϕ)

∂r
+
∂(rTϕϕ)

∂ϕ
+
∂(rTZϕ)

∂Z

)
+ r

T rϕ + Tϕr

r

=
∂T (r, ϕ)

∂r
+

1

r

∂T (ϕ, ϕ)

∂ϕ
+
∂T (Z, ϕ)

∂Z
+
T (r, ϕ) + T (ϕ, r)

r

=
1

r

∂[rT (r, ϕ)]

∂r
+

1

r

∂T (ϕ, ϕ)

∂ϕ
+
∂T (Z, ϕ)

∂Z
+
T (ϕ, r)

r

(C.22)
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(∇ ·
↔
T)(Z) = (∇ ·

↔
T)Z =

1

r

(
∂(rT rZ)

∂r
+
∂(rTϕZ)

∂ϕ
+
∂(rTZZ)

∂Z

)
=

1

r

∂[rT (r, ϕ)]

∂r
+

1

r

∂T (ϕ,Z)

∂ϕ
+
∂T (Z,Z)

∂Z

(C.23)

(C.24)

C.8.1.3 Curl

The curl of a vector is given by

(∇×A)(r) = (∇×A)r =
1

r

(
∂AZ
∂ϕ
− ∂Aϕ

∂Z

)
=

1

r

(
∂A(Z)

∂ϕ
− ∂[rA(ϕ)]

∂Z

)
=

1

r

∂A(Z)

∂ϕ
− ∂A(ϕ)

∂Z

(C.25)

(∇×A)(ϕ) = r(∇×A)ϕ =
r

r

(
∂Ar
∂Z
− ∂AZ

∂r

)
=

(
∂A(r)

∂Z
− ∂A(Z)

∂r

)
=
∂A(r)

∂Z
− ∂A(Z)

∂r

(C.26)

(∇×A)(Z) = (∇×A)Z =
1

r

(
∂Aϕ
∂r
− ∂Ar

∂ϕ

)
=

1

r

(
∂[rA(ϕ)]

∂r
− ∂A(r)

∂ϕ

)
=

1

r

∂[rA(ϕ)]

∂r
− 1

r

∂A(r)

∂ϕ

(C.27)

The curl of a second order tensor is given by

(∇×
↔
T)(r, r) = (∇ ·

↔
T)r·r =

1

r

(
∂TZr
∂ϕ
− ∂Tϕr

∂Z

)
− TZϕ

r2

=
1

r

∂T (Z, r)

∂ϕ
− ∂T (ϕ, r)

∂Z
− T (Z, ϕ)

r

(C.28)

(∇×
↔
T)(r, ϕ) =

1

r
(∇ ·

↔
T)r·ϕ =

1

r2

(
∂TZϕ
∂ϕ

− ∂Tϕϕ
∂Z

)
+
TZr
r

=
1

r

∂T (Z, ϕ)

∂ϕ
− ∂T (ϕ, ϕ)

∂Z
+
T (Z, r)

r

(C.29)

(∇×
↔
T)(r, Z) = (∇ ·

↔
T)r·Z =

1

r

(
∂TZZ
∂ϕ

− ∂TϕZ
∂Z

)
=

1

r

∂T (Z,Z)

∂ϕ
− ∂T (ϕ,Z)

∂Z

(C.30)

(∇×
↔
T)(ϕ, r) = r(∇ ·

↔
T)ϕ·r = r

1

r

(
∂Trr
∂Z
− ∂TZr

∂r

)
=
∂T (r, r)

∂Z
− ∂T (Z, r)

∂r

(C.31)

(∇×
↔
T)(ϕ, ϕ) = (∇ ·

↔
T)ϕ·ϕ =

1

r

(
∂Trϕ
∂Z
− ∂TZϕ

∂r

)
+
TZϕ
r2

=
∂T (r, ϕ)

∂Z
− ∂T (Z, ϕ)

∂r
+
T (Z, ϕ)

r

(C.32)
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508 Differential Operators in Coordinate Systems

(∇×
↔
T)(ϕ,Z) = r(∇ ·

↔
T)ϕ·Z = r

1

r

(
∂TrZ
∂Z

− ∂TZZ
∂r

)
=
∂T (r, Z)

∂Z
− ∂T (Z,Z)

∂r

(C.33)

(∇×
↔
T)(Z, r) = (∇ ·

↔
T)Z·r =

1

r

(
∂Tϕr
∂r
− ∂Trr

∂ϕ

)
+
Trϕ
r2

=
∂T (ϕ, r)

∂r
− 1

r

∂T (r, r)

∂ϕ
+
T (r, ϕ)

r

(C.34)

(∇×
↔
T)(Z, ϕ) =

1

r
(∇ ·

↔
T)Z·ϕ =

1

r2

(
∂Tϕϕ
∂r
− ∂Trϕ

∂ϕ

)
− Trr

r
− Tϕϕ

r3

=
∂T (ϕ, ϕ)

∂r
− 1

r

∂T (r, ϕ)

∂ϕ
− T (r, r)

r
− T (ϕ, ϕ)

r

(C.35)

(∇×
↔
T)(Z,Z) = (∇ ·

↔
T)Z·Z =

1

r

(
∂TϕZ
∂r
− ∂TrZ

∂ϕ

)
=
∂T (ϕ,Z)

∂r
− 1

r

∂T (r, Z)

∂ϕ

(C.36)
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Common Coordinate Conversions 509

C.8.2 (Plasma/Toroidal System) Cylindrical Coordinates

We use the right handed coordinates (R,Z, ζ). Here J = R.

C.8.2.1 Gradient

First the gradient of a scalar is found via

∇f = eR
∂f

∂R
+ eZ

∂f

∂Z
+ eζ

∂f

∂ζ

=
∂f

∂R
R̂ +

∂f

∂Z
Ẑ +

1

R

∂f

∂ζ
ζ̂

(C.37)

The gradient of a vector is given by

(∇A)(R,R) = (∇A)RR =
∂AR
∂R

=
∂A(R)

∂R
(C.38)

(∇A)(R,Z) =
1

R
(∇A)RZ =

∂AZ
∂R

=
∂A(Z)

∂R
(C.39)

(∇A)(R, ζ) =
1

R
(∇A)Rζ =

1

R

(
∂Aζ
∂R
− Aζ

R

)
=

1

R

∂[RA(ζ)]

∂R
− A(ζ)

R
=
∂A(ζ)

∂R
(C.40)

(∇A)(Z,R) = (∇A)ZR =
∂AR
∂Z

=
∂A(R)

∂Z
(C.41)

(∇A)(Z,Z) = (∇A)ZZ =
∂AZ
∂Z

=
∂A(Z)

∂Z
(C.42)

(∇A)(Z, ζ) =
1

R
(∇A)Zζ =

1

R

(
∂Aζ
∂Z

)
=
∂A(ζ)

∂Z
(C.43)

(∇A)(ζ, R) =
1

R
(∇A)ζR =

1

R

(
∂AR
∂ζ
− Aζ

R

)
=

1

R

∂A(R)

∂ζ
− A(ζ)

R
(C.44)

(∇A)(ζ, Z) =
1

R
(∇A)ζZ =

1

R

(
∂AZ
∂ζ

)
=

1

R

∂A(Z)

∂ζ
(C.45)

(∇A)(ζ, ζ) =
1

R2
(∇A)ζζ =

1

R2

(
ARR +

∂Aζ
∂ζ

)
=

1

R

∂A(ζ)

∂ζ
+
A(R)

R
(C.46)

As a matrix where rows represent the first index and columns the second index
∂A(R)
∂R

∂A(Z)
∂R

∂A(ζ)
∂R

∂A(R)
∂Z

∂A(Z)
∂Z

∂A(ζ)
∂Z

1
R
∂A(R)
∂ζ
− A(ϕ)

R
1
R
∂A(Z)
∂ζ

1
R
∂A(ζ)
∂ζ

+ A(R)
R

 (C.47)

C.8.2.2 Divergence

The divergence of a vector is given by

∇ ·A =
1

R

∂(RAR)

∂R
+

1

R

∂(RAZ)

∂Z
+

1

R

∂(RAζ)

∂ζ

=
1

R

∂(RA(R))

∂R
+

1

R

∂A(Z)

∂Z
+
∂A(ζ)

∂ζ

(C.48)
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510 Differential Operators in Coordinate Systems

The divergence of a second order tensor is given by

(∇ ·
↔
T)(R) = (∇ ·

↔
T)R =

1

R

(
∂(RTRR)

∂R
+
∂(RTZR)

∂Z
+
∂(RT ζR)

∂ζ

)
−RT ζζ

=
1

R

∂(RT (R,R))

∂R
+
∂T (Z,R)

∂Z
+

1

R

∂T (ζ, R)

∂ζ
− T (ζ, ζ)

R

(C.49)

(∇ ·
↔
T)(Z) = (∇ ·

↔
T)Z =

1

R

(
∂(RTRZ)

∂R
+
∂(RTZZ)

∂Z
+
∂(RT ζZ)

∂ζ

)
=

1

R

∂[RT (R,Z)]

∂R
+
∂T (Z,Z)

∂Z
+

1

R

∂T (ζ, Z)

∂ζ

(C.50)

(∇ ·
↔
T)(ζ) = R(∇ ·

↔
T)ζ = R

1

R

(
∂(RTRζ)

∂R
+
∂(RTZζ)

∂Z
+
∂(RT ζζ)

∂ζ

)
+R

TRζ + T ζR

R

=
∂T (R, ζ)

∂R
+
∂T (Z, ζ)

∂Z
+

1

R

∂T (ζ, ζ)

∂ζ
+
T (R, ζ) + T (ζ, R)

R

=
1

R

∂[RT (R, ζ)]

∂R
+
∂T (Z, ζ)

∂Z
+

1

R

∂T (ζ, ζ)

∂ζ
+
T (ζ, R)

R

(C.51)

C.8.2.3 Curl

The curl of a vector is given by

(∇×A)(R) = (∇×A)R =
1

R

(
∂Aζ
∂Z
− ∂AZ

∂ζ

)
=

1

R

(
∂[RA(ζ)]

∂Z
− ∂A(Z)

∂ζ

)
=
∂A(ζ)

∂Z
− 1

R

∂A(Z)

∂ζ

(C.52)

(∇×A)(Z) = (∇×A)Z =
1

R

(
∂AR
∂ζ
− ∂Aζ

∂R

)
=

1

R

∂A(R)

∂ζ
− ∂A(ζ)

∂R

(C.53)

(∇×A)(ζ) = R(∇×A)ζ =
1

R

(
∂AR
∂Z
− ∂AZ

∂R

)
=

1

R

(
∂A(R)

∂Z
− ∂A(Z)

∂R

) (C.54)

The curl of a second order tensor is given by

(∇×
↔
T)(R,R) = (∇×

↔
T)R·R =

1

R

(
∂TζR
∂Z

− ∂TZR
∂ζ

)
+
TZζ
R2

=
∂T (ζ, R)

∂Z
− 1

R

∂T (Z,R)

∂ζ
+
T (Z, ζ)

R

(C.55)

(∇×
↔
T)(R,Z) = (∇×

↔
T)R·Z =

1

R

(
∂TζZ
∂Z

− ∂TZZ
∂ζ

)
=
∂T (ζ, Z)

∂R
− 1

R

∂T (Z,Z)

∂ζ

(C.56)
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(∇×
↔
T)(R, ζ) =

1

R
(∇×

↔
T)R·ζ =

1

R2

(
∂Tζζ
∂Z
− ∂TZζ

∂ζ

)
− RTZR

R2

=
∂T (ζ, ζ)

∂Z
− 1

R

∂T (Z, ζ)

∂ζ
− T (Z,R)

R

(C.57)

(∇×
↔
T)(Z,R) = (∇ ·

↔
T)Z·R =

1

R

(
∂TRR
∂ζ
− ∂TζR

∂R

)
− TRζ

R2

=
1

R

∂T (R,R)

∂ζ
− ∂T (ζ, R)

∂R
− T (R, ζ)

R

(C.58)

(∇×
↔
T)(Z,Z) = (∇ ·

↔
T)Z ·Z =

1

R

(
∂TRZ
∂ζ
− ∂TζZ

∂R

)
=

1

R

∂T (R,Z)

∂ζ
− ∂T (ζ, Z)

∂R

(C.59)

(∇×
↔
T)(Z, ζ) =

1

R
(∇ ·

↔
T)Z·ζ =

1

R2

(
∂TRζ
∂ζ
− ∂Tζζ

∂R

)
+
RTRR +

Tζζ
R

R2

=
1

R

∂T (R, ζ)

∂ζ
− ∂T (ζ, ζ)

∂R
+
T (R,R) + T (ζ, ζ)

R

(C.60)

(∇×
↔
T)(ζ, R) = R(∇ ·

↔
T)ζ·R = R

1

R

(
∂TZR
∂R

− ∂TRR
∂Z

)
=
∂T (Z,R)

∂R
− ∂T (R,R)

∂Z

(C.61)

(∇×
↔
T)(ζ, Z) = R(∇ ·

↔
T)ζ·Z = R

1

R

(
∂TZZ
∂R

− ∂TRZ
∂Z

)
=
∂T (Z,Z)

∂R
− ∂T (R,Z)

∂Z

(C.62)

(∇×
↔
T)(ζ, ζ) = (∇ ·

↔
T)ζ·ζ =

1

R

(
∂TZζ
∂R

− ∂TRζ
∂Z

)
− TZζ

R2

=
∂T (Z, ζ)

∂R
− ∂T (R, ζ)

∂Z
− T (Z, ζ)

R

(C.63)
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512 Differential Operators in Coordinate Systems

C.8.3 (Physicists’) Spherical Coordinates

We use the right handed coordinates (r, θ, ϕ). Here J = r2 sin θ.

C.8.3.1 Gradient

First the gradient of a scalar is found via

∇f = er
∂f

∂r
+ eθ

∂f

∂θ
+ eϕ

∂f

∂ϕ

=
∂f

∂r
r̂ +

1

r

∂f

∂θ
θ̂ +

1

r sin θ

∂f

∂ϕ
ϕ̂

(C.64)

The gradient of a vector is given by

(∇A)(r, r) = (∇A)rr =
∂Ar
∂r

=
∂A(r)

∂r
(C.65)

(∇A)(r, θ) =
1

r
(∇A)rθ =

1

r

(
∂Aθ
∂r
− Aθ

r

)
=

1

r

∂[rA(θ)]

∂r
− A(θ)

r
=
∂A(θ)

∂r
(C.66)

(∇A)(r, ϕ) =
1

r sin θ
(∇A)rϕ =

1

r sin θ

(
∂Aϕ
∂r
− Aϕ

r

)
=

1

r

∂[rA(ϕ)]

∂r
− A(ϕ)

r
=
∂A(ϕ)

∂r
(C.67)

(∇A)(θ, r) =
1

r
(∇A)θr =

1

r

(
∂Ar
∂θ
− Aθ

r

)
=

1

r

∂A(r)

∂θ
− A(θ)

r
(C.68)

(∇A)(θ, θ) =
1

r2
(∇A)θθ =

1

r2

(
∂Aθ
∂θ

+ Arr

)
=

1

r

∂A(θ)

∂θ
+
A(r)

r
(C.69)

(∇A)(θ, ϕ) =
1

r2 sin θ
(∇A)θϕ =

1

r2 sin θ

(
∂Aϕ
∂θ
− Aϕ cos θ

sin θ

)
=

1

r sin θ

∂[sin θ A(ϕ)]

∂θ
− A(ϕ) cot θ

r

(C.70)

(∇A)(ϕ, r) =
1

r sin θ
(∇A)ϕr =

1

r sin θ

(
∂Ar
∂ϕ
− Aϕ

r

)
=

1

r sin θ

∂A(r)

∂ϕ
− A(ϕ)

r
(C.71)

(∇A)(ϕ, θ) =
1

r2 sin θ
(∇A)ϕθ =

1

r2 sin θ

(
∂Aθ
∂ϕ
− Aϕ cot θ

)
=

1

r sin θ

∂A(θ)

∂ϕ
− A(ϕ) cot θ

r
(C.72)

(∇A)(ϕ, ϕ) =
1

r2 sin2 θ
(∇A)ϕϕ =

1

r2 sin2 θ

(
∂Aϕ
∂ϕ

+ Arr sin θ + Aθ sin θ cos θ

)
=

1

r sin θ

∂A(ϕ)

∂ϕ
+

A(r)

r sin θ
+
A(θ) cot θ

r

(C.73)

As a matrix where rows represent the first index and columns the second index
∂A(r)

∂r

∂A(θ)

∂r

∂A(ϕ)

∂r
1

r

(
∂A(r)

∂θ
− A(θ)

)
1

r

(
∂A(θ)

∂θ
+ A(r)

)
1

r sin θ

(
∂[sin θ A(ϕ)]

∂θ
− A(ϕ) cos θ

)
1

r sin θ

(
∂A(r)

∂ϕ
− A(ϕ) sin θ

)
1

r sin θ

(
∂A(θ)

∂ϕ
− A(ϕ) cos θ

)
1

r sin θ

(
∂A(ϕ)

∂ϕ
+ A(r) + A(θ) cos θ

)


(C.74)

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



Common Coordinate Conversions 513

C.8.3.2 Divergence

The divergence of a vector is given by

∇ ·A =
1

r2 sin θ

∂(r2 sin θAr)

∂r
+

1

r2 sin θ

∂(r2 sin θAθ)

∂θ
+

1

r2 sin θ

∂(r2 sin θAϕ)

∂ϕ

=
1

r2

∂(r2A(r))

∂r
+

1

r sin θ

∂[sin θA(θ)]

∂θ
+

1

r sin θ

∂A(ϕ)

∂ϕ

(C.75)

The divergence of a second order tensor is given by

(∇ ·
↔
T)(r) = (∇ ·

↔
T)r =

1

r2 sin θ

(
∂(J T rr)

∂r
+
∂(J T θr)

∂θ
+
∂(J Tϕr)
∂ϕ

− rT θθ
)
− r sin2 θTϕϕ

=
1

r2

∂[r2T (r, r)]

∂r
+

1

r sin θ

∂[sin θT (θ, r)]

∂θ
+

1

r sin θ

∂T (ϕ, r)

∂ϕ
− T (θ, θ) + T (ϕ, ϕ)

r

(C.76)

(∇ ·
↔
T)(θ) = r(∇ ·

↔
T)θ

=
r

r2 sin θ

(
∂(J T rθ)

∂r
+
∂(J T θθ)

∂θ
+
∂(J Tϕθ)
∂ϕ

)
+ r

T rθ + T θr

r
− r sin θ cos θTϕϕ

=
1

r

∂[rT (r, θ)]

∂r
+

1

r sin θ

∂[sin θT (θ, θ)]

∂θ
+

1

r sin θ

∂T (ϕ, θ)

∂ϕ
+
T (r, θ) + T (θ, r)

r
+

cot θ T (ϕ, ϕ)

r

=
1

r2

∂[r2T (r, θ)]

∂r
+

1

r sin θ

∂[sin θT (θ, θ)]

∂θ
+

1

r sin θ

∂T (ϕ, θ)

∂ϕ
+
T (θ, r)

r
+

cot θ T (ϕ, ϕ)

r
(C.77)

(∇ ·
↔
T)(ϕ) = r sin θ(∇ ·

↔
T)ϕ

=
r sin θ

r2 sin θ

(
∂(J T rϕ)

∂r
+
∂(J T θϕ)

∂θ
+
∂(J Tϕϕ)

∂ϕ

)
+ r sin θ

(
T rϕ + Tϕr

r
+ cot θ[T θϕ + Tϕθ]

)
=

1

r

∂[rT (r, ϕ)]

∂r
+

1

r

∂T (θ, ϕ)

∂θ
+

1

r sin θ

∂T (ϕ, ϕ)

∂ϕ
+
T (r, ϕ) + T (ϕ, r)

r
+ cot θ

T (θ, ϕ) + T (ϕ, θ)

r

=
1

r2

∂[r2T (r, ϕ)]

∂r
+

1

r sin θ

∂[sin θ T (θ, ϕ)]

∂θ
+

1

r sin θ

∂T (ϕ, ϕ)

∂ϕ
+
T (ϕ, r)

r
+ cot θ

T (ϕ, θ)

r
(C.78)

C.8.3.3 Curl

The curl of a vector is given by

(∇×A)(r) = (∇×A)r =
1

r2 sin θ

(
∂Aϕ
∂θ
− ∂Aθ

∂ϕ

)
=

1

r sin θ

∂[sin θA(ϕ)]

∂θ
− 1

r sin θ

∂A(θ)

∂ϕ

(C.79)

(∇×A)(θ) = r(∇×A)θ = r
1

r2 sin θ

(
∂Ar
∂ϕ
− ∂Aϕ

∂r

)
=

1

r sin θ

∂A(r)

∂ϕ
− 1

r

∂[rA(ϕ)]

∂r

(C.80)
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514 Differential Operators in Coordinate Systems

(∇×A)(ϕ) = r sin θ(∇×A)ϕ =
r sin θ

r2 sin θ

(
∂Aθ
∂r
− ∂Ar

∂θ

)
=

1

r

∂[rA(θ)]

∂r
− 1

r

∂A(r)

∂θ

(C.81)

The curl of a second order tensor is given by

(∇×
↔
T)(r, r) = (∇×

↔
T)r·r =

1

r2 sin θ

(
∂Tϕr
∂θ
− ∂Tθr

∂ϕ

)
+
Tθϕ − Tϕθ
r3 sin θ

=
1

r sin θ

∂[sin θ T (ϕ, r)]

∂θ
− 1

r sin θ

∂T (θ, r)

∂ϕ
+
T (θ, ϕ)− T (ϕ, θ)

r

(C.82)

(∇×
↔
T)(r, θ) =

1

r
(∇×

↔
T)r·θ =

1

r3 sin θ

(
∂Tϕθ
∂θ
− ∂Tθθ

∂ϕ

)
+

cot θ Tθϕ + rTϕr
r3 sin θ

=
1

r sin θ

∂[sin θ T (ϕ, θ)]

∂θ
− 1

r sin θ

∂T (θ, θ)

∂ϕ
+

cot θ T (θ, ϕ) + T (ϕ, r)

r

(C.83)

(∇×
↔
T)(r, ϕ) =

1

r sin θ
(∇×

↔
T)r·ϕ

=
1

r3 sin2 θ

(
∂Tϕϕ
∂θ
− ∂Tθϕ

∂ϕ

)
− cot θ Tϕϕ + r sin2 θ Tθr − sin θ cos θ Tθθ

r3 sin2 θ

=
1

r sin2 θ

∂[sin2 θ T (ϕ, ϕ)]

∂θ
− 1

r sin θ

∂T (θ, ϕ)

∂ϕ
− cot θ[T (ϕ, ϕ) + T (θ, θ)] + T (θ, r)

r

(C.84)

(∇×
↔
T)(θ, r) = r(∇ ·

↔
T)θ·r =

r

r2 sin θ

(
∂Trr
∂ϕ
− ∂Tϕr

∂r

)
− r Trϕ

r3 sin θ

=
1

r sin θ

∂T (r, r)

∂ϕ
− 1

r

∂[rT (ϕ, r)]

∂r
− T (r, ϕ)

r

(C.85)

(∇×
↔
T)(θ, θ) = (∇ ·

↔
T)θ·θ =

1

r2 sin θ

(
∂Trθ
∂ϕ
− ∂Tϕθ

∂r

)
+

1
r
Tϕθ − cot θ Trϕ

r2 sin θ

=
1

r sin θ

∂T (r, θ)

∂ϕ
− 1

r2

∂[r2T (ϕ, θ)]

∂r
+
T (ϕ, θ)− cot θ T (r, ϕ)

r

(C.86)

(∇×
↔
T)(θ, ϕ) =

1

sin θ
(∇ ·

↔
T)θ·ϕ =

1

r2 sin2 θ

(
∂Trϕ
∂ϕ
− ∂Tϕϕ

∂r

)
+

Tϕϕ
r

+ r sin2 θ Trr + sin θ cos θ Trθ

r2 sin2 θ

=
1

r sin θ

∂T (r, ϕ)

∂ϕ
− 1

r2

∂[r2T (ϕ, ϕ)]

∂r
+
T (ϕ, ϕ) + T (r, r) + T (r, θ)

r
(C.87)

(∇×
↔
T)(ϕ, r) = r sin θ(∇ ·

↔
T)ϕ·r =

r sin θ

r2 sin θ

(
∂Tθr
∂r
− ∂Trr

∂θ

)
+
r sin θ Trθ
r(r2 sin θ)

=
1

r

∂[rT (θ, r)]

∂r
− 1

r

∂T (r, r)

∂θ
+
T (r, θ)

r

(C.88)

(∇×
↔
T)(ϕ, θ) = sin θ(∇ ·

↔
T)ϕ·θ =

sin θ

r2 sin θ

(
∂Tθθ
∂r
− ∂Trθ

∂θ

)
+ sin θ

Tθθ
r
− rTrr

r2 sin θ

=
1

r2

∂[r2T (θ, θ)]

∂r
− 1

r

∂T (r, θ)

∂θ
+
T (θ, θ)− T (r, r)

r

(C.89)
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(∇×
↔
T)(ϕ, ϕ) = (∇ ·

↔
T)ϕ·ϕ =

1

r2 sin θ

(
∂Tθϕ
∂r
− ∂Trϕ

∂θ

)
+

cot θ Trϕ − Tθϕ
r

r2 sin θ

=
1

r2

∂[r2T (θ, ϕ)]

∂r
− 1

r sin θ

∂[sin θ T (r, ϕ)]

∂θ
+

cot θ T (r, ϕ)− T (θ, ϕ)

r

(C.90)
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516 Differential Operators in Coordinate Systems

C.8.4 Primitive Toroidal Coordinates

We use the right handed coordinates (r, θ, ζ). Here J = rR = r(R0 + r cos θ).

C.8.4.1 Gradient

First the gradient of a scalar is found via

∇f = er
∂f

∂r
+ eθ

∂f

∂θ
+ eζ

∂f

∂ζ

=
∂f

∂r
r̂ +

1

r

∂f

∂θ
θ̂ +

1

R

∂f

∂ζ
ζ̂

(C.91)

The gradient of a vector is given by

(∇A)(r, r) = (∇A)rr =
∂Ar
∂r

=
∂A(r)

∂r
(C.92)

(∇A)(r, θ) =
1

r
(∇A)rθ =

1

r

(
∂Aθ
∂r
− Aθ

r

)
=
∂[rA(θ)]

∂r
− A(θ)

r
=
∂A(θ)

∂r
(C.93)

(∇A)(r, ζ) =
1

R
(∇A)rζ =

1

R

(
∂Aζ
∂r
− Aζ cos θ

R

)
=

1

R

∂[RA(ζ)]

∂r
− A(ζ) cos θ

R
(C.94)

(∇A)(θ, r) =
1

r
(∇A)θr =

1

r

(
∂Ar
∂θ
− Aθ

r

)
=

1

r

∂A(r)

∂θ
− A(θ)

r
(C.95)

(∇A)(θ, θ) =
1

r2
(∇A)θθ =

1

r2

(
∂Aθ
∂θ

+ Arr

)
=

1

r

∂A(θ)

∂θ
+
A(r)

r
(C.96)

(∇A)(θ, ζ) =
1

rR
(∇A)θζ =

1

rR

(
∂Aζ
∂θ
− Aζr sin θ

R

)
=

1

rR

∂[RA(ζ)]

∂θ
− A(ζ) sin θ

R

(C.97)

(∇A)(ζ, r) =
1

R
(∇A)ζr =

1

R

(
∂Ar
∂ζ
− Aζ cos θ

R

)
=

1

R

∂A(r)

∂ζ
− A(ζ) cos θ

R
(C.98)

(∇A)(ζ, θ) =
1

rR
(∇A)ζθ =

1

rR

(
∂Aθ
∂ζ
− Aζr sin θ

R

)
=

1

R

∂A(θ)

∂ζ
− A(ζ) sin θ

R
(C.99)

(∇A)(ζ, ζ) =
1

R2
(∇A)ζζ =

1

R2

(
∂Aζ
∂ζ

+ ArR cos θ − AθR sin θ

r

)
=

1

R

∂A(ζ)

∂ζ
+
A(r) cos θ

R
+
A(θ) sin θ

R

(C.100)

As a matrix where rows represent the first index and columns the second index

∂A(r)

∂r

∂A(θ)

∂r

1

R

(
∂[RA(ζ)]

∂r
− A(ζ) cos θ

)
1

r

(
∂A(r)

∂θ
− A(θ)

)
1

r

(
∂A(θ)

∂θ
+ A(r)

)
1

R

(
1

r

∂[RA(ζ)]

∂θ
− A(ζ) sin θ

)
1

R

(
∂A(r)

∂ζ
− A(ζ) cos θ

)
1

R

(
∂A(θ)

∂ζ
− A(ζ) sin θ

)
1

R

(
∂A(ζ)

∂ζ
+ A(r) cos θ + A(θ) sin θ

)


(C.101)
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C.8.4.2 Divergence

The divergence of a vector is given by

∇ ·A =
1

rR

∂(rRAr)

∂r
+

1

rR

∂(rRAθ)

∂θ
+

1

rR

∂(rRAϕ)

∂ϕ

=
1

rR

∂[rRA(r)]

∂r
+

1

rR

∂[RA(θ)]

∂θ
+

1

R

∂A(ζ)

∂ζ

(C.102)

The divergence of a second order tensor is given by

(∇ ·
↔
T)(r) = (∇ ·

↔
T)r =

1

rR

(
∂(J T rr)

∂r
+
∂(J T θr)

∂θ
+
∂(J T ζr)

∂ζ

)
− rT θθ −R cos θ T ζζ

=
1

rR

∂[rRT (r, r)]

∂r
+

1

rR

∂[RT (θ, r)]

∂θ
+

1

R

∂T (ζ, r)

∂ζ
− T (θ, θ)

r
− cos θ T (ζζ)

R

(C.103)

(∇ ·
↔
T)(θ) = r(∇ ·

↔
T)θ

=
r

rR

(
∂(J T rθ)

∂r
+
∂(J T θθ)

∂θ
+
∂(J T ζθ)

∂ζ

)
+ r

T θr + T rθ

r
+ r

R

r
sin θT ζζ

=
1

R

∂[RT (r, θ)]

∂r
+

1

rR

∂[RT (θ, θ)]

∂θ
+

1

R

∂T (ζ, θ)

∂ζ
+
T (θ, r) + T (r, θ)

r
+

sin θ

R
T (ζ, ζ)

(C.104)

(∇ ·
↔
T)(ζ) = R(∇ ·

↔
T)ζ

=
R

rR

(
∂(J T rζ)

∂r
+
∂(J T θζ)

∂θ
+
∂(J T ζζ)

∂ζ

)
+R cos θ

T rζ + T ζr

R
− rR sin θ

T θζ + T ζθ

R

=
1

r

∂[rT (r, ζ)]

∂r
+

1

r

∂T (θ, ζ)

∂θ
+

1

R

∂T (ζ, ζ)

∂ζ
+ cos θ

T (r, ζ) + T (ζ, r)

R
− sin θ

T (θ, ζ) + T (ζ, θ)

R
(C.105)

C.8.4.3 Curl

The curl of a vector is given by

(∇×A)(r) = (∇×A)r =
1

rR

(
∂Aζ
∂θ
− ∂Aθ

∂ζ

)
=

1

rR

∂[RA(ζ)]

∂θ
− 1

R

∂A(θ)

∂ζ

(C.106)

(∇×A)(θ) = r(∇×A)θ =
r

rR

(
∂Ar
∂ζ
− ∂Aζ

∂r

)
=

1

R

∂A(r)

∂ζ
− 1

R

∂[RA(ζ)]

∂r

(C.107)

(∇×A)(ζ) = R(∇×A)ζ =
R

rR

(
∂Aθ
∂r
− ∂Ar

∂θ

)
=

1

r

∂[rA(θ)]

∂r
− 1

r

∂A(r)

∂θ

(C.108)
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The curl of a second order tensor is given by

(∇×
↔
T)(r, r) = (∇×

↔
T)r·r =

1

rR

(
∂Tζr
∂θ
− ∂Tθr

∂ζ

)
+

cos θ Tθζ
rRR

− Tζθ
rrR

=
1

rR

∂[RT (ζ, r)]

∂θ
− 1

R

∂T (θ, r)

∂ζ
+

cos θ T (θ, ζ)

R
− T (ζ, θ)

r

(C.109)

(∇×
↔
T)(r, θ) =

1

r
(∇×

↔
T)r·θ =

1

r2R

(
∂Tζθ
∂θ
− ∂Tθθ

∂ζ

)
+
Tζrr

r2R
− Tθζr sin θ

Rr2R

=
1

rR

∂[RT (ζ, θ)]

∂θ
− 1

R

∂T (θ, θ)

∂ζ
+
T (ζ, r)

R
− T (θ, ζ) sin θ

R

(C.110)

(∇×
↔
T)(r, ζ) =

1

R
(∇×

↔
T)r·ζ

=
1

rR2

(
∂Tζζ
∂θ
− ∂Tθζ

∂ζ

)
+
Tζζr sin θ

RrR2
+
TθθR sin θ

rrR2
− TθrR cos θ

rR2

=
1

rR2

∂[R2T (ζ, ζ)]

∂θ
− 1

R

∂T (θ, ζ)

∂ζ
+

sin θ[T (ζ, ζ) sin θ + T (θ, θ)]− T (θ, r) cos θ

R

(C.111)

(∇×
↔
T)(θ, r) = r(∇ ·

↔
T)θ·r =

r

rR

(
∂Trr
∂ζ
− ∂Tζr

∂r

)
− Trζ cos θ

RR

=
1

R

∂T (r, r)

∂ζ
− 1

R

∂[RT (ζ, r)]

∂r
− T (r, ζ) cos θ

R

(C.112)

(∇×
↔
T)(θ, θ) = (∇ ·

↔
T)θ·θ =

1

rR

(
∂Trθ
∂ζ
− ∂Tζθ

∂r

)
+
Tζθ
rrR

+
Trζr sin θ

RrR

=
1

R

∂T (r, θ)

∂ζ
− 1

rR

∂[rRT (ζ, θ)]

∂r
+
T (ζ, θ)

r
+
T (r, ζ) sin θ

R

(C.113)

(∇×
↔
T)(θ, ζ) =

r

R
(∇ ·

↔
T)θ·ζ =

r

RrR

(
∂Trζ
∂ζ
− ∂Tζζ

∂r

)
+
Tζζ cos θ

R2R
+
TrrR cos θ

R2
− TrθR sin θ

R2r

=
1

R

∂T (r, ζ)

∂ζ
− 1

R2

∂[R2T (ζ, ζ)]

∂r
+

[T (ζ, ζ) + T (r, r)] cos θ − T (r, θ) sin θ

R
(C.114)

(∇×
↔
T)(ζ, r) = R(∇ ·

↔
T)ζ·r =

R

rR

(
∂Tθr
∂r
− ∂Trr

∂θ

)
+
Trθ
rr

=
1

r

∂[rT (θ, r)]

∂r
− 1

r

∂T (r, r)

∂θ
+
T (r, θ)

r

(C.115)

(∇×
↔
T)(ζ, θ) =

R

r
(∇ ·

↔
T)ζ·θ =

R

rrR

(
∂Tθθ
∂r
− ∂Trθ

∂θ

)
− Trrr

r2
− Tθθ
rr2

=
1

r2

∂[r2T (θ, θ)]

∂r
− 1

r

∂T (r, θ)

∂θ
− T (r, r) + T (θ, θ)

r

(C.116)

(∇×
↔
T)(ζ, ζ) = (∇ ·

↔
T)ζ·ζ =

1

rR

(
∂Tθζ
∂r
− ∂Trζ

∂θ

)
− Tθζ cos θ + Trζr sin θ

rRR

=
1

rR

∂[rRT (θ, ζ)]

∂r
− 1

rR

∂[RT (r, ζ)]

∂θ
− T (θ, ζ) cos θ + T (r, ζ) sin θ

R

(C.117)
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Appendix D

Reactivity Calculations Program

The following python program was what I used for calculating reactivity values and cross section
values.

Reactivity Calculator
1 #/usr /bin /env python3
2
3 import numpy as np
4 import matp lo t l i b . pyplot as p l t
5 import matp lo t l i b . cm as cm
6
7
8 # Cross s e c t i o n matches us ing Duane c o e f f i c i e n t s
9 # from paper DUANE, B.H. , "Fusion c r o s s s e c t i o n theory " ,

10 # in Annual Report on CTR Technology 1972
11 # (WOLKENHAUER, W.C. ,Ed . ) , Rep . BNWL−1685 ,
12 #Ba t t e l l e P a c i f i c Northwest Laboratory ,
13 #Richland , WA (1972) .
14 #########################################################
15 # func t i on sigmaDuane
16 # input :
17 # en (np array ) : incoming en e r g i e s in keV
18 # reac ( s t r i n g ) : type o f r e a c t i on
19 # ’ dd1 ’ D+D−>T+p
20 # ’dd2 ’ D+D−>3He+n
21 # ’ dt ’ D+T−>4He+n
22 # ’ dhe ’ D+3He−>4He+p
23 # ’ het ’ 3He+T−>4He+p+n and
24 # 3He+T−>4He+D and
25 # 3He+T−>5He+p
26 # ’dd ’ D+D−>T+p and
27 # D+D−>3He+n
28 # output : c r o s s s e c t i o n f o r r e a c t i on in barns
29 #########################################################
30 de f sigmaDuane ( en , reac ) :
31
32 a1={}
33 a2={}
34 a3={}
35 a4={}
36 a5={}
37 #D−D rea c t i on 1 D+D−>T+p
38 a1 [ ’ dd1 ’ ]=46.097
39 a2 [ ’ dd1 ’ ]=372.
40 a3 [ ’ dd1 ’ ]=4.36 e−4
41 a4 [ ’ dd1 ’ ]=1.220
42 a5 [ ’ dd1 ’ ]=0.
43 #D−D rea c t i on 2 D+D−>3He+n
44 a1 [ ’ dd2 ’ ]=47.88
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45 a2 [ ’ dd2 ’ ]=482.
46 a3 [ ’ dd2 ’ ]=3.08 e−4
47 a4 [ ’ dd2 ’ ]=1.177
48 a5 [ ’ dd2 ’ ]=0.
49 #D−T rea c t i on
50 a1 [ ’ dt ’ ]=45.95
51 a2 [ ’ dt ’ ]=50200.
52 a3 [ ’ dt ’ ]=1.368 e−2
53 a4 [ ’ dt ’ ]=1.076
54 a5 [ ’ dt ’ ]=409.
55 #D−3He r e a c t i on
56 a1 [ ’ dhe ’ ]=89.27
57 a2 [ ’ dhe ’ ]=25900.
58 a3 [ ’ dhe ’ ]=3.98 e−3
59 a4 [ ’ dhe ’ ]=1.297
60 a5 [ ’ dhe ’ ]=647.
61 #T−T rea c t i on
62 a1 [ ’ t t ’ ]=38.39
63 a2 [ ’ t t ’ ]=448.
64 a3 [ ’ t t ’ ]=1.02 e−3
65 a4 [ ’ t t ’ ]=2.09
66 a5 [ ’ t t ’ ]=0.
67 #3He−T rea c t i on a l l
68 a1 [ ’ het ’ ]=123.1
69 a2 [ ’ het ’ ]=11250.
70 a3 [ ’ het ’ ]=0
71 a4 [ ’ het ’ ]=0
72 a5 [ ’ het ’ ]=0
73 # f o r ’ dd ’ add the r e a c t i v i t i e s f o r both r e a c t i o n s
74 i f r eac==’dd ’ :
75 dd1=(a5 [ ’ dd1 ’ ]+a2 [ ’ dd1 ’ ] ∗ ( ( a4 [ ’ dd1 ’ ]−a3 [ ’ dd1 ’ ]∗ en ) ∗∗2+1.) ∗∗−1.) /( en ∗(np . exp ( a1 [ ’ dd1 ’ ]∗ en

∗∗ −0.5) −1.) )
76 dd2=(a5 [ ’ dd2 ’ ]+a2 [ ’ dd2 ’ ] ∗ ( ( a4 [ ’ dd2 ’ ]−a3 [ ’ dd2 ’ ]∗ en ) ∗∗2+1.) ∗∗−1.) /( en ∗(np . exp ( a1 [ ’ dd2 ’ ]∗ en

∗∗ −0.5) −1.) )
77 re turn dd1+dd2
78 # otherwi se j u s t use the formula f i t
79 re turn ( a5 [ reac ]+a2 [ reac ] ∗ ( ( a4 [ r eac ]−a3 [ reac ]∗ en ) ∗∗2+1.) ∗∗−1.) /( en ∗(np . exp ( a1 [ reac ]∗ en ∗∗ −0.5)

−1.) )
80
81 # Cross s e c t i o n s from Bosch−Hale
82 # Bosch , H. S . and Hale , G.M. , 1992 .
83 # Improved formulas f o r f u s i on cros s−s e c t i o n s
84 # and thermal r e a c t i v i t i e s . Nuclear fus ion , 32(4) , p . 6 1 1 .
85 #########################################################
86 # func t i on sigmaBH
87 # input :
88 # en (np array ) : incoming en e r g i e s in keV
89 # reac ( s t r i n g ) : type o f r e a c t i on
90 # ’ dd1 ’ D+D−>T+p
91 # ’dd2 ’ D+D−>3He+n
92 # ’ dt ’ D+T−>4He+n
93 # ’ dhe ’ D+3He−>4He+p
94 # ’dd ’ D+D−>T+p and
95 # D+D−>3He+n
96 # output : c r o s s s e c t i o n f o r r e a c t i on in m i l l i b a r n s
97 #########################################################
98 de f sigmaBH( en , reac ) :
99 A1={}

100 A2={}
101 A3={}
102 A4={}
103 A5={}
104 B1={}
105 B2={}
106 B3={}
107 B4={}
108 BG={}
109 # e r r f l a g s l e t s you know i f you are ex t r apo l a t i ng
110 e r r f l a g s =[ ]
111 # high i s f o r when we switch formulas
112 high=np . shape ( en ) [ 0 ]
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113 #D−D rea c t i on 1 D+D−>T+p
114 BG[ ’ dd1 ’ ]=31.3970
115 A1 [ ’ dd1 ’ ]=5.5576 e4
116 A2 [ ’ dd1 ’ ]=2.1054 e2
117 A3 [ ’ dd1 ’ ]=−3.2638e−2
118 A4 [ ’ dd1 ’ ]=1.4987 e−6
119 A5 [ ’ dd1 ’ ]=1.8181 e−10
120 B1 [ ’ dd1 ’ ]=0.
121 B2 [ ’ dd1 ’ ]=0.
122 B3 [ ’ dd1 ’ ]=0.
123 B4 [ ’ dd1 ’ ]=0.
124 #D−D rea c t i on 2 D+D−>3He + p
125 BG[ ’ dd2 ’ ]=31.3970
126 A1 [ ’ dd2 ’ ]=5.3701 e4
127 A2 [ ’ dd2 ’ ]=3.3027 e2
128 A3 [ ’ dd2 ’ ]=−1.2706e−1
129 A4 [ ’ dd2 ’ ]=2.9327 e−5
130 A5 [ ’ dd2 ’ ]=−2.5151e−9
131 B1 [ ’ dd2 ’ ]=0.
132 B2 [ ’ dd2 ’ ]=0.
133 B3 [ ’ dd2 ’ ]=0.
134 B4 [ ’ dd2 ’ ]=0.
135 #D−T rea c t i on
136 BG[ ’ dt ’ ]=34.3827
137 A1 [ ’ dt ’ ]=6.927 e4
138 A2 [ ’ dt ’ ]=7.454 e8
139 A3 [ ’ dt ’ ]=2.050 e6
140 A4 [ ’ dt ’ ]=5.2002 e4
141 A5 [ ’ dt ’ ]=0.0
142 B1 [ ’ dt ’ ]=6.380 e1
143 B2 [ ’ dt ’ ]=−9.950e−1
144 B3 [ ’ dt ’ ]=6.981 e−5
145 B4 [ ’ dt ’ ]=1.728 e−4
146 #D−3He r e a c t i on
147 BG[ ’ dhe ’ ]=68.7508
148 A1 [ ’ dhe ’ ]=5.7501 e6
149 A2 [ ’ dhe ’ ]=2.5226 e3
150 A3 [ ’ dhe ’ ]=4.5566 e1
151 A4 [ ’ dhe ’ ]=0.0
152 A5 [ ’ dhe ’ ]=0.0
153 B1 [ ’ dhe ’ ]=−3.1995e−3
154 B2 [ ’ dhe ’ ]=−8.5530e−6
155 B3 [ ’ dhe ’ ]=5.9014 e−8
156 B4 [ ’ dhe ’ ]=0.0
157 # add e r r o r f l a g s f o r que s t i onab l e data
158 i f r eac==’dd1 ’ :
159 i f (np .max( en ) >4900.) :
160 e r r f l a g s . append ( "Greater ␣ than␣ 4 .9 ␣MeV, ␣maybe␣bad␣data . " )
161 i f r eac==’dd2 ’ :
162 i f np .max( en ) >5000.:
163 e r r f l a g s . append ( "Greater ␣ than␣ 4 .9 ␣MeV, ␣maybe␣bad␣data . " )
164 i f r eac==’ dt ’ :
165 i f np .max( en ) >530.:
166 # high t e l l s where to switch to new c o e f f i c i e n t s
167 high=np . where ( en>530) [ 0 ] [ 0 ]
168 BG[ ’ dth ’ ]=34.3827
169 A1 [ ’ dth ’ ]=−1.4714 e6
170 A2 [ ’ dth ’ ]=0.0
171 A3 [ ’ dth ’ ]=0.0
172 A4 [ ’ dth ’ ]=0.0
173 A5 [ ’ dth ’ ]=0.0
174 B1 [ ’ dth ’ ]=−8.4127e−3
175 B2 [ ’ dth ’ ]=4.7983 e−6
176 B3 [ ’ dth ’ ]=−1.0748e−9
177 B4 [ ’ dth ’ ]=8.5184 e−14
178 i f r eac==’ dhe ’ :
179 i f np .max( en ) >930.:
180 # high t e l l s where to switch to new c o e f f i c i e n t s
181 high=np . where ( en>930) [ 0 ] [ 0 ]
182 BG[ ’ dheh ’ ]=68.7508
183 A1 [ ’ dheh ’ ]=−8.3993 e5
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184 A2 [ ’ dheh ’ ]=0.0
185 A3 [ ’ dheh ’ ]=0.0
186 A4 [ ’ dheh ’ ]=0.0
187 A5 [ ’ dheh ’ ]=0.0
188 B1 [ ’ dheh ’ ]=−2.6830e−3
189 B2 [ ’ dheh ’ ]=1.1633 e−6
190 B3 [ ’ dheh ’ ]=−2.1332e−10
191 B4 [ ’ dheh ’ ]=1.4250 e−14
192 # add both r e a c t i v i t i e s f o r ’ dd ’
193 i f r eac==’dd ’ :
194 S1=(A1 [ ’ dd1 ’ ]+en ∗(A2 [ ’ dd1 ’ ]+en ∗(A3 [ ’ dd1 ’ ]+en ∗(A4 [ ’ dd1 ’ ]+en∗A5 [ ’ dd1 ’ ] ) ) ) ) /(1+en ∗(B1 [ ’ dd1 ’ ]+en ∗(

B2 [ ’ dd1 ’ ]+en ∗(B3 [ ’ dd1 ’ ]+en∗B4 [ ’ dd1 ’ ] ) ) ) )
195 S2=(A1 [ ’ dd2 ’ ]+en ∗(A2 [ ’ dd2 ’ ]+en ∗(A3 [ ’ dd2 ’ ]+en ∗(A4 [ ’ dd2 ’ ]+en∗A5 [ ’ dd2 ’ ] ) ) ) ) /(1+en ∗(B1 [ ’ dd2 ’ ]+en ∗(

B2 [ ’ dd2 ’ ]+en ∗(B3 [ ’ dd2 ’ ]+en∗B4 [ ’ dd2 ’ ] ) ) ) )
196 s i g 1=S1/( en∗np . exp (BG[ ’ dd1 ’ ]∗ en ∗∗ −0.5) )
197 s i g 2=S2/( en∗np . exp (BG[ ’ dd2 ’ ]∗ en ∗∗ −0.5) )
198 re turn s i g 1+s i g 2
199 S=(A1 [ reac ]+en ∗(A2 [ reac ]+en ∗(A3 [ reac ]+en ∗(A4 [ reac ]+en∗A5 [ reac ] ) ) ) ) /(1.+ en ∗(B1 [ reac ]+en ∗(B2 [ reac

]+en ∗(B3 [ reac ]+en∗B4 [ reac ] ) ) ) )
200 s i g=S/( en∗np . exp (BG[ reac ]∗ en ∗∗ −0.5) )
201 # i f high i s needed change some o f the va lue s to the c o r r e c t h igher energy formula
202 i f high<(np . shape ( en ) [ 0 ] ) :
203 S [ high : ]=(A1 [ reac+’h ’ ]+en [ high : ] ∗ ( A2 [ reac+’h ’ ]+en [ high : ] ∗ ( A3 [ reac+’h ’ ]+en [ high : ] ∗ ( A4 [ reac+’h ’

]+en [ high : ] ∗A5 [ reac+’h ’ ] ) ) ) ) /(1.+ en [ high : ] ∗ ( B1 [ reac+’h ’ ]+en [ high : ] ∗ ( B2 [ reac+’h ’ ]+en [ high : ] ∗ ( B3
[ reac+’h ’ ]+en [ high : ] ∗B4 [ reac+’h ’ ] ) ) ) )

204 s i g [ high : ]=S [ high : ] / ( en [ high : ] ∗ np . exp (BG[ reac+’h ’ ]∗ en [ high : ]∗∗ −0 .5 ) )
205 i f l en ( e r r f l a g s ) >1:
206 p r i n t ( e r r f l a g s )
207 re turn s i g
208
209 #########################################################
210 # func t i on s i gv
211 # c a l c u l a t e s the r e a c t i v i t y <sigma v> in m^3/ s
212 # input :
213 # params ( d i c t i ona ry ) : d i c t i ona ry o f parameters
214 # ’ c o e f f ’ : which c r o s s s e c t i o n f i t to use
215 # ’Duane ’ f o r sigmaDuane or
216 # ’BH’ f o r sigmaBH
217 # ’ r e a c t i on ’ : which r e a c t i on to use , s e e
218 # ’ reac ’ f o r Duane or BH
219 # ’mb ’ : mass o f "beam" p a r t i c l e s
220 # ’mt ’ : mass o f " t a r g e t " p a r t i c l e s
221 # NOTE: For BH mb and mt can be
222 # swapped with no change in
223 # output .
224 # ’T ’ : np array o f energy va lue s
225 # f o r c r o s s s e c t i o n s
226 # lagpo ly ( i n t e g e r ) : which degree o f Laguerre−Gauss
227 # i n t e r p o l a t i o n to begin with
228 # output : r e a c t i v i t y f o r r e a c t i on in m^3/ s
229 #########################################################
230 de f s i gv ( params , l agpo ly ) :
231 T=params [ ’T ’ ]
232 mb=params [ ’mb ’ ]
233 mt=params [ ’mt ’ ]
234 reac=params [ ’ r e a c t i on ’ ]
235 # mo and mu are convenience parameters
236 mo=mt/(mb+mt)
237 mu=mo∗mb
238 # how many energy va lue s do we r equ i r e
239 Ts=np . shape (T) [ 0 ]
240 # ca c l u l a t e the weights and roo t s f o r l ague r r e−gauss
241 xi , wi=np . polynomial . l a gu e r r e . l aggaus s ( l agpo ly )
242 to t=np . z e r o s (Ts )
243 #kb f o r conver t ing keV to j o u l e s
244 kb=1.6e−16
245 #f o r each temperature given , c a l c u l a t e the r e a c t i v i t y
246 f o r i in range (Ts ) :
247 i f params [ ’ c o e f f ’ ]=="Duane" :
248 # 1e−28 conver t s barns to m^2
249 s i g=(sigmaDuane ( x i ∗T[ i ] /mo, reac ) ) ∗1e−28
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250 e l i f params [ ’ c o e f f ’ ]=="BH" :
251 # 1e−28∗1e−3 conver t s m i l l i b a r n s to m^2
252 s i g=(sigmaBH( x i ∗T[ i ] , r eac ) ) ∗1e−28∗1e−3
253 # th i s i s the formula f o r doing the i n t e g r a l over the
254 # c r o s s s e c t i o n s
255 to t [ i ]=(8 .∗ kb∗T[ i ] / (mu∗np . p i ) ) ∗∗0 .5∗np . sum(wi∗ s i g ∗ x i )
256 re turn to t
257
258 #########################################################
259 # func t i on f i n d s i g v
260 # c a l c u l a t e s the r e a c t i v i t y <sigma v> in m^3/ s
261 # and i t e r a t e s u n t i l answer does not vary
262 # input :
263 # params ( d i c t i ona ry ) : d i c t i ona ry o f parameters
264 # ’ c o e f f ’ : which c r o s s s e c t i o n f i t to use
265 # ’Duane ’ f o r sigmaDuane or
266 # ’BH’ f o r sigmaBH
267 # ’ r e a c t i on ’ : which r e a c t i on to use , s e e
268 # ’ reac ’ f o r Duane or BH
269 # ’mb ’ : mass o f "beam" p a r t i c l e s
270 # ’mt ’ : mass o f " t a r g e t " p a r t i c l e s
271 # NOTE: For BH mb and mt can be
272 # swapped with no change in
273 # output .
274 # ’T ’ : np array o f energy va lue s
275 # f o r c r o s s s e c t i o n s
276 # t o l ( r e a l ) : t o l e rance , how l i t t l e the r e l a t i v e
277 # d i f f e r e n c e between two i t e r a t i o n s
278 # must be be f o r e the c a l c u l a t i o n ends
279 # output ( l i s t ) : input temperatures ,
280 # r e a c t i v i t y f o r r e a c t i on in m^3/ s
281 # accurate to to l e rance ,
282 # degree o f l ague r r e−gauss polynomial
283 # used in f i n a l approximation
284 #########################################################
285 de f f i n d s i g v ( params , t o l=1e−2) :
286 e r r=t o l+1
287 lagpo ly=5
288 lagpo ly1=lagpo ly+1
289 maxlagpoly=params . get ( ’ maxlagpoly ’ ,100)
290 whi l e err>t o l :
291 s i gv0=s i gv ( params , l agpo ly )
292 s i gv1=s i gv ( params , l agpo ly1 )
293 e r r=np .max(np . abs ( ( s igv0−s i gv1 ) / s i gv1 ) )
294 l agpo ly=lagpo ly1
295 lagpo ly1=lagpo ly+1
296 i f lagpo ly>maxlagpoly :
297 p r i n t ( ’ Lagpoly=’+s t r ( maxlagpoly ) )
298 break
299 re turn params [ ’T ’ ] , s igv0 , l agpo ly
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Appendix E

SI Units

The International System of Units [abbreviated SI from the French Système international (d’unités)]
is what is meant when people say the metric system today. It is a wonderful coherent and con-
sistent system that is too often ignored. Coherent here means that the factor between base and
derived units is simply one or unity. A non-coherent system will have conversion factors, so, for
example, a gallon is not simply inches cubed.

E.1 SI System

The SI system uses seven base units, the second s, the meter m, the kilogram kg, the ampere A, the
kelvin K, mole mol, and the candela cd. There are many more derived units such as the newton N,
the pascal Pa, and the joule J. In addition there are 20 prefixes that supply a power of 10. Such as
kilo meaning 103 or giga meaning 109. The approved prefixes are listed in Table E.2. When using
prefixes, one must of course remember that the new unit is no longer part of a coherent system,
but since the prefix tells us the conversion factor, it is still easy to do any conversion. From the
base units we can create new units called derived units. A list of some derived units are given
in Table E.3. There is an endless number of derived units, but these are the most common ones.
Any combination of base units without prefixes leads to a coherent derived unit. As SI states it[2],
coherent “means that equations between numerical values of quantities take exactly the same form
as the equations between the quantities themselves” (i.e., there are no needed conversion factors).
The other important part of the SI system is that every quantity is now based off of fundamental
relationships in nature. This means there is no “standard” bar that defines the relationship. For
example, time is measured off the frequency of a hyperfine transition in caesium and the meter is
defined by the distance that light travels in vacuum in a 1/299 792 458 of a second. Many of the
numbers become definitions under this. A list of defined constants for SI is given in Table E.1.

Using the base and derived units consistently means that the conversion factors are one. For
mechanical units, it is fairly easy to convert between different systems of units, even English
customary or imperial ones, but once electromagnetic units are used, the use of SI should be
obligatory to reduce confusion. While a CGS system is consistent, it is only sometimes used in
theoretical physics and in astronomy and is rapidly losing popularity. My own opinion is that
the SI system should always be used in any application with as few possible deviations as possible
allowed. SI is clear and it is easy to look up formulas for SI and what each unit means. In addition,
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Constant definition SI Relation

∆νCs 9 192 631 770 Hz 1 s=
9 192 631 770

∆νCs

c 299 792 458 m s−1 1 m=
9 192 631 770

299 792 458

c

∆νCs

h 6.626 070 15× 10−34 J s 1 kg=
(299 792 458)2

(6.626 070 15× 10−34)(9 192 631 770)

h∆νCs
c2

e 1.602 176 634× 10−19 A s 1 A=
1

(1.602 176 634× 10−19)(9 192 631 770)
e∆νCs

kB 1.380 649× 10−23 J K−1 1 K=
(1.380 649× 10−23)

(6.626 070 15× 10−34)(9 192 631 770)

h∆νCs
kB

NA 6.022 140 76× 1023 mol−1 1 mol=
6.022 140 76× 1023

NA

Kcd 683 lm W−1 1 cd=
(∆νCs )2hKcd

(9 192 631 770)2(6.626 070 15× 10−34)(683)
Explanation

∆νCs unperturbed ground-state hyperfine transition frequency of cesium 133 atom
c distance light travels in vacuum in 1/299 792 458 of a second
h Relation between Planck constant and mass
e Relationship between elementary charge and time
kB Relationship between energy and temperature
NA Relationship between number of atoms in a mole of a substance

Kcd

The candela is given by defining the luminous efficacy Kcd of monochromatic radiation
of 540× 1014 Hz to be 683 in lmW−1 equivalent to cdsrkg−1m−2s3

Table E.1: These are the defined constants used to define the base units of the SI system.
.
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Name Symbol Base 10
yotta Y 1024

zetta Z 1021

exa E 1018

peta P 1015

tera T 1012

giga G 109

mega M 106

kilo k 103

milli m 10−3

micro µ 10−6

nano n 10−9

pico p 10−12

femto f 10−15

atto a 10−18

zepto z 10−21

yocto y 10−24

Table E.2: The metric prefixes as powers of 103 = 1000. I ignore hecto, deca, deci, and centi as
prefixes because they are not used often and are better avoided.

SI keeps some non-SI units as “acceptable for use with SI units”. These are given in Table E.4.

In reality, any coherent system with prefixes is essentially as good as another one. CGS and SI
both have the problem of one base unit having a prefix on it (centimeter in CGS and kilogram in
SI). The real improvement is the widespread reach of SI and that it has governing documents that
clearly indicate how the units are measured relative to natural phenomena.
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530 SI System

Name Symbol Derived Quantity base units alternate base
radian rad plane angle m/m
steradian sr solid angle m2 m−2

hertz Hz frequency s−1

newton N force kg m s−2

pascal Pa pressure, stress kg m−1 s−2

joule Pa energy, work, heat kg m2 s−2 N m
watt W power, radiant flux kg m2 s−3 J s−1

coulomb C electric charge A s
volt V electric voltage/potential difference kg m2 s−3 A−1 W A−1

farad F electric capacitance kg−1 m−2 s−4 A2 C V−1

ohm Ω electric resistance kg m2 s−3 A−2 V A−1

siemens S electric conductance kg−1 m−2 s3 A2 A V−1

weber Wb magnetic flux kg m2 s−2 A−1 V s
tesla T magnetic flux density, magnetic field kg s−2 A−1 Wb m−2

henry H electric inductance kg m2 s−2 A−2 Wb A−1

degree Celsius °C temperature (offset from Kelvin) K
lumen lm luminous flux cd sr
lux lx illuminance cd sr m−2 lm m−2

becquerel Bq activity referred to a radionuclide s−1

gray Gy absorbed dose, kerma m2 s−2 J kg−1

sievert Sv dose equivalent m2 s−2 J kg−1

katal kat catalytic activity mol s−1

Table E.3: These are all of the derived units in the SI system. The Bq is only used for radioactive
decay and Hz is used only for periodic phenomena. Sometimes voltage is called electric tension.

Name Symbol Quantity in SI units
minute min time 60 s
hour h time 60 min=3600 s
day d time 24 h=86 400 s
astronomical unit au distance 1.495 978 707 00× 1011 m
degree ° plane angle (π/180)rad
(arc) minute ′ plane angle (1/60)°=(π/10 800)rad
(arc) second ′′ plane angle (1/60)′=(π/648 000)rad
hectare ha area 1× 104 m2

liter L volume 1× 10−3 m3

metric ton t mass 1× 103 kg
dalton Da mass 1.660 539 040× 10−27 kg
atomic mass unit u mass 1.660 539 040× 10−27 kg
electronvolt eV energy 1.602 176 634× 10−19 J
neper Np logarithmic unit m = ln(X/X0) means mNp
bel B logarithmic unit m = log10(X/X0) means mB
decibel dB logarithmic unit m = 10 log10(X/X0) means mdB

Table E.4: These are units that are accepted for use with other SI units. Note that for the
logarithmic values X0 is a base of quantity X that is measured against.
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SI Units 531

E.2 Conversion Between SI and Gaussian
While I mentioned CGS, there is, in fact, no such system electromagnetically. There are CGS
systems with Gaussian units being the most common CGS system (and often used synonymously
with CGS). Converting from Gaussian units to SI is always a headache for multiple reasons. One
is that something that is dimensionless in Gaussian units may have units in SI. Another reason is
that the SI system is “rationalized” because it omits factors of 4π in its definition of laws. This
leads to factors of 4π showing up all over the place in conversions. One easy way to start seeing
the problem comes from dealing with the Coulomb law in a vacuum. In complete generality we
write

F = k
q1q2

r2
(E.1)

with factor k being a proportionality constant relating the charge, distance between the charges,
and the force between the charges. In Gaussian units k = 1. That is it is dimensionless unity.
This means that the units of charge are g1/2cm3/2s−1. In SI, current is a base unit and so charge
is defined by the coulomb given by 1 A s. For SI k = 1/(4πε0) with ε0 a constant often called the
vacuum permittivity or electric constant.

It is sometimes claimed that because charge is built from mechanical units that it is easier to
see the connection between mechanical units and electromagnetic ones as factors of c show up in
Gaussian units. In SI one would have to deal with these implicitly through ε0µ0 = 1/c2. My own
experience does not support this assertion. Trying to understand what a g1/2 or cm3/2 physically
means will not in any way help you see the connection any better. Almost all of the formula in
Gaussian units have never helped me see how it relates to mechanical units in any straightforward
way. The only exception I can think of is that capacitance and resistance in Gaussian units are in
centimeters and seconds. Then a capacitance of 1 cm can be related to the capacitance between
infinity and a conducting sphere of radius 1 cm in vacuum. Note how this is still a fairly belabored
relation and in practice not all that useful. Gaussian units can also measure E and B in the same
units whereas cB has the same units as E in SI. The statement that B is easier to compare with
E with these units is then usually applied. Since E and B are physically different fields that cause
very different physical phenomena I never understood why this would be considered much of an
advantage. In practice, Gaussian units use different derived units for electric field (statV/cm) and
magnetic field (G), negating this supposed advantage. As previously stated, any coherent system
with useable prefixes is just as good as any other in practice and so it is better to use the most
widespread such system. Despite this, some excellent textbooks include strange claims like “The
SI system has the virtue of overall convenience in practical, large-scale phenomena, especially in
engineering applications. The Gaussian system is more suitable for microscopic problems involving
the electrodynamics of charged particles, etc.”[1, pp. 783, 784]. Note that “suitability” isn’t really
ever defined, and in fact either system can be used in any application with few problems. SI is
convenient because it is more widespread.

A summary of electromagnetic laws and formulas in the Gaussian and SI units are given in Table
E.5. When considering the different definitions for electric polarization and magnetization the
headaches in conversion multiply.

To convert between systems one must either consult tables of conversion values or look at the
equations and start converting. Because quantities are not necessarily using the same units between
the two systems, conversion is in some cases a bit of a stretch and it is more like a translation
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532 Conversion Between SI and Gaussian

Law Name SI Gaussian
Gauss’s Law ∇ · E = ρq/ε0 ∇ · E = 4πρq
Divergence Constraint ∇ ·B = 0 ∇ ·B = 0

Faraday’s Law ∇× E = −∂B

∂t
∇× E = −1

c

∂B

∂t

Ampère-Maxwell Law ∇×B = µ0J + µ0ε0
∂E

∂t
∇×B =

4π

c
J +

1

c

∂E

∂t
Lorentz Force F = q(E + v ×B) F = q(E + [v/c]×B)

Coulomb’s Law F =
q1q2

4πε0r2
F =

q1q2

r2

Poynting Vector E×B/µ0 cE×B/(4π)

Table E.5: The electromagnetic laws in SI and Gaussian units with conventional definitions of
quantities. ρq means charge density.

than a direct conversion. You will also need to be careful of electromagnetic vs electrostatic units.
Electromagnetic units usually have “ab” at the front of their units while electrostatic have “stat”.
Electrostatic units are almost the same as Gaussian units but have different names for some units.
The Gaussian named units are analogues of SI for the most part. Gaussian units use the Franklin
Fr as a derived charge unit. If we use subscript G for quantities measured in Gaussian units
and subscript SI for quantities measured in SI, then we have the conversion factors below. The
arrow to the right indicates the number of Gaussian units on top to an equivalent SI unit with
cG = 2.997 924 58 so defined.

qG
qSI

=
1√

4πε0
→ cG · 109Fr

1 C
(E.2)

IG
ISI

=
1√

4πε0
→ cG · 109Fr/s

1 A
(E.3)

JG
JSI

=
1√

4πε0
→ cG · 1013Fr/s cm−2

1 A/s2
(E.4)

φG
φSI

=
√

4πε0 →
1statV

cG · 102V
(E.5)

EG

ESI

=
√

4πε0 →
1statV/cm

cG · 104V/m
(E.6)

DG

DSI

=

√
4π

ε0
→ 4π · cG · 105Fr/cm2

1C/m2 (E.7)

BG

BSI

=

√
4π

4πε0
→ 104G

1T
(E.8)

HG

HSI

=
√

4πµ0 →
4π · 10−3Oe

1A/m
(E.9)

RG

RSI

= 4πε0 →
1s

(cG)2 · 1011Ω
(E.10)

CG
CSI

=
1

4πε0
→ (cG)2 · 1011cm

F
(E.11)

LG
LSI

= 4πε0 →
1s2/cm

(cG)2 · 1011H
(E.12)
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Given a formula one then replaces each quantity with its conversion factor. For example given
Ampère’s Law without the Maxwell correction

∇×BSI = µ0JSI (E.13)

∇×BG

√
µ0

4π
= µ0

√
4πε0JG

∇×BG = 4π
√
µ0ε0JG =

4π

c
JG

(E.14)

We can then perform the same manipulations in reverse for Gaussian to SI.

E.2.1 Electromagnetic Unit Systems

I will now explain how one can see various relations between different electromagnetic unit systems.
One should note that in fact there is a coherent foot-pound-second (FPS) analogue of CGS systems
that, as far as I know, has never been used in any useful physical calculation. In this case there
are electromagnetic and electrostatic units with fpsm for the electromagnetic and fpse for the
electrostatic units, where the difference will be easier to see below.

If we write

F = kC
q1q2

r2
(E.15)

dF

dx
= 2kA

I1I2

r
(E.16)

for Coulomb’s law and the Ampère force per unit length laws. Note that r is the distance between
the two point charges (Coulomb) or very thin wires (Ampère). We will see that electrostatic units
choose kC = 1 and electromagnetic units choose kA = 1. From this we can then use that an electric
field for a point charge is then defined by

E = kC
q1

r2
(E.17)

to define electric field units. To find the relationship between kC and kA we can take the ratio
of the two laws above to find dimensionally (using the reasonable assumption that the current is
charge per time) that (with L length, T time, and [q] indicating dimensions of q)

L =
[kC ]

[kA]

T 2

L
(E.18)

[kC ]

[kA]
=
L2

T 2
(E.19)

This means that kC/kA must be a velocity squared. One can then compare the known values for
free space and find that in fact the velocity to be squared is the speed of light c [note how the
factor of 2 was put in to ensure this].

Now we need to define magnetic field units. There is some extra freedom here. We can define the
magnetic field via a single nearly infinitely thin wire as

B = 2kAαB
I

r
(E.20)
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534 Conversion Between SI and Gaussian

System kC kA αB αF kAαB
Electrostatic (esu) 1 c−2 1 1 c−2

Electromagnetic (emu) c−2 1 1 1 1
Gaussian 1 c−2 c c−1 c−1

Heaviside-Lorentz 1
4π

1
4πc2

c c−1 1
4πc

SI 1
4πε0

µ0

4π
1 1 µ0

4π

Table E.6: The electromagnetic systems with various proportionality factors chosen.

Then we have for the ratio [E]/[B] that

[E]

[B]
=

[kC ]

[kA][αB]

T

L
=

L2

T 2[αB]

T

L
=

L

T [αB]
(E.21)

Then Faraday’s law can be written as

∇× E + αF
∂B

∂t
= 0 (E.22)

It can readily be seen that [αF ] = 1/[αB] to be dimensionally consistent. To show that in fact
αF = 1/αB we write out all of Maxwell’s laws with our proportionality coefficients as (Note that
the 4π comes from consistently applying Gauss’s law with ∇ · E and (E.15). The other 4π with
∇ × B comes from consistently applying Stokes law where a 2π occurs but we have defined our
extra factor of 2 for the force in (E.20).)

∇ · E = 4πkCρ (E.23)

∇×B = 4πkAαBJ +
kAαB
kC

∂E

∂t
(E.24)

∇× E = −αF
∂B

∂t
(E.25)

∇ ·B = 0 (E.26)

Now we can use that in free space we have (J = 0)

∇2B = ∇(∇ ·B)−∇×∇×B = 0−∇×
(
kAαB
kC

∂E

∂t

)
= −kAαB

kC

∂

∂t

(
−αF

∂B

∂t

)
=
kAαBαF
kC

∂2B

∂t2

(E.27)

Because we know that this wave propagates at c then we must have

kAαBαF
kC

=
1

c2
(E.28)

and we have already set kC/kA = c2 so αB = 1/αF .

Then we can summarize different choices of systems as in Table E.6. As one can can see, it is
much better to just use one system rather than have to deal with the various unit systems.

With this we can see where the different unit systems start with choosing different proportionality
constants as being unity and dimensionless.
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Quantity Sym. SI ESU EMU Gaussian
electric charge q 1 C cG109 statC 10−1 abC cG109 Fr
electric current I 1 A cG109 statA 10−1 abC cG109 Fr/s
electric potential φ 1 V c−1

G 10−2 statV 108 abV c−1
G 10−2 statV

electric field E 1 V/m c−1
G 10−4 statV/cm 106 abV/cm c−1

G 10−4 statV/cm
— D 1 C/m2 4πcG · 105 statC/cm2 4π · 10−5 abC/cm2 4πcG · 105 Fr/cm2

magnetic field B 1 T c−1
G 10−6 statT 104 G 104 G

H field H 1 A m−1 4πcG · 107 statA/cm 4π · 10−3 Oe 4π · 10−3 Oe
magnetic flux Φm 1 Wb c−1

G 10−2 statWb 108 Mx 108 Mx
resistance R 1 Ω c−2

G 10−11 s cm−1 109 abΩ c−2
G 10−11 abΩ

resistivity ρ 1 Ω m c−2
G 10−9 s 1011 abΩcm c−2

G 10−9 s
capacitance C 1 F c2

G1011 cm 10−9 abF c2
G1011 cm

inductance L 1 H c−2
G 10−11 cm−1 s2 109 abH c−2

G 10−11 cm−1 s2

Table E.7: Conversion factors between various electromagnetic unit systems. Here cG =
2.997 984 52 and Sym. means commonly used symbol.

In electromagnetic units, one starts with Ampère’s Law with a unit of current being defined. A
Biot Bi is then given by the constant current in two straight parallel conductors of infinite length,
with almost no circular cross-section placed one centimeter apart in a vacuum, produces a force
equal to two dynes per centimeter of length of the conductors. Thus a Biot is the square root
of a dyne so Bi=g1/2cm1/2s−1 and sometimes called an abampere or emu current. The charge is
Bi s=g1/2cm1/2 sometimes called an abcoulomb or emu charge.

In electrostatic units, one instead starts with Coulomb’s Law and so that the unit of charge is
called either a Franklin, statcoulomb, or an esu charge. Then a Franklin is defined as the charge
of each of two equal point charges set a centimeter apart such that the force between them is one
dyne. It has units of g1/2cm3/2s−1. The current is then given by 1 Fr/s which is called either a
statampere or an esu current and has units of g1/2cm3/2s−2.

To convert from an esu unit to an emu unit requires factors of c. This is summarized in Table E.7.

E.3 The Name Current Density
I have often been bothered by the name current density since in almost every other circumstance
density means m−3 or an equivalent per volume measurement. Yet current density means current
per surface area. The reason for this is rather mundane. It is an area density, so that it really
should be called a current area density. Most likely it was considered too long of a name.

The important thing to remember is that density is actually ambiguous as it depends on the space
you are considering. Linear density, area density, and volume density could all be options for the
meaning of density. Because current densities are a flow through a surface the density refers to an
area density.

References
[1] John David Jackson. Classical electrodynamics. 1999.

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



536 REFERENCES

[2] David B Newell and Eite Tiesinga. The International System of Units (SI). Tech. rep. Tech-
nical report, National Institute of Standards and Technology, 2019, 2019.

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



537

List of Terms

DD Refers to processes with deuterium and deuterium. Often means deuterium and deuterium
fusion. 375

DT Refers to processes with deuterium and tritium. Usually means deuterium and tritium fusion.
375

Airy function An Airy function is the solution u(x) to the equation

d2u

dx2
− xu(x) = 0

with the two solutions denoted Ai(x) and Bi(x). See section 1.4.2 for the details on these
functions. 109

alpha particle An alpha particle, usually denoted α, is a helium-4 nucleus, i.e., a helium nucleus
with two protons and two neutrons. 374, 376

analytic continuation A method of continuing a complex holomorphic function beyond its do-
main. It is useful because for holomorphic functions, this can be done uniquely. 13, 198

annihilator An annihilator is an operator that when applied to a mathematical object always
returns zero. As an example, if we have operator F, and a set of functions fi(x) with
F(fi) = 0, then F is an annihilator for the fi(x). 96, 104, 273

asymptology The study of systems in limits, “the art of dealing with applied mathematical
systems in limiting cases”. This envelops everything under asymptotics. 13, 95

asymptotic expansion These are expansions (a summed series) that when truncated after a
finite number of terms, provides an approximation of a given function as the function ap-
proaches a certain value (usually infinity). They need not be a convergent series, since we
only require a finite number of terms to be a good approximation. 95

asymptotic series See asymptotic expansion. 97

asymptotics See asymptology. 97

atomic mass number See mass number plural. 372

atomic number The number of protons a chemical element has. Sometimes simply called the
proton number and is denoted by Z from German Zahl meaning number from an element’s
position on the periodic table. It became atomic number via German Atomzahl when it
became clear it was associated with nuclear charge plural. 372
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ballooning transform This is a specific kind of transform that changes periodic coordinates into
coordinates that vary from −∞ to ∞. it is useful for use in approximations that require
things to change slowly, such as in eikonal-like solutions. 13, 14, 79

beta minus particle A beta minus particle, usually denoted by β− is an electron (−). It is
usually only called this when resulting from a radiocative decay. 374

beta particle A beta particle, usually denoted by β+ or β−, is either a positron (+) or electron
(−). It is usually only called this when resulting from a radiocative decay. 374

beta plus particle A beta plus particle, usually denoted by β+ is a positron (+). It is usually
only called this when resulting from a radiocative decay. 374

big O notation Big O notation uses an upper caseO and f(x) = O(g(x)) means for two functions
f(x) and g(x) that lim supx→a |f(x)/g(x)| ≤ k for g(x) 6= 0. 22

binormal vector In the Frenet-Serret formulas, it refers to the unit vector pointing normal to
the tangent and normal vectors. 163, 168

burning plasma A burning plasma is a plasma with physicists’ Q large enough that an apprecia-
ble amount of the required plasma heating is coming from fusion reactions. Typically Q > 5
for DT reactions is called a burning plasma, but Q > 1 is also often considered burning. It
is an artifical category and so putting strict limits on where a plasma is burning and where
it is not is arbitary. The important thing is that an appreciable amount of plasma heating
comes from plasma fusion reactions. 402

calculus of variations This deals with how functionals change. So it is the calculus of “function
of functions”. It is used to find optimal functions given some sot of constraints. Typically
one uses a δ to indicate variation of a funcitonal as δF [f ] . 135

canonical form A form of the magnetic field given by B = ∇ × A = ∇ψt × ∇θ + ∇ψp × ∇ζ
with ψt the toroidal flux divided by 2π, ψp the poloidal flux divided by 2π, θ the poloidal
angle, and ζ the toroidal angle. This form is the canonical form because it has canonical
coordinates for the magnetic Hamiltonian. 159

canonically conjugate momentum Given a generalized coordinate qi and generalized velocity
q̇i = dqi

dt
, the canonically conjugate momentum is given by pi = ∂L

∂q̇i
where L is the Lagrangian

of the system. We can write this as a vector array as p = ∂L/∂q for generalized coordiantes
q. 153

Cauchy distribution See Lorentzian. 228

Cauchy principal value A Cauchy principal value avoids a singularity in an integrand path in
a specific way. For a real line integrand with singularity at m with a < m < b it is given by

−
ˆ b

a

dx f(x) ≡ lim
ε→0+

[ˆ m−ε

a

dx f(x) +

ˆ b

m+ε

dx f(x)

]
and for a contour integral Cauchy principal value (so a singularity is on the contour), it
means perform the integral as if there were no singularity on the contour.. 17, 194, 228

characteristic function See eigenfunction and characteristic value for an explanation. 83

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



List of Terms 539

characteristic mode See eigenmode and characteristic value for an explanation. 83

characteristic value See eigenvalue. Eigenvalue comes from German eigenwert (eigen-value).
Eigen here means “own” or “self”, and would more properly be translated into English as
“characteristic”, however we simply stole the eigen and almost everyone calls them eigenvalues
now. 83

Christoffel symbols These are used to take derivatives of tensors, including of the basis vectors.
Sometimes called connection coefficients or affine connections. See (1.2.286)-(1.2.291). 72

confluent hypergeometric series See Section 1.15.2.. 208

conservative form This is the general form for an equation satisfying a conservation law. See
(2.9.59). 338

contravariant A description of vector components that explains that when the scale for the coor-
dinates is multiplied by a factor x, the component are mutliplied by a factor 1/x. Hence vary-
ing against (contra) the change. For V i a contravariant component in coordinate system ξi

and V ′i a contravariant component in a new coordinate system ξ′i we have V ′i =
∑3

j=1
∂ξ′i

∂ξj
V j.

22, 34, 47, 48

coordinate system A set of variables that can be related to Cartesian space in some manner.
Then when giving the variables values, one can uniquely specify where in the Cartesian space
this assignment points, and vice versa. 13, 34

covariant A description of vector components that explains that when the scale for the coor-
dinates is multiplied by a factor x, the component are mutliplied by a factor x. Hence
varying with (co) the change. For Vi a covariant component in coordinate system ξi and V′i
a coavariant component in a new coordinate system ξ′i we have V′i =

∑3
j=1

∂ξj

∂ξ′i
Vj. 22, 34,

47, 48

covariant basis See the tangent basis. 49

critical point A critical point is a point where the first derivative (or gradient) of the function
is zero or the function is not differentiable there. That is, given f(z) for some vector array
of variables (possibly complex) z, then if ∂f

∂z

∣∣
z=z0

= 0 or ∂f
∂z

is undefined, then z0 is a critical
point. 98

cross section There are two princple meanings in physics. (1) A cross section is a an intersection
of a 2D surface in 3D space. Thus, if we have an angle θ defined in 3D space we can create
a cross section at θ = c which is a 2D surface or slice of the whole space. (2) A nuclear cross
section is a a measurement of the likelihood of a nuclear process occurring. It usually refers
to the microscopic cross section denoted by σ and measured in units of area (typically in
barn, or 1028 m2. The macroscopic cross section is measured in inverse length given by the
target density times the microscopic cross section. 378, 545

curvature In the Frenet-Serret formulas, it refers to the size of the circle that could be fit to the
curve at that local point. 164

curvilinear coordinates A coordinate system where the variables used to describe locations
change as one moves through space. That is, the variables do not form straight lines through
space as they are varied. 13
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Darboux frame A formulation of trajectories that uses three vectors defined along a trajectory
constrained to some surface (or subspace of the full space) and using three constants, the
normal curvature, geodesic curvature and relative torsion, to completely specify a trajectory’s
path. Related to the Frenet-Serret formulas. 168

de Broglie wavelength This is a wavelength associated with a particle of momentum p = mv
and the Planck constant. It is given by λ = h/p for λ the de Broglie wavelengh. 384

Debye length Defined by λ−2
D =

∑
s
n0sq2

s

ε0kBTs
. The electron Debye length is often called the Debye

length and so then λDe =
√

ε0kBTe
n0ee2

. This is the screening length in a plasma. This means
that a charge at distances beyond this from the constitutents of the plasma will only see a
small screened potential. This may be contrary to expectations since the plasma is made up
of a bunch of separated charges, but remember the particles are interacting. 254

Debye number Given by ND = 4
3
πnλ3

D, and is the number of particles in a Debye sphere. If we
want a typical plasma, this number must be very large. 255

Debye sphere Multiple definitions are sometimes used, but if “sphere” is used it is generally
assumed to mean 4

3
πλ3

D. For a typical plasma, we desire there to be many particles per
Debye sphere. 254

DEMO DEMO stands for demonstration power station. Not very creative, but at least very
straightforward. It is imagined as the next step after ITER, resulting in net power production
and the stepping stone to commercial power. It is not a single well-defined plant, though. It
is simply the name for whatever is built after ITER as a demonstration power plant. There
are many possible types of DEMO. 427, 429, 446

deuterium This refers to hydrogen atoms which contain nuclei with one proton and one neutron.
Usually denoted T or t rather than 3H. See also deuteron. 375

deuteron This refers to a hydrogen nucleus with one proton and one neutron. Usually denoted D
or d rather than 2H. Technically, different from deuterium which refers to the whole atom,
but in practice is usually used interchangeably with deuterium. 374

differential cross section This refers to the cross section per angle (i.e., per radian) or solid

angle (i.e., per steradian) and is denoted
∂σ

∂θ
for per angle or

∂σ

∂Ω
for per solid angle. It is

sometimes referred to as simply the cross section, though this should be avoided if one is
trying to reduce chances for confusion. In addition for any quantity q that parameterizes
trajectories, a differential cross section can be defined via ∂σ

∂q
. Note that the differential cross

section is enforced to be a positive number so that absolute value signs should actually be
used. 379

Dirac delta function This is a distribution (so not actually a function) that is often thought of
as a function that has an infinite value at only one point. The actual definition is that for
Dirac delta function δ(x) we have

ˆ b

a

dx f(x)δ(x− c) =

{
f(c) if a ≤ c ≤ b

0 otherwise

. 293
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dispersion relation The dispersion relation is usually given in the angular frequency ω and the
wavenumber k as ω(k). This relation explains how the frequency ω/(2π) and the wavelength
(λ = 2π/k) are related. The phase velocity is given by ω/k and the group velocity by dω/dk.
333

dominant balance The principle of dominant balance says we can, as a first approximation, put
the largest terms equal to each other. I extend this to subdominant terms, and for situations
outside of ordinary differential equations. 122

dyad A dyad is a polyadic made of two vectors, and so an order 2 tensor. 60

eigenfunction This is a solution, usually to a linear equation. The eigenfunction of the equation
F(f(x)) = λf(x) is f(x) (with eigenvalue λ) where F is an operator. It means that the oper-
ator on the eigenfunction returns the eigenfunction times a constant (scalar). The difference
between this and an eigenmode is that the eigenmode is not necessarily a function, as it an
eigenmode could be a vector, for example. 83

eigenmode This is a solution, usually to a linear equation. The eigenmode of the equation
F(f) = λf is f where F is an operator (with eigenvalue λ). It means that the operator on the
eigenmode returns the eigenmode times a constant (scalar). 83

eigenvalue This is a constant in a solution, usually to a linear equation. The eigenvalue of the
equation F(f) = λf is λ where F is an operator on some object f which is an eigenmode. It
means that the operator on the eigenmode returns the eigenvalue times the eigenmode. 83

eikonal An eikonal is an equation of one of the following forms

∇S · ∇S = g(x)

∂S

∂t
+ ∇S · ∇S = g(x)

| ∇S| = g(x)

with g(x) a given function and S the unknown with some given boundary conditions. The first
equation allows wave propagation in two directions, the last equation allows propagation in
one direction, and the middle equation is a time dependent generalization. Eikonal equations
are useful because there is a solution method using Hamiltonian mechanics theory, and arises
in waves scattering and propagation. 95, 109, 184

Einstein summation notation This convention/notation means that when two indices are in a
term, there is an implied summation. So cjaibi =

∑
i cjaibi. The rules are that non-dummy

variables must be matched across an equality and a dummy index can only be repeated
exactly two times in each term. It is often called index notation, Einstein notation, or the
Einstein summation convention. 15, 56

electron capture A spontaneous nuclear radiation process where a nucleus absorps an electron
and then the electron combines with a proton in the nucleus to create a neutron within the
nucleus. 376

energy confinement time This is a characteristic time over which a plasma loses its energy.
Given a plasma energy loss time and the average total energy of the plasma it is defined as
τE = EP/PL. It can be found experimentally by giving external power Pext until the energy
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maintains a constant average total energy. For then EP can be calculated and PL = Pext.
396

engineering Q This is gives the ratio of fusion heating power to total heating power supplied.
That is the denominator includes contributions from external heating sources including the
power required to actually get energy into the plasma. Thus Q = Pfus/(Pfus + Pext,f). Here
Pfus is the fusion power and Pext,f is the total power required to get the necessary heating in
the plasma. Compare it against physicists’ Q, where the total external power is not used.
401

ensemble A thermodynamic ensemble is a large number of configurations with the same macro-
scopic properties but different microscopic configurations. 295

error function See Section 1.15.3.. 212

Euclidean space A flat space that can be completely described by a Cartesian coordinate system.
34

Eulerian specification Given quantities for a flowing fluid, this specification requires the current
position and the time to parameterize variables. Thus qE = qL(R, t) where qE is any
Eulerian quantitiy, R is the current position of the quantity, and t is time. If one were to
drop a cork into a river, and ask where it is later, one would require to give the position and
the time because you do not follow the flow. Instead, it as if you are on the bank and asking
where the cork is. 341

exponential integral See Section 1.15.7. 219

flux coordinates A coordinate system for magnetic confinement systems that uses a magnetic
flux as the radial-like coordinate. These are also called straight (magnetic) field lines. 13,
273

flux function A function that is only a function of the flux (either poloidal or toroidal). 265

flux surface In plasma physics it always refers to magnetic flux surfaces. 259

flux surface averaging This is the average of a quantity over a flux surface. See Section 2.2.3.2.
271

four-tensor A geometric object in spacetime (4D). It can be built up from four-vectors, and
has transformation properties similar to four-vectors. An nth order tensor is built from n
four-vectors. 15

four-vector A geometric object in spacetime. It has a magnitude and direction and can be
represented by set of scalars and basis vectors, but in four dimensions. It is not an array or
column or row of numbers. It must rotate and translate as a geometric object so that it is
coordinate independent. 15

Fourier series A series approximation of a function that uses sines and cosines. Sometimes it is
simplified into a complex exponential format. 13, 14, 79, 87

Fourier transform An integral that changes a continuous function into an analogue of the Fourier
series (therefore one function into a different function). Often useful for solving differential
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equations. For example it changes a function from using a domain of time to a domain of
frequency or vice versa. 13, 79, 87

Frenet-Serret A formulation of trajectories that uses three vectors defined along a trajectory and
two constants, the curvature and torsion, to completely specify a trajectory’s path. Named
after the codiscoverers. 14, 163, 359

frozen flux This refers to magnetic flux being “frozen” into a perfect conductor. That is, if we
have a perfect conductor, then the amount of magnetic flux (and so the magnetic field lines)
must move with the conductor such that no electric field is produced within the conductor
in its rest frame. This is usually proven in Ideal MHD and called the frozen flux theorem.
315

functional This is a “function” that takes in a function and outputs a scalar. It is traditionally
written as F [f ] with square brackets and F a functionl taking function f . Functionals do
not have to be integrals, but in physics situations functionals are almost always represented
as integrals. 135

functional derivative The functional derivative is the linear in variation change of a functional.
Given F [f ] then δF

δf
is the variational derivative given by expanding δF and keeping only δf

terms. 136

gamma particle A gamma particle is a photon released in a radioactive decay. Often called
gamma ray. 374

gamma ray See gamma particle. 374

Gamow energy An energy used to characterize the probability of scattering of a particle by
another particle due to the Coulomb potential. It is usually given as (3.4.1), though one can
find other definitions if you are not looking at the probability of change through a surface.
382

Gaussian See Section 1.15.5. 216

Gaussian integral A Gaussian integral is an integral of the form
ˆ ∞

0

dx xn exp(−αx2) =
Γ
(
n+1

2

)
2α(n+1)/2

for any n > 0 (not necessarily an integer). One can then use even and oddness for m an
integer as

ˆ ∞
−∞

dx x2m exp(−αx2) =
Γ
(

2m+1
2

)
α(2m+1)/2ˆ ∞

−∞
dx x2m+1 exp(−αx2) = 0

. 99

generalized coordinate A generalized coordinate is anything that, along with all other gen-
eralized coordinates for the system, uniquely picks out a system’s state. The generalized
coordinates together are a vector array and not a geometric vector. Typically the gneralized
coordinates are given by q, sometimes x. 153
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geodesic A geodesic is the shortest path between two points. In Euclidean space, this is a straight
line, but if one restricts oneself to a surface or some other constraint on a trajectory, a geodesic
is not necessarily a straight line. For example, on the surface of a sphere a geodesic between
two points on the sphere is the great circle connecting those two points. 167

geodesic curvature When using a Darboux frame, this refers to the curvature due to being con-
strained to a surface that is not “necessary”. This is sometimes called the extrinsic curvature
because of this, as it is extra movement from the geodesic (or shortest distance) path along
the surface between two points. If one is on a geodesic, then the geodesic curvature is zero.
168, 169

geodesic torsion This is the torsion in the Darboux frame when using the mathematical defini-
tion. Sometimes it is called the relative torsion. 169

geometric axis This is the Z axis in cylindrical coordinates. It is the axis that goes through the
ceneter of the hole of the torus. 265, 286

gyroaverage This is an operation that averages a quantity over a gyroperiod, that is the inverse
of the gyrofrequency. It averages out the motion of particles on the scale of a gyroradius or
a gyrofrequency. 134

gyrocenter If we imagine a charged particle gyrating in a magnetic field, the local center of the
gyroorbit is called the gyrocenter. This can be interpreted as the position of a charged ring
instead of using the individual particle. 134

gyrofrequency The frequency at which a charged particle circles a magnetic field line. It is
typically denoted Ω or ωc with Ω = |q|B/m. Some authors allow the frequency to have a
sign so that the electron gyrofrequency is negative. 259, 351

gyromotion This refers to charged particles gyrating around magnetic fields. 134

gyrorbit This is orbit of a charged particle around a magnetic field line. 259

half-life Given a substance of a pure single nuclide, the half-life is the amount of time it would
take (on average) for half of the original nuclide to radiocatively decay plural. 373

Hamiltonian AHamiltonian is a function that when time independent represents the total energy.
When it is time dependent, it represents an energy-like quantity. It determines the time
evolution of a system via ∂H

∂q
= −dp

dt
and ∂H

∂p
= dq

dt
with p and q canonical coordinates. 13,

14, 158

heliotron See Section 2.4.2. 288

Helmholtz transport theorem This gives the derivative of a flux integral. It is given by [see
(2.7.11)]

d

dt

¨
S

dS n̂ ·G =

¨
S

dS n̂ ·V∇ ·G−
˛
C

d` · (V ×G) +

¨
S

dS n̂ · ∂G

∂t

. 316, 366, 473

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



List of Terms 545

Hessian Given a function f(x), with vector array x having elements xi, the Hessian matrix is the
matrix given by

H ≡ ∂2f

∂x∂x
=


∂2f
∂2x1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂2x2

· · · ∂2f
∂x2∂xn...

... . . . ...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂2xn


For a vector array of complex variables z, then one uses ∂2f

∂z∂z̄
which for any analytic function

will be identically zero, and so not give you much information. 100

Hessian See Hessian matrix. 100

holomorphic A comlpex function that is complex differentiable on every point in its domain.
114, 193, 199

holonomic constraint From Greek meaning “whole law”, these are constraints that deal only
with position (and not velocities). They are special because they correspond to systems that
are integrable, which loosely means that the variables we have give a unique state. That is,
there is no path dependence in the state. 143, 150

hypergeometric series See Section 1.15.1.. 203

Ideal MHD Ideal magnetohydrodynamics. A set of equations used to model electrically con-
ducting fluids. 121

ignited plasma An ignited plasma is a plasma that is undergoing fusion reactions at a rate such
that it requires no external power to continue the fusion process. 398

induced radioactivity This refers to radioactive processes that have been made more probable
by human intervention. It is said it is “human-made” or “artificial” radioactivity. This is
because something has been done to what would usually be a stable nuclide to make it an
unstable nuclide. 378

integral cross section This refers to sense (2) of cross section. Rarely used, this terminology
makes it clear that it is not referring to a differential cross section. 379

isobar For nuclear processes, an a nuclide is an isobar of another nuclide when both nuclides share
the same mass number A. In meterology, an isobar is a line of constant pressure on a figure.
377

isotope An isotope of an element is an element with a specified number of neutrons in its nucleus.
An element usually has numerous isotopes, meaning that the nuclei have the same proton
number but each isotope is associated with a nucleus with a different number of neutrons.
Usually isotopes refer to a single element. See also nuclides plural. 372

ITER This used to stand for international thermonuclear experimental reactor. The story I have
heard is that thermonuclear is a taboo word, as it causes people anxiety. So it was changed
to just be ITER. Then it is usually stated iter means “path” in Latin. In fact, it means
something more like “journey” in Latin, but so be it. ITER is a large tokamak that will
teach us about the physics of burning plasmas. It will not produce net power, but is an
experiment. 398, 429
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Jacobian determinant This is the determinant of the matrix of partial derivatives. It is indi-
cated via J = |J | = | ∂(ξ1,ξ2,ξ3)

∂(x1,x2,x3)
| and is given by (1.2.48). Sometimes it is defined as the

inverse of (1.2.48). This is all a matter of convention. 44

Jacobian matrix This is a matrix of partial derivatives. It is indicated via J = ∂(ξ1,ξ2,ξ3)
∂(x1,x2,x3)

and
is given by (1.2.47). Sometimes it is defined as the transpose of (1.2.47), and some use
J = ∂(x1,x2,x3)

∂(ξ1,ξ2,ξ3)
as the Jacobian matrix, rather than its inverse. This is all a matter of

convention. 44

Knudsen number The Knudsen number, usually denoted Kn is defined by the ratio of the mean
free path λmfp to a characteristic length in the system L. So Kn = λmfp/L. Thus, a small
Knudsen number implies a very collisional situation on the characteristic length scale, while
a very large Knudsen number implies almost no collisions on the characteristic length scale.
Thus a large Knudsen number is a collisionless situation. 301

Lagrange multiplier See Lagrange multiplier method. 146, 147, 149, 150

Lagrange multiplier method This is a method of finding an optimal solution when considering
separate constraints. See Section 1.8.2 for details. 144

Lagrangian A Lagrangian for a physical system, when used in the Euler-Lagrange equations,
yields the equations of motion that dictate the dynamics of the system. It is typically
given the symbol L or L with L(q(t), q̇(t), t) where q is the generalized coordinates, q̇ is the
generalized velocities, and t is time. 149, 150

Lagrangian specification Given quantities for a flowing fluid, this specification only requires
the initial position and the time to parameterize variables. Thus qL = qL(R0, t) where qL
is any Lagrangian quantitiy, R0 is the initial position of the quantity, and t is time. If one
were to drop a cork into a river, and ask where it is later, one would simply supply the initial
cork position in the river and the later time we want to know. Thus, you follow the flow in
time to see where the cork is. 341

Laplace transform Similar to a Fourier transform except that it includes causality by not in-
cluding contributions. When using with time, it only includes t > 0 contributions. 13, 14,
79, 89

Laplace’s method This is a method of approximating an integral whose integrand is dominated
by contributions in a small region by a controlling factor. That is, one part of the integrand
picks out a region as the most important (often an exponential). See section 1.4.1 for more
information. 97, 100

Larmor radius See gyroradius. 259, 357

Lawson criteria I use this to mean any sort of figure of merit that serves to show how much
energy is being produced by fusion reactions. Some limit this to mean nτE or nkBTτE for
number density n, temperature T , and confinement time τE. Others use it only for Lawson’s
original paper using essentially what I called physicists’ Q in the text. I prefer to be overly
broad since it does not seem to matter much which one you use, as they all give similar
answers for when fusion is economical. 401
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Leibniz integral rule One of many rules that explain how to take a derivative of an integral. For
three dimensions and various integrands there are new names. See the Reynold’s transport
Theorem and Helmholtz transport theorem. For a simple 1D integral we have

d

dx

ˆ b(x,t)

a(x,t)

dt f(x, t) = f(x, b)
∂b

∂x
− f(x, a)

∂a

∂x
+

ˆ b

a

dt
∂f

∂x

. 265, 472

linear equation A linear equation is an equation where all unknown quantities appears in each
term in the equation only once (to the first power) or zero times (does not appear). This
extends to differential equations in the same way including derivatives. Note that the depen-
dent variable (t here) can have nonlinear terms and we still have a linear differential equation
for the unknown x. 121

linearization A method that takes a non-linear system of equations and changes it into a linear
system of equations. This obviously requires approximations, and the specific scheme is
to choose parameters δ � 1 so that one only needs to keep O(δ) contributions from each
variable. 13, 14

linearly independent Given a set of vectors Vi, they are linearly independent if there are no
coefficients ak such that Vj =

∑
k 6=j akV

k. That is there is no linear combination of the
other vectors in the set that equals the vector you are considering in the set. 42

little O notation Little O notation uses a lower case o and f(x) = o(g(x)) means for two func-
tions f(x) and g(x) that limx→a f(x)/g(x) = 0 for g(x) 6= 0. 22, 97

logarithmic derivative A logarithmic derivative of q(r) is given by 1
q

dq
dr

= d ln q
dr

. It is called
logarithmic because of the latter form. Note the latter form implicitly requries a reference
value q0 for dimensional consistency, but that the reference value cancels out: d ln(q/q0)

dr
=

d ln q
dr
−��

�d ln q0
dr

. Note the same trick is often used for the denominator of a derivative as well,
so r

q
dq
dr

is written as d ln q
d ln r

. 270

Lorentzian This is a fat-tailed probability distribution given by

f(x;x0, γ) =

(
πγ

[
1 +

(x− x0)2

γ2

])−1

=
1

πγ

γ2

(x− x0)2 + γ2

that has an undefined mean and infinte variance. The x0 is where the function peaks and 2γ
is the full width half max of the distribution. 228

macroscopic cross section This refers to the typical cross section defined in empirical situations
for a stationary target, a beam of projectile particles Φb = nbvb, and reaction rate per volume
R, the macroscopic cross section Σ is defined by R = ΦbΣ and so is related to the microscopic
cross section by Σ = ntσ for target number density nt. 381

magnetic axis This is the magnetic flux surface (actually a line) where the poloidal magnetic
field vanishes. 265

magnetic curvature See magnetic curvature vector. 283
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magnetic curvature vector For a magnetic field line at a particular location, this tells us the
closest approximating circle. It is typically defined as κ = b̂ · ∇b̂ = −b̂ × (∇ × b̂) for
Bb̂ = B. 360

magnetic field line Given a magnetic field B, we can define magnetic field lines via ∂x
∂`

= B/|B|
with ` a field-line length label. Then a trajectory defined by that equation is a field line. In

practice they are determined from
d`

B
=

dξi

B · ∇ξi for all i. 13, 158

magnetic flux surface A flux surface given by the magnetic field. This is a surface with normal
n̂ such that the B · n̂ = 0. That is the magnetic field lines lie entirely on the surface. 91, 159

magnetic shear The magnetic shear is related to the derivative of the safety factor (or sometimes
the rotational transform). It measures how much the safety factor changes radially given by
s = r

q
dq
dr

= d ln q
d ln r

. More generally, if we construct the Darboux frame, with binormal η̂ = n̂× b̂

for n̂ the magnetic surface unit normal and b̂ the unit magnetic field vector, then the shear
is given by η̂ · (∇ × η̂). In this form, its geometric interpretation is most easily seen as
describing how the nearby magnetic field lines curve near a particular location. 92, 173, 270

magnetohydrodynamics See MHD. 251

matrix This is an n × n array of numbers with associated algebraic manipulations from regular
matrix algebra. I will always use square brackets around my matrices. 15

metastable A metastable state is a state that is stable to small enough changes in energy, but
that can transition to a lower energy (more stable) state if it is given the correct energetic
push. Imagine a flat plain with a volcano with a caldera. If you are in the caldera, and you
throw a ball, it will roll to the bottom of the caldera. This is metastable. Now suppose you
launch the ball with an advanced trebuchet. If it gets past the rim of the caldera, it will roll
to the bottom of the volcano which is the acutal stable state. 377

method of stationary phase See Laplace’s method or the method of steepest descent, as the
method of stationary phase is similar. The idea is still to use a method of approximating an
integral, but now we think that the controlling factor is oscillating so rapidly that it averages
things out except at ocations where the phase is “stationary” or not rapidly varying. So the
integrand is dominated by contributions in a small region by a controlling factor. See section
1.4.1 for more information. 97

method of steepest descent See Laplace’s method, as the method of steepest descent is similar.
It is more general in that it can consider complex values. The idea is still to use a method of
approximating an integral whose integrand is dominated by contributions in a small region
by a controlling factor. See section 1.4.1 for more information. 97, 99

microscopic cross section This refers to the typical cross section defined in empirical situations
for a stationary target of number density nt, a beam of projectile particles Φb = nbvb, and
reaction rate per volume R, the microscopic cross section σ is defined by R = ntΦbσ. 379,
381

minor radius For a torus, this is the radius of the poloidal cross section (i.e., of the circle created
by going around the torus the short way). 260

modified Bessel function See Section 1.15.8.2. 223

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



List of Terms 549

moment hierarchy problem When using kinetic theory and taking moments of the equations,
each moment depends on a higher order moment. Thus, one needs infinite moments to retain
all kinetic information. 301

multiple scale analysis This is a type of perturbation series that incorporates multiple scales by
treating them as independent variables. By creating additional independent variables, and
hence degrees of freedom, one can put constraints in that prevent “usual” perturbation series
from being valid approximations. So-called secular terms, which grow in time unphysically,
can be eliminated by the new constraints. So given an equation F(f(x, t)) = 0 for some
operator F, we create multiple scales, with an ordering parameter ε and say τ0 = t and
τ1 = εt and treat the τ0 and τ1 as independent variables. We try the following solution form

f(x, τ0, τ1) =
∑
j

εjfj(x, τ0, τ1)

dτ0

dt
= 1

dτ1

dt
= ε

and solve the resulting equations when put into F order by order in ε. 126

mush limit A way of smoothing discrete particles to continuum variables. It involves spatially
spreading charge and mass while conserving the total charge and mass. 295

neutron emission A spontaneous nuclear radiation process where a nucleus emits a neutron or
neutrons. 376

non-holonomic constraint Any constraints that are not holonomic. This means that the system
is no longer integrable unless it is of a special form linearly depending on the velocities. So
the given variables do not uniquely give the state of the system. A common example is
rolling a ball on the plane. If you only track where the ball center is, then you can move the
ball back to its original position (without slipping), but the ball will be rotated, which is not
kept track of. If we put a constraint such that it does come back at its orignal angle, then it
is a non-holonomic constraint. 144

nonlinear equation A nonlinear equation is an equation where an unknown quantity appears in
at least one nonzero-term in the equation to a power not equal to one or zero. If x is an
unknown then any equation with a term having xn for n 6= 1 and n 6= 0 (after simplification)
is a nonlinear equation for x. For differential equations x(t), anytime you have x multiplying
itself implicitly (such as through derivatives), you have a nonlinear equation. 121

normal curvature When using a Darboux frame, this refers to the curvature that must be there
due to being constrained to a surface. This is sometimes called the intrinsic curvature
because of this, and can be viewed as the natural curvature that one would expect given the
constraints on the trajectory. One might remember that this is the natural curvature from
being on a surface and so the normal curvature since both begin with an “n”. 169

normal torsion This is the torsion in the Darboux frame when following magnetic field line
trajectories. It differs from the mathematical definition by a minus sign. 172

nuclear fission The process of a nucleus splitting into two or more nuclei. 372
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nuclear fusion The process of two nuclei combining to form a single nucleus. 372

nucleon The particles that make up nuclei. That is, protons and neutrons. 371, 372

nucleon mass number See mass number plural. 372

nucleus This is the center of the atom held together by the nuclear strong force. It is made up
of protons and neutrons, and does not include the electrons. 371, 372

nuclide A nuclide refers to a nucleus with a specific number of protons and neutrons. When
speaking of nuclides, there is no connotation that the nuclides share the same number of
protons as the word isotope does plural. 373

order When referring to tensors, it is the number of basis vectors required for the tensor. So a
scalar is 0th order, a vector 1st order, etc. Sometimes this is referred to as the rank of a
tensor, but rank of a tensor can have other meanings so it is better to just use order. 15

orthogonal It means that for a given defined dot product between two vectors V and W, that
V ·W = 0. It is synonymous with normal and perpendicular. 37

orthonormal When applied to a set of vectors, Vi, it implies Vi ·Vj = δij. 34

parity inversion Often used with to explain a symmetry. Parity takes position x to time −x.
75

perturbation series A perturbation series uses an ordering parameter ε and writes the solution
to an equation F(f(x)) = 0 with operator F via using

f(x) =
∑
j

εjfj(x)

and solving the resulting equations order by order in ε. plural. 126

physicists’ Q This is gives the ratio of fusion heating power to total heating power into the
plasma. That is the denominator includes contributions from external heating sources. Thus
Q = Pfus/(Pfus + Pext) for Pfus the fusion power and Pext external power put into the plasm.
It is a physicists’ quantity because Pext is only the power put into the plasma, and not the
actual amount of power required to get the energy into the plasma. Engineering Q uses the
actual power used rather than the power put into the plasma. 401

plasma coupling factor This is defined as the ratio of electrostatic energy to thermal energy
given by Γ = 1

4πn2/3λ2
D

and so is proportional to plasma parameter Λ−2/3. 255

plasma dispersion function See Section ?? .. 213

plasma parameter There are two contradictory definitions, so either define it or avoid its use.
Some call Λ = 4πnλ3

D the plasma parameter. In this case, it fulfills the same function as a
Debye sphere calculation. Alternatively it is defined as g = 1/(nλ3

D) and has the opposite
scaling. 254

Plemelj formula A consistent way of assigning values to poles on the real axis for integrals that
are along the real axis. See Section 1.13 for details. It is given for a pole at x = 0 as a
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formula below

lim
δ→0+

ˆ ∞
−∞

dx
f(x)

x± iδ
= ∓iπf(0) +−

ˆ ∞
−∞

dx
f(x)

x

. 193, 195, 196, 215

polar scalar Sometimes called true scalar. See polar tensor. 75

polar tensor An nth order tensor T that under parity inversion satisfies the relation T(−x) =
(−1)n+1T(x) is a polar tensor (including scalars and vectors). Sometimes they are called
true tensors/vectors/scalars. 75

polar vector Sometimes called true vector. See polar tensor. 75

poloidal Refers to a direction. For an angle-like variable, it means it is related to going along a
torus the short way. 79, 82

poloidal flux A flux of something (usually magnetic field) through a constant poloidal angle
surface. There are two main types, a ribbon flux and disk flux (see Figures 2.2 and 2.3). 158,
259

polyadic A geometric object in Euclidean space built up as a sum of polyads (made up of vectors).
It is essentially synonymous with an nth order tensor, as they represent the same geometric
objects. 15, 35

proper length of a field line This is the assigned length of field lines on a flux surface. It is
not always useful, see (2.2.133). It is only useful if field lines have similar lengths on flux
surfaces. 281

proper time This is the time measured by an observer who uses a frame in which they are at
rest. Note that the observer need not be an inertial frame to observe their own proper time.
179

pseudoscalar See pseudotensor. 75

pseudotensor An nth order tensor T that under parity inversion satisfies the relation T(−x) =
(−1)nT(x) is a pseudotensor (including scalars and vectors). 75

pseudovector Sometimes called axial vector. See pseudotensor. 75

quasineutrality For plasmas, this means that∇·E ' 0. This is not a statement that∇·E = 0,
but a statement that electrostatic fields are not large contributions to particle dynamics.
That is given a force density law, the contribution from |ρqE| (with ρq the charge density) is
much smaller than other terms in the force density law. 252

radionuclide This is a nuclide that is not stable, and so undergoes radioactive decay. 410

reactivity This is a generalization of a cross section for processes that involve distributions of
velocity. Thus for reaction rate per unit volume Rr for process r, we have for two species
t and b that Rr = ntnb 〈σr|vb − vt|〉 for number densities n, velocities v, cross section σr.
Here 〈σr|vb − vt|〉 is the reactivity. Note that if we have the same species t = b, then
2Rr = ntnt 〈σv′〉 with v′ indicating the relative velocity in a collision. 381
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reciprocal basis Given a vector basis ei, the reciprocal basis ej always has ei · ej = δij. 34

reduced de Broglie wavelength The reduced de Broglie wavelength is simply the de Broglie
wavelength divided by 2π. So λdB = ~

mv
for reduced Planck constant ~, mass of particle m,

and velocity of a particle v. 384, 407

relative torsion See geodesic torsion. 169

reserve When talking about naturally occurring materials, a reserve refers to the quantity that is
exploitable with current technical and socioeconomic conditions. This just means it is worth
it to exploit it. This follows the definition from Vikström[1]. 425

resource When talking about naturally occuring materilas, resources refers to a geologically as-
sured quantity that is available for exploitation. Compare this to reserves, which are both
available for exploitation and worth exploiting (economically). This follows the definition
from Vikström[1]. 425

Reynolds transport theorem This gives the derivative of a volume integral. It is given by [see
(2.9.58)]

d

dt

˚
V (t)

d3x F =

˚
V (t)

d3x

[
∇ · (VF) +

∂F

∂t

]
=

˚
V (t)

d3x
∂F

∂t
+

‹
∂V (t)

dS n̂ ·VF

. 337, 338, 366, 473

rotational transform This refers to two concepts denoted by ι and ι = ι/(2π). Both give the
change in the poloidal flux due to a change in toroidal flux. See and . Iota gives the change
in θ due to a change of ζ by 2π. Unfortunately both ι and ι are called rotational transform.
269, 288

saddle point A saddle point is a critical point that is not an local or global extrema (i.e., it is not
a local or global maximum or minimum). One test for a saddle point is to take the Hessian
of your function and find the eigenvalues of the Hessian. If some are positive and some are
negative you have a saddle point. If the determinant of the Hessian is zero, it is called a
degenerate point. If you can determine it is a saddle point, then it is a degenerate saddle
point. 99

safety factor This refers to the average change in toroidal flux given a change in poloidal flux
on a flux surface. See (2.2.52). Large values are associated with less instability, though flux
surfaces with a rational value are associated with instability, as well. 268, 270

Schrödinger equation There are two variants, the time dependent one

i~
∂ |ψ〉
∂t

= H |ψ〉

i~
∂ψ

∂t
=

[
−~2

2m
∇2 + V

]
ψ

where the second is the nonrelativistic version for a generic potential V in the position basis.
Here H is the Hamiltonian operator and |ψ〉 is a ket with ψ the wavefunction. The other is
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the time independent form

E |ψ〉 = H |ψ〉

Eψ =

[
−~2

2m
∇2 + V

]
ψ

where the second is the nonrelativistic version for a generic potential V in the position basis.
Here E is the energy eigenvalue. 109, 130, 188

sound speed This is the speed of acoustic/sound waves. It is conventionally given by v2
S =

γkBT/mi in MHD, though some include separate contributions from electron and ion tem-
peratures so that vS is the ion acoustic speed. 336

stationary point The subset of critical points that have their derivatves be zero (that is, they
are defined). 98

stellarator See Section 2.4.2. 288

Stirling’s approximation This is an approximation for Γ(N + 1) = N ! with Γ the complete
gamma function when N →∞. It is given as an asymptotic expansion via

N !
N→∞−→

√
2πN

NN

exp(N)

(
1 +

1

12N

)
+O(N−2)

lnN !
N→∞−→ N lnN −N +O(lnN)

where the second approximation comes from ignoring the prefactor
√

2πN as insignificant
compared to the exponential terms. 100, 102

straight field line coordinates See flux coordinates. 251

symmetery This says that given a function of a variable f(x), there is some transformation of x
g such that f(g(x)) = f(x). For example, one could have f(−x) = f(x), or f(x+ a) = f(x).
41

tangent basis Given coordinates ξi and position vector x, the tangent basis set is ei = ∂ξi

∂x
= ∇ξi.

Sometimes they are referred to as the covariant basis, though this should be avoided. 34, 38,
49

tangent-reciprocal basis Given the tangent basis set for coordinates ξi with position vector x
given by ei = ∂ξi

∂x
, the tangent-reciprocal basis is given by ej = ∂x

∂ξj
. Sometimes they are

referred to as the contravariant basis, though this should be avoided. 34, 40, 49

Taylor series A series approximation of a function that uses a power series and the function and
its derivatives at a single value. Quite powerful when near the approximating value, but
often difficult to approximate well over an entire domain. 13, 14, 79, 101, 104, 111, 113, 114,
140, 253, 255, 267

tensor A geometric object in Euclidean space. It can be built up from vectors, and has trans-
formation properties similar to vectors. An nth order tensor is built from n vectors. 13,
15
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time reversal Often used with to explain a symmetry that is equivalent to parity inversion for
time. Time reversal takes time t to time −t. 77

tokamak See Section 2.4.1. 286

toroidal Refers to a direction. For an angle-like variable, it means it is related to going along a
torus the long way. 79, 82

toroidal flux A flux of something (usually magnetic field) through a constant toroidal angle
surface. 158, 259

torsion In the Frenet-Serret formulas, it refers to how the curve is departing from a planar curve.
164

total cross section Sometimes refers to nuclear cross section or the integral cross section. More
often implies the sum of nuclear cross sections of all possible reactions/processes. 379

tritium This refers to hydrogen atoms which contain nuclei with one proton and two neutrons.
Usually denoted T or t rather than 3H. See also triton. 375

tritium breeding ratio The tritium breeding ratio, usually shortened to TBR, is the the number
tritium atoms bred per tritium atom burned in a fusion reaction. Generically, people care
about the net TBR, which may just be called the TBR, which is the tritium atoms recovered
per tritium atom burned in a fusion reaction. 428

triton This refers to a hydrogen nucleus with one proton and two neutrons. Usually denoted T
or t rather than 3H. Technically, different from tritium which refers to the whole atom, but
in practice it is usually used interchangeably with tritium. 374

variational calculus See the calculus of variations. 135, 151

vector A geometric object in Euclidean space. It has a magnitude and direction and can be
represented by set of scalars and basis vectors. It is not an array or column or row of numbers.
It must rotate and translate as a geometric object so that it is coordinate independent. 13,
15, 34

vector basis A set of vectors that span the space we are interested in. 34

W7X W7X stands for Wendelstein-7X. This is a stellarator with modular coils (so the coils can be
switched out and are put together in modules). It is a German-built stellarator. Wendelstein
would literally mean coil stone or coil rock, but the name comes from a mountain in Bavaria.
This is said to be inspired from Project Matterhorn (a fusion program in the US) being
named after a mountain in the Alps. 398

Watson’s lemma This lemma generates asymptotic expansions for λ > −1 and any 0 < T ≤ ∞
with appropriately nice (infinitely differentiable at t = 0) functions tλg(t). It is given by

ˆ T

0

dt tλg(t) exp(−xt) N→∞−→
∞∑
n=0

g(n)(0)Γ(λ+ n+ 1)

n!xλ+n+1

. 102
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winding number The winding number is informally at a point in the plane a, the number of
times you need to turn your head comletely around (full revolutions) when staring directly
at a closed curve and following it along one circuit. You consider turning to the left positive
and turning to the right negative when counting revolutions. See Section 1.13 for a more
mathematical definition. 191

Wirtinger derivatives Derivatives of complex variables that simplify checking the Cauchy-Riemann
equations for multiple complex variables. See (1.5.9) and (1.5.10). 115

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



556 List of Terms

DRAFT:MFPP Primer
September 3, 2020

©K. J. Bunkers



557

Index

absolute derivative, 20
advective derivative, 20
Airy functions, 109
alpha particle, 374, 376
analytic function, 191
antisymmetric tensor, 465
asymptology, 95
asymptotic approximation, 95
atomic mass number, 372
atomic number, 372

basis vectors, 42
Bayes theorem, 227
beryllium, 377, 385, 428
beta particle, 374
big O notation, 22
Bohr radius, 255
Bohr-Sommerfeld quantization rule, 112
Boltzmann distribution, 252
burnign plasma, 402

calculus of variations, 135, 151
cancelling the dots, 146
canonical form, 267
canonically conjugate momentum, 153
Cauchy distribution, 228
Cauchy integral formula, 191
Cauchy principal value, 17, 228
Cauchy-integral theorem, 199
Cauchy-Riemann equations, 115
chain rule, 20, 22
Chapman-Enskog-like closure, 301
Christoffel symbols, 72
Clebsch representation, 267
collision frequency, 256, 259
complex variable, 191
contravariant, 22, 47, 48, 61
contravariant basis vectors, 49
convective derivative, 20
convolution, 453

coordinate system, 37
covariant, 22, 47, 48, 61
covariant basis vectors, 49
critical point, 98, 100
cross section, 378
curvilinear coordinates, 34, 44

D’Alembert’s principle, 144
de Broglie wavelength, 384
Debye length, 253
Debye number, 255
Debye sphere, 254
derivative following the motion, 20
deuterium, 375
deuteron, 374
differential cross section, 379
differential forms, 25
differentials, 25
differentiation, 18
Dirac delta function, 293, 294
dominant balance, 122, 123, 183
double dot product, 464
dyad, 60, 464
dyadic, 60

eikonal, 95, 109, 184
Einstein summation notation, 56
electron capture, 376
energy confinement time, 396
engineering Q, 401
ensemble, 295
error function, 102
Euclidean space, 34
Euler-Lagrange equation, 139, 145, 146, 150, 151
Eulerian Specification, 340
Eulerian specification, 20
excited nucleus, 377

fat-tailed, 226, 229
field line label, 268
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field line pitch, 269
flux coordinates, 269, 273
flux surface, 259
flux surface averaging, 271
Fourier series, 79
Fourier transform, 87
Fourier transform table, 453
FRC, 290
Frechét derivative, 137
Frenet-Serret, 163
frozen flux theorem, 315
full derivative, 20
function, 15

Gâteaux derivative, 137, 140, 142
gamma particle, 374
gamma ray, 374
Gamow energy, 382
Gaussian integral, 99
GDT, 291
generalized coordinate, 153
geometric vector, 40
Greenwald limit, 286
gyroaverage, 134
gyrocenter, 134
gyrofrequency, 259
gyrokinetics, 349, 357
gyromotion, 134
gyroradius, 259, 301

half-life, 373
Hamilton’s equations, 153
Hamilton’s principle, 151
Hamilton-Jacobi equation, 155
Hamiltonian, 149, 158
heavy-tailed, 229
heliotron, 288
Helmholtz transport theorem, 316, 473
Hessian, 100
Hessian matrix, 100
holomorphic, 114, 199
holonomic constraint, 143, 150
hydrodynamic derivative, 20
hypergeometric series, 203

identity tensor, 464
ignited plasma, 398
index notation, 56

induced radioactivity, 378
integral cross section, 379
integration, 16
isobar, 377
isotope, 372

Jacobian, 44
Jacobian determinant, 44
Jacobian matrix, 44
Jordan curve theorem, 191
JWKB, 182, 188, 382, 412

Klimontovich equation, 291, 294, 295
Knudsen number, 301
Kronecker delta, 469

Lagrange multiplier method, 144
Lagrange multipliers, 144, 146, 147, 149, 150
Lagrange notation, 19
Lagrangian, 149
Lagrangian derivative, 20
Lagrangian specification, 340
Laplace transform, 89
Laplace transform table, 453
Laplace’s method, 100
Lawson criteria, 401
Leibniz integral rule, 265, 316, 337, 472
Leibniz notation, 19
Levi-Civita symbol, 469
limit supremum, 22
linearization, 121
lithium, 385, 387, 403, 417
little O notation, 22, 97
long-tailed, 229
Lorentzian, 228

macroscopic cross section, 381
magnetic field lines, 160
magnetic flux, 260
magnetic mirror, 291
magnetic shear, 270
magnetization parameter, 259
Maslov correction, 112
mass number, 372
metastable, 377
metric signature, 56
MHD, 304
microscopic cross section, 379, 381
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moment hierarchy problem, 301
muon, 408
muon catalyzed fusion, 408

nested flux, 259
neutron emission, 376
neutron number, 372
Newton dot notation, 19
non-holonomic constraint, 144
non-neutral plasma, 252
normal, 38
nuclear fission, 372
nuclear fusion, 372
nucleon, 371, 372
nucleon number, 372
nucleus, 371
nuclide, 373

orthogonal, 38

particle derivative, 20
perpendicular, 38
physicists’s Q, 401
plasma coupling factor, 255
plasma frequency, 256
plasma parameter, 254
Plemelj formula, 193, 194, 196, 215
polar scalar, 75
polar tensor, 75
polar vector, 75
poloidal disk flux, 260
poloidal flux, 260
poloidal ring flux, 260
polyad, 60, 120
polyadic, 15, 60, 120
Popper functions, 233
pseudoscalar, 75
pseudotensor, 75
pseudovector, 75

quasi-axisymmetry, 288
quasi-poloidal symmetry, 288
quasihelical symmetry, 288
quasineutrality, 254
quasisymmetry, 288

Rankine-Hugoniot condition, 340
Rayleigh quotient, 148
reactivity, 381

reciprocal basis, 43, 53
reduced de Broglie wavelength, 384, 407
Reynolds transport theorem, 337, 473
RFP, 270, 289
rotational transform, 269

safety factor, 270
Schrödinger equation, 109, 130
signature, 56
skew-symmetric tensor, 465
special relativity, 53
spherical tokamak, 286
spheromak, 290
standard vector representation, 22
stationary point, 98
stellarator, 270, 281, 288
Stirling’s approximation, 100, 102
Stokes derivative, 20
straight field line coordinates, 269
subexponential distribution, 229
surface potential, 265, 273
symmetric tensor, 465

tangent basis, 22, 45, 49
tangent-reciprocal basis, 22, 46, 49
Taylor series, 13, 14, 79, 101, 104, 111, 113, 114,

140, 253, 255, 267
TBR, 428
tensor, 15, 60, 120
thermodynamics, 295
tokamak, 270, 286
total cross section, 379
total derivative, 20, 299
trace, 464
transpose, 465
tritium, 375
tritium breeding ratio, 428
triton, 374

variational calculus, 135, 151
vector, 15, 60
vectors, 49
Vlasov equation, 296

Watson’s lemma, 102
winding number, 191
Wirtinger derivatives, 115

Z pinch, 290
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