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Chapter 1

Background

A short chapter with a history up to the 1960’s. There was a surprising amount done in the 1940’s
and 1950’s, with “linear programming” being quite important for a variety of military, industrial,
and governmental decisions (at least, for optimal use of resources).
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Chapter 2

The Algebra of Linear Equalities

This goes over the basics of understanding how to solve a system of equalities and inequalities
subject to constraints.

2.1 Definitions

The first equation given seems to lack an i index so that the system should read

n∑
i=1

aijxi ≥ bj

xi ≥ 0

(2.1.1)

for i = 1, . . . , n for the xi and j = 1, . . . ,m in the bj.

We then begin with the fact that we can go from a system of inequalities to a system of equalities
and vice versa in equivalent forms. It is pointed out that we can take a system of m inequalities
with n variables to a form m equations and with N = m+n total variables. The “extra ” variables
are called slack or additional variables. The reverse is also clearly possible (take equalities when we
have extra variables, and go back to inequalities) by basically doing the steps in reverse. We are
generally interested in problems where we require the variables to be non-negative (non-positive
is also easily possible by introducing a replacement variable with a negative sign). A solution for
the system satisfies the system but is not necessarily satisfying the constraints, while a feasible
solution satisfies the non-negative constraints, as well.

Note that basic solutions are solutions where the number of non-zero values in the solution vector1
is less than or equal to the rank of the matrix of equations (in addition, we require a basic solution
to be unique). A basic feasible solution is then a feasible solution that is basic.

1I will be referring to “vector arrays” as vectors. Do not confuse these vectors with geometric or Euclidean
vectors. These are simply arrays of numbers.
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10 Definitions

The example given is

[
1 2 1 1 0
1 2 1

2
0 1

]
x1
x2
x3
x4
x5

 =

[
2
2

]
(2.1.2)

Then if we exclude x3, x4, x5, we have [
1 2
1 2

] [
x1
x2

]
=

[
2
2

]
(2.1.3)

has the solution x1 = 2 − 2x2 for x2 = 1/2 and so x1 = 2 − 2(1/2) = 1. But we could choose
anything for x2 and find a solution for x1 so that there is no unique solution and so this is not a
basic solution.

The other example is [
1 1 2
1 1 3

]x1x2
x3

 =

[
1
1

]
(2.1.4)

It’s fairly clear that this is only possible if one of the xi = 0 by simple linear algebra rules. If we
exclude x3 we have [

1 1
1 1

] [
x1
x2

]
=

[
1
1

]
(2.1.5)

but we see that the coefficient matrix is now singular, and so there is no unique solution again,
and so no basic solution exists with x3 excluded. If we excluded x2 we find[

1 2
1 3

] [
x1
x3

]
=

[
1
1

]
(2.1.6)

and the coefficient matrix is now nonsingular and a solution is given by x2 = 0, x3 = 0 and x1 = 1.
This is a basic solution and x1 and x3 are considered basic (even though x3 = 0). Our basic solution
expressed as a vector is x13 = (1, 0, 0). Clearly another basic solution would be x12 = (0, 1, 0).
Here I have put the subscript indices for the basic variables on the basic solutions.

We call the variables that are not excluded the basic variables and the excluded variables the
nonbasic ones. The columns formed by the basic variable columns are called a basis.

The lemma is confusingly worded. It is simpler to say:

Lemma 2.1.1 If we can solve r ≤ m of m consistent and independent constraints, written as
equations, for r variables, then these values form part of a basic solution, i.e. we can find m − r
other variables such that the constraints can be solved for all m of them after excluding (setting
equal to zero) the m− r other variables.

This simply says that if we have our matrix of equations of rank m, then if we can solve a subset of
rank r < m, then we can obtain a part of a basic solution from the smaller rank r submatrix. The
book then defines degenerate basic solutions as basic solutions that have fewer non-zero entries in
the solution vector than the rank of the full matrix.
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The Algebra of Linear Equalities 11

2.2 Basic Feasible Solutions
Next, it is shown that if a feasible solution exists, then a basic feasible solution also exists. It also
gives some means to get the answer. We can exclude variables by choosing a submatrix that is
non-singular and uniquely solvable. Then we can exclude the other variables (holding their values
constant except for one) and adjust the value of the one excluded variable to get more zeros until
we get a basic solution.

Let’s go through the example.

We have

[
3 4 1 1 0
1 3 2 0 1

]
x1
x2
x3
x4
x5

 =

[
2
1

]
(2.2.1)

Suppose we found a solution by a good guess. The book gives us x0 = (1/6, 1/6, 1/6, 2/3, 0).

Let’s exclude i = 3, 4, 5 for the xi. Then we have[
3 4
1 3

] [
x1
x2

]
=

[
2− x3 − x4
1− 2x3 − x5

]
(2.2.2)

We note the coefficient determinant is 9 − 4 = 5 so it is nonsingular. Suppose we choose x3 = 0.
Then the above says [

3 4
1 3

] [
x1
x2

]
=

[
2− 0− 2/3
1− 2(0)− 0

]
=

[
4/3
1

]
(2.2.3)

We rewrite the above as[
3 4 4/3
1 3 1

]
→
[
3 4 4/3
3 9 3

]
→
[
3 4 4/3
0 5 5/3

]
→
[
3 4 4/3
0 1 1/3

]
(2.2.4)

→
[
3 0 0
0 1 1/3

]
→
[
1 0 0
0 1 1/3

]
(2.2.5)

and so x1 = 0 and x2 = 1/3. Thus our new solution is x = (0, 1/3, 0, 2/3, 0) which is a basic
solution since there are less than 3 nonzero entries in the solution vector, so x24 = (0, 1/3, 0, 2/3, 0)
is a basic solution.

Now we could have chosen x1 and x3 as the non-excluded and have[
3 1
1 2

] [
x1
x3

]
=

[
2− 4x2 − x4
1− 3x2 − x5

]
(2.2.6)

Let’s try setting x2 = 0 and then using the original solution we have[
3 1
1 2

] [
x1
x3

]
=

[
2− 4(0)− 2/3
1− 3(0)− 0

]
=

[
4/3
1

]
(2.2.7)
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12 Basic Feasible Solutions

which we transform into[
3 1 4/3
1 2 1

]
→
[
3 1 4/3
3 6 3

]
→
[
3 1 4/3
0 5 5/3

]
→
[
3 1 4/3
0 1 1/3

]
(2.2.8)

→
[
3 0 1
0 1 1/3

]
→
[
1 0 1/3
0 1 1/3

]
(2.2.9)

and so the solution is (1/3, 0, 1/3, 2/3, 0) which is not basic since there are 3 nonzero entries. We
can simply repeat the analysis with this possible solution. We can make x4 = 0 with this one
(keeping x1 and x3 so that we have little to redo). Then[

3 1
1 2

] [
x1
x3

]
=

[
2− 4x2 − x4
1− 3x2 − x5

]
=

[
2− 4(0)− 0
1− 3(0)− 0

]
=
[
21
]

(2.2.10)

leading to[
3 1 2
1 2 1

]
→
[
3 1 2
3 6 3

]
→
[
3 1 2
0 5 1

]
→
[
3 1 2
0 1 1/5

]
→
[
3 0 9/5
0 1 1/5

]
→
[
1 0 3/5
0 1 1/5

]
(2.2.11)

and so our basic solution will be x13 = (3/5, 0, 1/5, 0, 0).

Finally, we could start from our original solution and take x3 and x4 as the ones to (most likely)
keep basic. [

2 0
1 1

] [
x4
x3

]
=

[
1− x1 − 3x2 − x5
2− 3x1 − 4x2

]
(2.2.12)

Let’s adjust with x1 = 0. Then we get[
2 0
1 1

] [
x3
x4

]
=

[
1− (0)− 3(1/6)− (0)
2− 3(0)− 4(1/6)

]
=

[
1/2
4/3

]
(2.2.13)

which we can see says x3 = 1/4 and so x4 = 4/3 − 1/4 = 13/12. Thus the new solution is
x = (0, 1/6, 1/4, 13/12, 0) which we can now plug in with x2 = 0[

2 0
1 1

] [
x3
x4

]
=

[
1− (0)− 3(0)− (0)
2− 3(0)− 4(0)

]
=

[
1
2

]
(2.2.14)

and so we find x3 = 1/2 and so x4 = 2 − 1/2 = 3/2 and so our solution is then x34 =
(0, 0, 1/2, 3/2, 0), which is basic. We then note that we must have

x0 = a1x24 + a2x13 + a3x34 (2.2.15)

for some coefficients ai which can be solved via another matrix system. As the book says, we find
a1 = 1/2, a2 = 5/18, a3 = 2/9.

The same ideas apply when we have optimal solutions. We can have a generic one and form a
basic optimal solution via the same methods as above.

The book uses maximize

B = 3x1 + 4x2 + x3 (2.2.16)
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The Algebra of Linear Equalities 13

subject to the constraints

3x1 + 4x2 + x3 + x4 = 2 (2.2.17)
x1 + 3x2 + 2x3 + x5 = 1 (2.2.18)

It is pointed out that the maximum of B is 2 via the first constraint and an optimal solution of
the form x0 = (1/2, 1/10, 1/10, 0, 0). We can then perform the same machinations. Let’s adjust
x3 to zero, for example [

3 4
1 3

] [
x1
x2

]
=

[
2
1

]
(2.2.19)

and so[
3 4 2
1 3 1

]
→
[
3 4 2
3 9 3

]
→
[
3 4 2
0 5 1

]
→
[
3 4 2
0 1 1/5

]
→
[
3 0 6/5
0 1 1/5

]
→
[
1 0 2/5
0 1 1/5

]
(2.2.20)

as one basic solution x12 = (2/5, 1/5, 0, 0, 0) and we could instead have eliminated x2 so that[
3 1
1 2

] [
x1
x3

]
=

[
2
1

]
(2.2.21)

and so[
3 1 2
1 2 1

]
→
[
3 1 2
3 6 3

]
→
[
3 1 2
0 5 1

]
→
[
3 1 2
0 1 1/5

]
→
[
3 0 9/5
0 1 1/5

]
→
[
1 0 3/5
0 1 1/5

]
(2.2.22)

which gives a basic solution of x2 = (3/5, 0, 1/5, 0, 0)

Note that as the book emphasizes, this does not exhaust the possible basic feasible solutions, but
simply that we can decompose any feasible solution into basic feasible solutions.

This is really saying in linear algebra terms that the over the space of optimal solutions, the basic
feasible solutions form a basis.

2.3 Geometric Transformations
Now we consider the systems in matrix form. The book writes every detail down, even though
some of the ideas are more easily expressed abstractly. For example, we could write our matrices
Mui

and Dui
more abstractly using vectors. We could then write that column vector is auij and

row vector is aᵀ
uij

for short. So

M =

[
b a1 · · · aN 0
0 −cᵀ · · · · · · 1

]
(2.3.1)

Mui
=

[
aui

· · · aum 0
−cᵀ · · · · · · 1

]
(2.3.2)

Dui
=

[
dui

· · · dum 0
dᵀ · · · · · · 1

]
(2.3.3)
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14 Geometric Representation

where ai is the coefficients on the x1 for each equation (in a set order). Then since by construction
Dui

= M−1
ui

, we must have the relations stated in (V-2-1) through (V-2-3). These can then more
easily be expressed as

as · dt = δst (2.3.4)
(d)s = c · ds (2.3.5)

where (d)s is the sth component of d. The (V-2-4) and (V-2-5) then come from an application of
the inverse properties given above written component by component.

The rest of the chapter is a fairly straightforward use of the results with definitions for better
notation.

2.4 Geometric Representation

The proof that basic feasible solutions are vertices is essentially one by contradiction. Assume that
a basic feasible solution is a vertex and that it is halfway between two (distinct) feasible solutions
and show that those feasible solutions are actually not possible.

It is then pointed out in the example that one can determine the number of vertices/basic solutions
via combinatorics. Given the number of variables n and number of constraints m the number of
basic solutions must be

(
m
n

)
or m choose n. However, there is no guarantee that all of these basic

solutions will actually be feasible. In fact, usually some of them will not be feasible.

We can consider the transportation problem. Remember that we defined the number of ships to
sail from Pi to Qj as xij with ai ships available at port Pi and bj ships required at Qj then the
equations are ∑

i

xij = bj (2.4.1)∑
j

xij = ai (2.4.2)∑
i

ai =
∑
j

bj (2.4.3)

when i ranges from 1 to 2 and j from 1 to 3 the equations are then

x11 + x12 + x13 = a1 (2.4.4)
x21 + x22 + x23 = a2 (2.4.5)

x11 + x21 = b1 (2.4.6)
x12 + x22 = b2 (2.4.7)
x13 + x23 = b3 (2.4.8)
a1 + a2 = b1 + b2 + b3 (2.4.9)

Let’s just assume that we give ai and bi so that the last equation is satisfied. Then the previous
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The Algebra of Linear Equalities 15

equations can be written as 
1 1 1 0 0 0 a1
0 0 0 1 1 1 a2
1 0 0 1 0 0 b1
0 1 0 0 1 0 b2
0 0 1 0 0 1 b3

 (2.4.10)

Since there are five rows and six columns, we know that these cannot all be linearly independent.
The book instead uses clever reasoning to reduce the size of the problem. It uses that x21 ≤ b1
and x13 ≤ b3. Then with

x11 + x21 = b1 (2.4.11)
x11 + x12 + x13 = a1 (2.4.12)

b1 − a1 =��x11 + x21 −��x11 − x12 − x13 (2.4.13)
b1 − a1 = x21 − x12 − x13 (2.4.14)
b1 − a1 + x12 = x21 − x13 (2.4.15)

which says that x21 − x12 must be greater than or equal to b1 − a1. Then

x21 + x22 + x23 = a2 (2.4.16)
x13 + x23 = b3 (2.4.17)

a2 − b3 = x21 + x22 +��x23 − x13 −��x23 (2.4.18)
a2 − b3 = x21 + x22 − x13 (2.4.19)

a2 − b3 = x21 − x13 + b2 − x12 (2.4.20)
a2 − b3 − b2 + x12 = x21 − x13 (2.4.21)

which says that the most x21−x12 could be is when x12 is at its largest possible value of b2 meaning
x21 − x13 ≤ a2 − b3 as stated in the book.

Using our previous rule with m+ n− 1 variables and mn equations we’d expect
(

mn
m+ n− 1

)
=

(mn)!
(m+n−1)!(mn−m−n+1)!

= (mn)!
(m+n−1)!([m−1][n−1])! basic solutions. For our case

(
2(3)

2 + 3− 1

)
=

(
6
4

)
=

6!
4!2!

= 6(5)
2

= 15 possible solutions. But in fact the general rule is mn−1nm−1 which in our case
yields 23−132−1 = 223 = 12 basic solutions. This means that our combinatorial rule is not always
accurate. In any case, I cannot find a proof that it is mn−1nm−1 that is not behind a paywall.

The rest of the geometric interpretations are somewhat straightforward. The Example (V-2-12)
is using that we can form a polyhedronal cone and then only consider the values that satisfy our
constraints. From these we choose the value that maximizes or minimizes our constraint. This
method only gives us the maximal value, and not the xi that give us such a value, which can be
more complicated to find.

In any case the idea is that if you have the vector of points

P1 = (a11, a12, c1) (2.4.22)
P2 = (a21, a22, c2) (2.4.23)
P3 = (a31, a32, c3) (2.4.24)
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16 Exercises

then we find the values

t1a11 + t2a21 + t3a31 = b1 (2.4.25)
t1a12 + t2a22 + t3a32 = b2 (2.4.26)

and use that to find the maximal solution for

t1c1 + t2c2 + t3c3 = B (2.4.27)

In fact, this is simply what we have done before. Solve the constraints and put them into our
objective function. The difference is in the geometrical construction idea.

In the example, we have

P1 = (3, 1, 3) (2.4.28)
P2 = (4, 3, 6) (2.4.29)
P3 = (1, 2, 2) (2.4.30)[

3 4 1 2
1 3 2 1

]
→
[
3 4 1 2
3 9 6 3

]
→
[
3 4 1 2
0 5 5 1

]
→
[
3 4 1 2
0 1 1 1/5

]
(2.4.31)

→
[
3 0 −3 6/5
0 1 1 1/5

]
→
[
1 0 −1 2/5
0 1 1 1/5

]
(2.4.32)

which means our constraint becomes

t1 = 2/5 + t3 (2.4.33)
t2 = 1/5− t3 (2.4.34)

and so enforcing our constraint we require

B = 3t1 + 6t2 + 2t3 = 3

(
2

5
+ t3

)
+ 6 (1/5− t3) + 2t3 =

12

5
− 3t3 (2.4.35)

so t3 = 0 is the optimal point yielding B = 12/5.

2.5 Exercises

2.5.1 Problem 1

Find the basic solutions of the following problem:

x1 + x2 + x3 = 4 (2.5.1)
x4 + x5 + x6 = 5 (2.5.2)

x1 + x4 = 3 (2.5.3)
x2 + x5 = 3 (2.5.4)

Indicate which solutions are feasible.

Solution:
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The Algebra of Linear Equalities 17

We immediately see 6 variables and 4 equations. Naively we would then expect there to be 15
possible basic solutions. (It turns out this is a transport problem so that there are fewer basic
solutions, 3(22) = 12 so 3 of the combinations must be impossible.)

We then write out the matrix to see what possible combinations could form basic solutions.
1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0

 (2.5.5)

We then have the unenviable position of having to evaluate all the possibilities. The options are
1234 1246 1356 2356
1235 1256 1456 2456
1236 1345 2345 3456
1245 1346 2346

 (2.5.6)

where 1234 means take x1, x2, x3, x4. The determinants for all these possibilities are given by
1 −1 −1 0
1 −1 1 1
1 1 1 1
0 0 1

 (2.5.7)

which means that three are missing (singular zero determinants, as expected, with 1245, 1346 and
2356 being the singular ones). We then just can find the solutions by substitution. We find

x1234 =
(
−2 3 3 5 0 0

)
(2.5.8)

x1235 =
(
3 −2 3 0 5 0

)
(2.5.9)

x1236 =
(
3 3 −2 0 0 5

)
(2.5.10)

x1246 =
(
1 3 0 2 0 3

)
(2.5.11)

x1256 =
(
3 1 0 0 2 3

)
(2.5.12)

x1345 =
(
1 0 3 2 3 0

)
(2.5.13)

x1356 =
(
3 0 1 0 3 2

)
(2.5.14)

x1456 =
(
4 0 0 −1 3 3

)
(2.5.15)

x2345 =
(
0 1 3 3 2 0

)
(2.5.16)

x2346 =
(
0 3 1 3 0 2

)
(2.5.17)

x2456 =
(
0 4 0 3 −1 3

)
(2.5.18)

x3456 =
(
0 0 4 3 3 −1

)
(2.5.19)

Clearly the only basic feasible solutions are those without negative values.

It is also clear here how there will be quite a few of the solutions are singular every time we have
a transportation problem.
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18 Exercises

2.5.2 Problem 2

Find the basic solutions of

x1 + x2 + x3 = 1 (2.5.20)
3x1 + 2x2 − x4 = 6 (2.5.21)

Solution:

We have 4 variables and 2 equations leading to C4
2 ≡

(
4
2

)
= 6 possible basic solutions (with no

singularities).

In matrix form we have [
1 1 1 0
3 2 0 −1

]
(2.5.22)

Now we have 12, 13, 14, 23, 24, 34 as the possibilities with determinants (respectively) of −1, −3,
−1, −2, −1, −1. Thus there are no singularities.

x12 =
(
4 −3 0 0

)
(2.5.23)

x13 =
(
2 0 −1 0

)
(2.5.24)

x14 =
(
1 0 0 −3

)
(2.5.25)

x23 =
(
0 3 −2 0

)
(2.5.26)

x24 =
(
0 1 0 −4

)
(2.5.27)

x34 =
(
0 0 1 −6

)
(2.5.28)

This means there are no feasible solutions. This could also be seen visually, as our problem is
x1 + x2 ≤ 1 and 3x1 + 2x2 ≥ 6. If we plot the regions we find that it is the region below the line
x2 = 1 − x1 in the (x1, x2) plane, and the region above x2 = 3 − 3

2
x1. I have filled in the regions

where the inequalities are actually satisfied in Figure 2.1. These regions do not overlap when x1
and x2 are greater than zero.
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The Algebra of Linear Equalities 19

Figure 2.1: This shows the graphical solution method from the two inequalities. The regions where
the inequalities is shaded, and we see there is no overlap, and hence no feasible solutions.
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20 Exercises

2.5.3 Problem 3

Now change the second equation from the previous problem. Find the basic solutions of

x1 + x2 + x3 = 1 (2.5.29)
3x1 + 2x2 − x4 + x5 = 6 (2.5.30)

Solution:

Now we have 5 variables and 2 equations yielding C5
2 = 10 possible bases. In matrix form we have[

1 1 1 0 0
3 2 0 −4 1

]
(2.5.31)

We have 12, 13, 14, 15, 23, 24, 25, 34, 35, 45 as our possibilities with (respectively) determinants
−1, −3, −4, 1, −2, −4, 1, −4, 1, 0. This means the 45 cannot be a basis, but all others are
possibilities. We then find

x12 =
(
4 −3 0 0 0

)
(2.5.32)

x13 =
(
2 0 −1 0 0

)
(2.5.33)

x14 =
(
1 0 0 −3 0

)
(2.5.34)

x15 =
(
1 0 0 0 3

)
(2.5.35)

x23 =
(
0 3 −2 0 0

)
(2.5.36)

x24 =
(
0 1 0 −4 0

)
(2.5.37)

x25 =
(
0 1 0 0 4

)
(2.5.38)

x34 =
(
0 0 1 −6 0

)
(2.5.39)

x35 =
(
0 0 1 0 6

)
(2.5.40)

Here we can see that x15, x25 and x35 are now basic feasible solutions. This makes sense since
swapping x4 and x5 simply changes the sign.

Essentially what has happened is that we have allowed 3x1 + 2x2 ≤ 6 with the x5 variable, and so
the shaded area is the entire plane. This leaves us with overlap as seen in Figure 2.2.

2.5.4 Problem 4

Find the basic solutions of a.

2x1 + x2 = 6 (2.5.41)
4x1 + 2x2 = 12 (2.5.42)

and

2x1 + x2 + z1 = 6 (2.5.43)
4x1 + 2x2 + z2 = 12 (2.5.44)
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The Algebra of Linear Equalities 21

Figure 2.2: This shows the graphical solution method from the two inequalities. The regions where
the inequalities are satisfied are shaded, and we see there is overlap in the lower left corner, and
hence feasible solutions.

Solution:

For a. we note that the second equation is simply two times the first, thus this is a degenerate
problem with an infinite number of solutions. Thus we find x1 = 3 and x2 = 0 is a “basic” solution
and x1 = 0 and x2 = 6 is the other “basic” solution. I think this is a really strange result since
it isn’t actually solving the problem, and taking one variable at a time seems like it should not
really be called a solution, but it is consistent with the definition we used for basic solution in the
book. We still clearly have that any numbers whatsoever for x1 and x2 that satisfy one equation
will satisfy the other. Another way of saying this is that the matrix formed from the coefficients
has a determinant equal to zero.

For b. we have a real problem. In this case the matrix is given by[
2 1 1 0
4 2 0 1

]
(2.5.45)

I will rename z1 = x3 and z2 = x4 for convenience. We have C4
2 = 6 possible bases (though we

know one is impossible from part a.). Then the possible bases are 12, 13, 14, 23, 24, 34 with
determinants 0, −4, 2, −2, 1, 1. Thus all but the 12 basis are fine.

x13 =
(
3 0 0 0

)
(2.5.46)

x14 =
(
3 0 0 0

)
(2.5.47)

x23 =
(
0 6 0 0

)
(2.5.48)

x24 =
(
0 6 0 0

)
(2.5.49)

x34 =
(
0 0 6 12

)
(2.5.50)
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and so we see that some of the bases are degenerate, however all of them are feasible.

Graphically, we have

2x1 + x2 ≥ 6 (2.5.51)
4x1 + 2x2 ≥ 12 (2.5.52)

which is of course the same region, but clearly has boundaries unlike the previous case where the
lines simply coincide.

2.5.5 Problem 5

Given

x1 + 2x2 + x3 + x4 = 2 (2.5.53)

x1 + 2x2 +
1

3
x3 + x5 = 2 (2.5.54)

x1 + x2 + x3 + x6 = 2 (2.5.55)

with xi ≥ 0. Is (1, 1/2, 0, 0, 0, 1/2) a vertex? If not, express it as a combination of two vertices.

Solution:

We have 6 variables and 3 equations for C6
3 = 20 possible vertices. We also know that a basis will

have 3 non-zero entries. Thus the vector given is potentially a vertex. Let’s test it in each of the
equations.

1 + 2(1/2) = 1 + 1 = 2X (2.5.56)
1 + 2(1/2) = 1 + 1 = 2X (2.5.57)

1 + 1/2 + 1/2 = 1 + 1 = 2X (2.5.58)

Thus, it appears to be a vertex. We could worry that it is interior to our region however. We see
that we need to test if this is a degenerate solution. Taking columns 1, 2, and 6 of the assocatiated
matrix 1 2 1 1 0 0

1 2 1/3 0 1 0
1 1 1 0 0 1

 (2.5.59)

yields for us ∣∣∣∣∣∣
1 2 0
1 2 0
1 1 1

∣∣∣∣∣∣ = 0 (2.5.60)

since the first two rows are identical. Thus, it is not a vertex. Suppose we use 1,2,5, then we have∣∣∣∣∣∣
1 2 0
1 2 1
1 1 0

∣∣∣∣∣∣ = 1 (2.5.61)
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The Algebra of Linear Equalities 23

and so this is fine. For 1,5,6 we’d find ∣∣∣∣∣∣
1 0 0
1 0 1
1 1 0

∣∣∣∣∣∣ = −1 (2.5.62)

Also 1,4,5 is a possibility ∣∣∣∣∣∣
1 1 0
1 0 0
1 0 1

∣∣∣∣∣∣ = −1 (2.5.63)

Unfortunately all of these yield the same basis vector. The vector x1 = (2, 0, 0, 0, 0, 0).

Let’s try 2,3,6 and ∣∣∣∣∣∣
2 1 0
2 1/3 0
1 1 1

∣∣∣∣∣∣ = 2/3− 2 = −4/3 (2.5.64)

and so

2x2 + x3 = 2 (2.5.65)
2x2 + (1/3)x3 = 2 (2.5.66)
x1 + x3 + x6 = 2 (2.5.67)

clearly x3 = 0 is required and we then have x2 = 1 and x6 = 1 for vector x2 = (0, 1, 0, 0, 0, 1).

Then

t(2, 0, 0, 0, 0, 0) + s(0, 1, 0, 0, 0, 1) = (1, 1/2, 0, 0, 0, 1/2) (2.5.68)

implies t = 1/2 and s = 1/2 for our solution being (x1 + x2)/2.
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Chapter 3

The Algebra of Duality

Duality here is the “mirror” image of maximization and minimization problems.

3.1 Definitions
The second duality is simply recognizing that we can put minus signs in the objective function to
swap minimization and maximization.

3.2 Homogeneous Systems
This section has a proof that is not explained very clearly. The induction proof for Theorem (V-
3-1) is not clear at all without any explanations of reindexing or how we are supposed to even see
that there is a “solution” to something.

Let’s rewrite things with index notation so that it is not so crazily messy.

We have for i = 1, . . . , n that

aijyj ≥ 0 (3.2.1)

and for j = 1, . . . ,m that

aijxi = 0 (3.2.2)

with xi ≥ 0 solutions with

xi + aijyj > 0 (3.2.3)

for all i = 1, . . . , n.

When n = 1 we have only x1. Thus, if aij = 0 completely we choose yj = 0 and x1 = 1 as a
solution. In other cases we choose yj = a1j and x1 = 0 as a solution. Thus a solution clearly exists
satisfying our constraints.

We assume that the statement is true, so that a solution exists of the form given when i ranges to
n.
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26 Homogeneous Systems

Let’s simply call such a solution for the case i = 1, . . . , n

aijyj ≥ 0 (3.2.4)

and for j = 1, . . . ,m that

aijxi = 0 (3.2.5)

with xi ≥ 0 the solutions satisfying

xi + aijyj > 0 (3.2.6)

x0i and y0j . That is x0i and y0j satisfies

aijy
0
j ≥ 0 (3.2.7)

aijx
0
i = 0 (3.2.8)

x0i + aijy
0
j > 0 (3.2.9)

For the (n+ 1) case, our system can be written in terms of our previous n case as

(aij + an+1,j)yj ≥ 0 (3.2.10)
aijxi + an+1,jxn+1 = 0 (3.2.11)

The final condition is then (for i = 1, . . . , n+ 1)

xi + aijyj > 0 (3.2.12)

which we remember includes the “new” condition

xn+1 + an+1,jyj > 0 (3.2.13)

Clearly if we have xn+1 = 0 and an+1,jy
0
j > 0 then1 the solution to the above can directly incorporate

our y0j and x0i solutions. Indeed, then all the previous conditions are fine, and we have the extra
condition

=0︷︸︸︷
xn+1+

>0︷ ︸︸ ︷
an+1,jy

0
j > 0 (3.2.14)

In the case an+1,jy
0
j = 0 we cannot easily get a solution unless an+1,j = 0 in which case we can

then set xn+1 = 1.

In the case an+1,jy
0
j < 0 then we can consider a system with i = 1, . . . , n and j = 1, . . . ,m given

by

(aij + rian+1,j)yj ≥ 0 (3.2.15)
(aij + rian+1,j)xi = 0 (3.2.16)

ri =
aijy

0
j

−an+1,jy0j
> 0 (3.2.17)

1The book gets this wrong since it uses ≥, but if we have equality then xn+1 + an+1,jyj = 0 + 0 6> 0. Such a
case implies something is wrong with our system of equations.
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The Algebra of Duality 27

which must have a solution satisfying

x′i + (aij + rian+1,j)y
′
j > 0 (3.2.18)

We can see that if we define

x
(1)
n+1 =

>0︷︸︸︷
ri

>0︷︸︸︷
x′i > 0 (3.2.19)

then we have in (3.2.16) that

aijx
′
i + an+1,jx

(1)
n+1 = 0 (3.2.20)

We can find our solution using a trick that the book does not explain well. We can use

x′i(aij + an+1,jri)y
′
j ≥ 0 (3.2.21)

0 + xn+1an+1,jy
′
j ≥ 0 (3.2.22)

an+1,jy
′
j ≥ 0 (3.2.23)

which means r = an+1,jy
′
j

−an+1,jy′0
≥ 0. Note that this implies

aijy
′
j +

>0︷︸︸︷
ri

≥0︷ ︸︸ ︷
an+1,jy

′
j ≥ 0 (3.2.24)

aijy
′
j +

aijy
0
j

−an+1,jy0j
an+1,jy

′
j ≥ 0 (3.2.25)

aijy
′
j +

an+1,jy
′
j

−an+1,jy0j
aijy

0
j ≥ 0 (3.2.26)

aijy
′
j + raijy

0
j ≥ 0 (3.2.27)

Then we can consider

aij(y
′
j + ry0j ) > 0 (3.2.28)

which is clearly true for i < n+ 1. Then we find

an+1,j(y
′
j + ry0j ) = an+1,jy

′
j +

an+1,jy
′
j

−an+1,jy0j
an+1,jy

0
j = an+1,jy

′
j − an+1,jy

′
j = 0 (3.2.29)

which means that we then have a system that works for the n+ 1. That is using

xi = x′i (3.2.30)

xn+1 = rix
′
i =

aijy
0
j

−an+1,jy0j
x′i (3.2.31)

yj = y′j (3.2.32)

allows us to extend our solutions from the i ≤ n system to the i ≤ n+ 1 system.
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28 Homogeneous Systems

We could more simply write when

Ax = 0, x ≥ 0 (3.2.33)
yᵀA ≥ 0 (3.2.34)

we have

xᵀ + yᵀA > 0 (3.2.35)

For x = 0, then this is obvious. We can use for any other case that that yᵀAx = 0. If x > 0 then
yᵀA = 0 for this to be true and the equality will still hold. This method doesn’t give a constructive
proof, but satisfies the theorem.

The next theorems are fairly straightforward uses of our previous Theorem (V-3-1).

Farkas’ theorem is also stated incorrectly. We set up the system (i = 1, . . . , n and y = 1, . . . ,m)

−a0jyj ≥ 0 (3.2.36)
aijyj ≥ 0 (3.2.37)

−a0jx0 + aijxi = 0 (3.2.38)

with x0, xi ≥ 0. Then Theorem (V-3-1) states it has a solution satisfying

x0 − a0jyj > 0 (3.2.39)
xi + aijyj > 0 (3.2.40)

When x0 = 0 this implies

−a0jyj > 0⇒ a0jyj < 0 (3.2.41)
aijxi = 0 (3.2.42)

The book non-sensically gets the exact opposite conclusion, which is clearly wrong. There is no
way to assert a0jyj > 0 as a consequence of x0 = 0. The point is that if we considered another
system removing the minus signs then we’d have

a0jyj ≥ 0 (3.2.43)
aijyj ≥ 0 (3.2.44)

a0jx0 + aijxi = 0 (3.2.45)

the solution would be

x0 + a0jyj > 0 (3.2.46)
xi + aijyj > 0 (3.2.47)

Then with x0 = 0, then we must have the same solution as the previous set of relations. This
means that we’d require a0jyj > 0 and a0jyj < 0 which is impossible. Thus x0 = 0 is not a
possibility and so x0 > 0. This means we can divide through by x0 the equation

−a0jx0 + aijxi = 0 (3.2.48)

−a0j + aij
xi
x0

= 0 (3.2.49)

a0j = aij
xi
x0

(3.2.50)

Then Theorem (V-3-4) follows from skew-symmetric matrices satisifying Aij = −Aji. Therefore
wiAijwj = −wiAjiwj = −wjAjiwi

i↔j
= −wiAijwj.
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The Algebra of Duality 29

3.3 Polarity

This is again easiest to see in vector language. We denote the m dimensional vectors as ai with
i = 1, . . . , n. We can then summarize them as A in a n×m matrix. We have our x > 0 as vectors
with n rows. We then are interested in Aᵀx which forms the polyhedral cone. We then define the
polar polyhedral cone as the cone formed by the vectors y such that yAᵀx ≥ 0. Geometrically,
that is the points y ·x∗ ≥ 0 which implies the “angle” is non-obtuse (since y ·x∗ = |y||x| cos(θ) and
so to be non-negative requires the angle to be less than or equal to π/2 radians) with x∗ = Aᵀx.
If we denote the polyhedral cone set as A and the polar as A∗, then we would like to show that
A∗∗ = A.

First, consider A∗∗. This is the set

z · y ≥ 0 (3.3.1)

because A∗ is defined by the points y. We can use

z = Aᵀx (3.3.2)

which will clearly satisfy the inequality. This means that A∗∗ is defined by the points Aᵀx, which
is the original cone A.

Next, we consider A. It clearly is of the form Aᵀx. Farkas theorem tells us that if yAᵀ ≥ 0 and so
yAᵀx ≥ 0, which we can rewrite as c · y ≥ 0, then c = Aᵀt with t > 0. But then c, which defines
A∗∗ must be the same as Aᵀx and hence the same as A.

3.4 Inhomogeneous Inequalities. Duality Theorem. Exis-
tence Theorem

The beginning statement is simply applying our previous theorems.

The statement

bjyj ≤ cixi (3.4.1)

is from simply looking at the dual problem at the beginning of the chapter.

The statement of the problem also requires bjyj ≥ cixi and so our particular solution must satisfy
this restraint as well. If t0 = 0 however, we get a contradiction as indicated in the text.

The Lagrange multiplier method is nice to show that there is a way of arriving at this problem
with calculus.

3.5 Orthogonality

This is a straightforward section. The orthogonality follows very clearly from the coefficient being
dot producted as vectors.
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3.6 Exercises

3.6.1 Problem 1

Find the solution of

x1 − 3x2 + x3 = 0 (3.6.1)
x1 − x2 − x3 = 0 (3.6.2)
x1, x2, x3 ≥ 0 (3.6.3)

y1 + y2 ≥ 0 (3.6.4)
−3y1 − y2 ≥ 0 (3.6.5)
y1 − y2 ≥ 0 (3.6.6)

which also satisfies

x1 + y1 + y2 > 0 (3.6.7)
x2 − 3y1 − y2 > 0 (3.6.8)
x3 + y1 − y2 > 0 (3.6.9)

Solution:

Let us see if this forms a matrix system. We need

Aᵀx =

[
1 3 1
1 −1 −1

]x1x2
x3

 (3.6.10)

Thus we want Ay > 0 which would require1 1
3 −1
1 −1

[y1
y2

]
(3.6.11)

Thus, we do have Aᵀx = 0 and Ay ≥ 0 with solutions that must satisfy x + Ay > 0. Thus, a
solution clearly exists that satisfies the constraints. We can rewrite the first xi equation eliminating
x1 as

x2 + x3 − 3x2 + x3 = 0 (3.6.12)
2(−x2 + x3) = 0 (3.6.13)

So that x2 = x3 and x1 = x2 + x3 = 2x2.

Now we require 3y1 ≤ y2 and y1 ≥ y2 which is impossible unless y1 = y2 = 0. Another way of
seeing this is that y1 + y2 ≥ 0 and y1 − y2 ≥ 0 imply 2y1 ≥ 0 or y1 ≥ 0. Whereas if we add
−3y1 − y2 ≥ 0 to y1 + y2 ≥ 0 we find −2y1 ≥ 0.

Since y1 = y2 = 0 are the only solutions we can choose pretty much anything with x2 = x3 > 0 So
x2 = x3 = 1 and x1 = 2 is a solution.
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The Algebra of Duality 31

3.6.2 Problem 2

Find a solution of

3x1 + x2 = 0 (3.6.14)
−2x1 + 2x2 = 0 (3.6.15)

x1, x2 ≥ 0 (3.6.16)

3y1 − 2y2 ≥ 0 (3.6.17)
y1 + 2y2 ≥ 0 (3.6.18)

which satisfies also

x1 + 3y1 − 2y2 > 0 (3.6.19)
x2 + y1 + 2y2 > 0 (3.6.20)

Solution:

The matrix is clearly given by

A =

[
3 −2
1 2

]
(3.6.21)

Thus such solutions should exist.

We see

6x1 + 2x2 − 2x1 + 2x2 = 0 (3.6.22)
4x1 = 0 (3.6.23)
x1 = 0 (3.6.24)

and so x2 = 0 as well. Then we simply choose 3y1 − 2y2 ≥ 0 or 3y1 ≥ 2y2 so y1 = y2 = 1 would
work.

3.6.3 Problem 3

Show that all solutions of

3x1 + 2x2 − x3 ≥ 0 (3.6.25)
5x1 − 3x2 + x3 ≥ 0 (3.6.26)
4x1 − x2 + 5x3 ≥ 0 (3.6.27)

satisfy also 22x1 + x2 +8x3 ≥ 0, and hence find the non-negative coefficients mentioned in Farkas’
theorem.

Solution:
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We can rewrite these as

3x1 + 2x2 − x3 + x4 = 0 (3.6.28)
5x1 − 3x2 + x3 + x5 = 0 (3.6.29)
4x1 − x2 + 5x3 + x6 = 0 (3.6.30)

and so solve 3 2 −1 1 0 0
5 −3 1 0 1 0
4 −1 5 0 0 1

→
15 10 −5 5 0 0
15 −9 3 0 3 0
4 −1 5 0 0 1

→
12 8 −4 4 0 0
0 19 −8 5 −3 0
12 −3 15 0 0 3


(3.6.31)

→

3 2 −1 1 0 0
0 19 −8 5 −3 0
0 11 −19 4 0 −3

→
1 2

3
−1
3

1
3

0 0
0 1 − 8

19
5
19
− 3

19
0

0 1 −19
11

4
11

0 −3
11

→
1 0 0 2

13
9
91

1
91

0 1 0 3
13

−19
91

8
91

0 0 1 − 1
13
−11

91
19
91


(3.6.32)

Thus,

22x1 =
44

13
x4 +

198

19
x5 +

22

91
x6 (3.6.33)

x2 =
3

13
x4 −

19

91
x5 +

8

91
x6 (3.6.34)

8x3 = −
8

13
x4 +−

88

91
x5 +

152

91
x6 (3.6.35)

So

22x1 + x2 + 8x3 =
39

13
x4 + x5 + 2x6 > 0 (3.6.36)

This is essentially just finding a solution to 3 5 4
2 −3 −1
−1 1 5

t1t2
t3

 =

221
8

 (3.6.37)

Thus

→

 6 10 8 44
6 −9 −3 3
3 −3 −15 24

→
 3 5 4 22

0 −19 −11 −41
0 −8 −19 2

→
 3 5 4

0 1 11
19

41
19

0 1 19
8

−1
4

→
 1 0 0 3

0 1 0 1
0 0 1 2


(3.6.38)

which means we have t1 = 3, t2 = 1 and t3 = 2.

Note that we could simply have proceeded from the second part. If such a solution exists, because
Farkas’ theorem works in reverse we know that there is an inequality that must be satisfied by the
variables.

DRAFT:MP Notes
July 20, 2020

©K. J. Bunkers



The Algebra of Duality 33

3.6.4 Problem 4

Prove that not all solutions of the first three inequalities in Problem 3 satisfy 12x1+7x2+6x3 ≥ 0.

Solution:

We have two choices. The easiest way given our previous work is to use x1, x2, x3 in terms of x4, x5,
and x6 and show that the inequality given isn’t satisfied. But in general we’d simply row reduce
the matrix  3 5 4 12

2 −3 −1 7
−1 1 5 6

→
 1 0 0 3

0 1 0 −1
0 0 1 2

 (3.6.39)

which means that t2 < 0 and it fails. The other way yields

12x1 =
24

13
x4 +

108

19
x5 +

12

91
x6 (3.6.40)

7x2 =
21

13
x4 −

133

91
x5 +

56

91
x6 (3.6.41)

6x3 = −
6

13
x4 +−

66

91
x5 +

114

91
x6 (3.6.42)

So

12x1 + 7x2 + 6x3 =
39

13
x4 − x5 + 2x6 (3.6.43)

which is not guaranteed to be greater than zero since x5 ≥ 0.
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Chapter 4

Theory of Graphs and Combinatorial
Theory

The title says it all.

4.1 Definitions

Definitions of planar graph and a-b graph. The definitions are poor. It’s not at all clear what he’s
talking about with an a-d graph. Because of the really bad definition, it’s not even clear what he
means by the graphs being equivalent.

4.2 Shortest Path

This section is actually fairly straightforward. Just follow the directions and clearly you will form
the shortest path.

4.3 Maximal Flow. Minimum Cut

The definitions here are again not exactly great. Residual flow and chain flows would be better
explained by examples. A chain flow is the number associated with a chain (a set of nodes from
a source to a sink) which is less than or equal to the maximum number possible along any arc in
the chain. If the sum of all chain flows through an arc is equal to the maximum, we say that it is
saturated. If it is not saturated, then the number that could be added to it to achieve saturation
is the residual flow.

The directions for labeling the graph are not very clear. The idea is to form a chain, add the max
possible of extra capacity to all the arcs in the chain and continue this process until all arcs are
saturated. When all are saturated, we do the relabeling process to ensure that we actually have
the best maximum possible. Thus one unsaturated chain at the beginning is ⊕ to a to b to 	.
The smallest residual flow is 2, so add two to each arc. Next we could try ⊕ to c to 	 with 1 the
residual flow. Next we could try a chain such as ⊕ to b to a to 	. The max residual flow is clearly
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36 Dual Graphs

3, and this diverges from the book’s treatment. The book takes a different method, but ignores
this possible chain, and so doesn’t really use the algorithm correctly.

Essentially, we can keep doing this labeling until 	 has only saturated connections.

The tabular method is even more poorly explained. It is better to look for modern coverage with
Ford-Fulkerson and Edmond-Karp algorithms.

4.4 Dual Graphs

Not a particularly effective explanation of how to make a dual graph. A picture really is worth a
thousand words. But the idea is to convert chains into nodes and vice versa.

4.5 Directed Network of the Transportation Problem

The example doesn’t label a,b,c,d,e,f so that it isn’t clear how the example could be helpful.

4.6 Trees. Triangularity

Finally, a good section that actually explains things fairly well.

4.7 Dantzig Property. Unimodular Property

An all right section. The proof with the Dantzig property has the typo in the substitution of

a1j
(
x01 + cm+1,1x

0
m+1 + · · ·+ aN,1x

0
N

)
+ · · · (4.7.1)

when it should be

a1j
(
x01 + cm+1,1x

0
m+1 + · · ·+ cN,1x

0
N

)
+ · · · (4.7.2)

which could be more conveniently written

a1j(x
0
1 + ci′,1x

0
i′) (4.7.3)

with i′ ranging from m+ 1 to N .

The rest of the theorems are presented without proof and refer to the literature, which is a little
bit annoying, but at least understandable. The example with the chart is not very helpful since
the chart is never explained.

We can see that (0,-6,9),(6,0,3) , and (9,3,0) are the basic solutions. This of course means that the
only feasible solutions are the latter two.

DRAFT:MP Notes
July 20, 2020

©K. J. Bunkers



Theory of Graphs and Combinatorial Theory 37

4.8 Systems of Distinct Representatives. Related Theorems

The proof is fairly good except for the extremely annoying fact that ui and vj are never defined
and so the dual problem is not actually explained. You cannot just make up new variables without
explanation. It turns out that they show up in a later chapter.

We have a problem of the form

Ay ≤ c (4.8.1)

with y ≥ 0 and maximizing b · y. This means we must have aijxij = bjyj. Then the dual would
be

Aᵀx ≥ b (4.8.2)

with x ≥ 0 and minimizing c · x.

Thus, the book cheats, as we should have a really long matrix rather than creating xij it should
just be an xi′ with i′ going over all possible values.

4.9 Exercises

4.9.1 Problem 1

Solve Example 4-4 by the tabular method of labeling.

Solution:

Considering that the tabular form is never actually explained, this is not easy to do

I can create the initial table, though.

− ⊕ a b c d e f 	 −
⊕ 0 36 15 47 0 0 0 0 −
a 36 0 19 0 0 0 0 40 −
b 15 19 0 0 28 0 0 0 −
c 47 0 0 0 20 34 0 0 −
d 0 0 28 20 0 0 21 0 −
e 0 0 0 34 0 0 14 38 −
f 0 0 0 0 21 14 0 24 −
	 0 40 0 0 0 38 24 0 −

(4.9.1)

We can start by going form ⊕ to a to 	. The max possible is 36, and so we subtract 36 from each
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entry along this path and find.

− ⊕ a b c d e f 	 −
⊕ 0 0 15 47 0 0 0 0 −
a 72 0 19 0 0 0 0 4 −
b 15 19 0 0 28 0 0 0 −
c 47 0 0 0 20 34 0 0 −
d 0 0 28 20 0 0 21 0 −
e 0 0 0 34 0 0 14 38 −
f 0 0 0 0 21 14 0 24 −
	 0 76 0 0 0 38 24 0 −

(4.9.2)

Next we go ⊕ to b to d to f to 	. In this case 15 is the maximum and so

− ⊕ a b c d e f 	 −
⊕ 0 0 0 47 0 0 0 0 −
a 72 0 19 0 0 0 0 4 −
b 30 19 0 0 13 0 0 0 −
c 47 0 0 0 20 34 0 0 −
d 0 0 43 20 0 0 6 0 −
e 0 0 0 34 0 0 14 38 −
f 0 0 0 0 36 14 0 9 −
	 0 76 0 0 0 38 39 0 −

(4.9.3)

Finally, we take ⊕ to c to e to 	 with the max 34 yielding

− ⊕ a b c d e f 	 −
⊕ 0 0 0 13 0 0 0 0 −
a 72 0 19 0 0 0 0 4 −
b 30 19 0 0 13 0 0 0 −
c 81 0 0 0 20 0 0 0 −
d 0 0 43 20 0 0 6 0 −
e 0 0 0 68 0 0 14 4 −
f 0 0 0 0 36 14 0 9 −
	 0 76 0 0 0 72 39 0 −

(4.9.4)

We can now go ⊕ to c to d to f to 	. The maximum possible here is 6 so that we get

− ⊕ a b c d e f 	 −
⊕ 0 0 0 7 0 0 0 0 −
a 72 0 19 0 0 0 0 4 −
b 30 19 0 0 13 0 0 0 −
c 94 0 0 0 14 0 0 0 −
d 0 0 43 26 0 0 0 0 −
e 0 0 0 68 0 0 14 4 −
f 0 0 0 0 42 14 0 3 −
	 0 76 0 0 0 72 45 0 −

(4.9.5)
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Now every chain has been exhausted and we only need to worry about relabelings.

− ⊕ a b c d e f 	 −
⊕ 0 0 0 7 0 0 0 0 −
a 72 0 19 0 0 0 0 4 (19, b)
b 30 19 0 0 13 0 0 0 (13, d)
c 87 0 0 0 14 0 0 0 (7,⊕)
d 0 0 43 26 0 0 0 0 (14, c)
e 0 0 0 68 0 0 14 4 (−14, f)
f 0 0 0 0 42 14 0 3 (14, e)
	 0 76 0 0 0 72 45 0 (4, a)

(4.9.6)

Clearly the chain 	 to a to b to d to c to ⊕ exists where we can take 4 off.

− ⊕ a b c d e f 	 −
⊕ 0 0 0 3 0 0 0 0 −
a 72 0 23 0 0 0 0 0 −
b 26 15 0 0 17 0 0 0 −
c 97 0 0 0 10 0 0 0 (3,⊕)
d 0 0 39 30 0 0 0 0 (10, c)
e 0 0 0 68 0 0 14 4 −
f 0 0 0 0 42 14 0 3 −
	 0 80 0 0 0 72 45 0 −

(4.9.7)

There appear to be no more possibilities to relabel 	. If we subtract the top half entries from the
last chart from the first we find

− ⊕ a b c d e f 	 −
⊕ 0 36 15 44 0 0 0 0 −
a − 0 4 0 0 0 0 40 −
b − − 0 0 11 0 0 0 −
c − − − 0 9 34 0 0 −
d − − − − 0 0 21 0 −
e − − − − − 0 0 34 −
f − − − − − − 0 21 −
	 − − − − − − − 0 −

(4.9.8)

Note that this has the same maximal flow, but has different entries than the graphical method
presented.

4.9.2 Problem 2

Find a set of distinct representatives of the following sets

(a) 1,2,3,4,5

(b) 2,3,4

(c) 1,3,4,5

(d) 1,3,4
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(e) 3,4

(f) 2,4

(g) 1,4,6,9

(h) 2,5,7,8,9

if this is not possible, which extension of one of the sets would make it possible?

Solution:

Well, we need to see if we choose k entries from k of them, and see if among the entirety of those
chosen k sets that there are k distinct elements. Let’s try k = 2. Any one set has two distinct
elements, so we’re good. For k = 3 we see that it is still true since the two element sets when
combined with any other set will have a third element. For k = 4 try (b), (e), (f), which containt
distinctly (2,3,4). This does not contain 4 distinct elements and so it is impossible to do so.

We can write out the matrix 

− 1 2 3 4 5 6 7 8 9
a 1 1 1 1 1 0 0 0 0
b 0 1 1 0 0 0 0 0 0
c 1 0 1 1 1 0 0 0 0
d 1 0 1 1 0 0 0 0 0
e 0 0 1 1 0 0 0 0 0
f 0 1 0 1 0 0 0 0 0
g 1 0 0 1 0 1 0 0 1
h 0 1 0 0 1 0 1 1 1


(4.9.9)

Since there are nine numbers and only 8 sets, we can at most get k = 8.

Let’s star the ones that can be independent 1s. Clearly h must star the 8 since that is the only
one with an 8. Then g can be either 6 or 9. The book decides to omit 9, but this isn’t strictly
speaking necessary. We could

− 1 2 3 4 5 6 7 8 9
a 1∗ 1 1 1 1 0 0 0 0
b 0 1∗ 1 0 0 0 0 0 0
c 1 0 1 1 1∗ 0 0 0 0
d 1 0 1 1∗ 0 0 0 0 0
e 0 0 1∗ 1 0 0 0 0 0
f 0 1 0 1 0 0 0∗ 0 0
g 1 0 0 1 0 1 0 0 1∗

h 0 1 0 0 1 0 1 1∗ 1


(4.9.10)

or we could choose g with 6, but either way adding 7 to f gives us a distinct representative set.

4.9.3 Problem 3

In the graph of Fig. 4-10, the short lines have “length” 1, and the long ones “length” 2. Find the
shortest route from A to B. Draw the dual graph and determine the maximum flow through it.
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Solution:

If we simply take the shortest route from A to B we see that there is a route with length 1 along
each way. Thus 7 is the smallest possible length. To actually prove this, we could go through the
algorithm presented. Drawing the dual is possible, but the instructions from the text are nearly
worthless and I don’t want to try and create it as a computer graphic. Clearly the maximum flow
is 7 by all of our duality theorems.

4.9.4 Problem 4

Find all sets of independent “1’s” in the following table. (Note that all the row sums and all the
column sums are 3).

0 1 1 1 0
1 0 1 0 1
1 1 0 1 0
0 1 0 1 1
1 0 1 0 1

(4.9.11)

Solution:

We simply need to find a distinct representative set from the above. We can use

0 1∗ 1 1 0
1∗ 0 1 0 1
1 1 0 1∗ 0
0 1 0 1 1∗

1 0 1∗ 0 1

(4.9.12)

which gives 2,1,4,5,3 meaning we could form it from a permutation matrix like

0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

(4.9.13)

But there are other possibilities. For example

0 1 1∗ 1 0
1∗ 0 1 0 1
1 1∗ 0 1 0
0 1 0 1∗ 1
1 0 1 0 1∗

(4.9.14)

for 3,1,2,4,5. Also

0 1 1 1∗ 0
1 0 1∗ 0 1
1 1∗ 0 1 0
0 1 0 1 1∗

1∗ 0 1 0 1

(4.9.15)
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for 4,3,2,5,1. Such switches give us essentially everything we need.

This then turns into a tedious exercise of enumerating all the possibilities.

Clearly there are n! permutation matrices in general given a n×n size. Thus 6! = 720 possibilities.
The book lists the 12 that are actually possible. It uses that if we expand the array out as a
matrix, we the independent ones will be the nonzero entries in the determinant. So if we do the
determinant on the first row, there will be no 1* numbers since the first entry is a zero. This is
essentially doing what we have done above, but perhaps (?) more systematically.

Our way would be more systematic if we started with the first row, chose one of the columns to
be a representative, and crossed out terms in that column. Then went through all the possibilities
in the second row, etc. Repeating as needed.

So clearly 2,1,4,5,3 then 2,3,1,4,5 then 2,3,4,5,1 then 2,5,1,4,3 then 3,1,2,4,5 then 3,1,4,2,5 then
3,5,2,4,1 then 3,5,4,2,1 then 4,1,2,5,3 then 4,3,1,2,5 then 4,3,2,5,1 then 4,5,1,2,3.
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Chapter 5

General Algorithms

Linear algebra for the first “quadrant”.

5.1 Simplex Method
The tableau formation is simply a convenient representation. It uses the transformation rules that
were derived earlier.

The most complicated part is the

zst = zst − zrtzsh/zrh (5.1.1)

which is not using summation notation. Instead, it is saying find the value in the pivot column
and pivot row, multiply them and divide by the pivot value. An example below will illustrate.

Let’s look at the example. We convert

3x1 + 4x2 + x3 ≤ 2 (5.1.2)
x1 + 3x2 + 2x3 ≤ 1 (5.1.3)

x1, x2, x3 ≥ 0 (5.1.4)

and maximize B = 3x1 + 6x2 + 2x3 with extra variables to make equations

3x1 + 4x2 + x3 + x4 = 2 (5.1.5)
x1 + 3x2 + 2x3 + x5 = 1 (5.1.6)

x1, x2, x3, x4, x5 ≥ 0 (5.1.7)

Note a simple (trivial) solution is x1 = x2 = x3 = 0 and then x4 = 2 and x5 = 1 must be true.

The tableau is
3 6 2
x1 x2 x3 2

0 x4 3 4 1 2
0 x5 1 3 2 1

B −3 −6 −2 0

(5.1.8)
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44 Simplex Method. Finding a first feasible solution

Now the ways to decide on what to pivot is by convention, and then by deciding upon ratios that
will get our objective function to a better value.

In our case clearly we want x2 to increase, so let’s “pivot” between x2 and one of the other variables.
We have a choice of x4 and x5 with the values in those columns being 4 and 3. We consider the
ratio of these values to the “equality” values (this is essentially considering how much we can scale
each one). Thus 2/4 and 1/3 are the ratios to consider. Clearly 1/3 is smaller, (and this will lead
to a larger B) so we choose to switch x5 and x2.

We then follow the rules of dividing the pivot row and column values by the pivot, and the other
rule above and find

3 0 2
x1 x5 x3 2

0 x4 3− (4/3) −4/3 1− 8/3 2− 4/3
6 x2 1/3 1/3 2/3 1/3

B −3− (−6/3) 6/3 −2− (−12/3) 0− (−6/3)

(5.1.9)

=

3 0 2
x1 x5 x3 2

0 x4 5/3 −4/3 −5/3 2/3
6 x2 1/3 1/3 2/3 1/3

B −1 2 2 2

(5.1.10)

We can use the same reasoning as before. Clearly the x1 column is the most negative so that is the
pivot column. Then we compare (1/3)/(1/3) = 1 and (2/3)/(5/3) = 2/5. Then 2/5 is the smaller
value and so we choose to pivot x4 and x1. This yields

0 0 2
x4 x5 x3 2

3 x1 3/5 −4/5 −1 2/5
6 x2 −1/5 1/3− (−4/15) 2/3− (−1/3) 1/3− 2/15

B 3/5 2− (4/5) 2− (1) 2− (−2/5)

= (5.1.11)

0 0 2
x4 x5 x3 2

3 x1 3/5 −4/5 −1 2/5
6 x2 −1/5 3/5 1 1/5

B 3/5 6/5 1 12/5

(5.1.12)

To keep a check (when doing these yourself) it is prudent to add a second objective function that
can do so. In this problem, a check is given by

∑
i xi (just adding all the xi). If we add this, it is

clear that the coefficients are invariant and so the final row is given by
∑

i zij+z0j−1 (the final −1
coming from our new constraint). This is invariant because of the previous transformation rules.

5.2 Simplex Method. Finding a first feasible solution
Now we see how we can find a feasible solution by adding additional variables with a constraint
that is not very restrictive as we solve. Basically, it is equivalent to doing a Lagrange multiplier
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problem. This is sometimes called the M method since M , a large number in absolute value is
multiplied by a constraint on the additional variables to create a new constraint.

The two-phase method uses special extra variables and constraints to ensure a quick solution.

5.3 Simplex Method. Degeneracy

Degeneracy occurs when one of the basic variables is zero. We may then have problems pivot-
ing(though in actuality, it is easy to treat as mentioned in the book), and it means that, in fact, we
must have a problem where there are actually fewer basic variables than we initially thought. (We
have a degenerate matrix, hence some of the equations are not linearly independent.) The bigger
problem is that the pivot does not lead to a change in the max/min function and so we may not
be certain we will hit the optimal value in a finite number of pivots. Note that degeneracy means
that when we compare ratios, two of the rows have the same ratio. Then a tiebreaker is needed if
we want our algorithm to terminate in a finite time for certain.

The book states that in practice, cycles don’t occur, but can theoretically and gives a good example.
One theoretical way out is to slightly perturb the problem and solve that simultaneously so that
we can choose between ties using the perturbed values.

5.4 The Inverse Matrix Method

This is simply rewriting the simplex algorithm so that it can be done easily in matrix algebra using
the inverse matrices we discussed in 2.

5.5 Constructive Proof of the Duality and Existence Theo-
rems

A proof that is actually fairly straightforward with no sudden new definitions.

5.6 Dual Simplex Method

This is essentially using that we could instead of solving with the simplex method but changing
some signs to negative and then pivoting based on rows rather than columns. Note that this is
essentially the same as solving the dual problem, but it allows us to start with some of our basic
variables having negative values. We then go in the “opposite” direction until all variables are
non-negative and can proceed by the usual simplex method.

Thus we compare variables in a row to their values in the objective function for determining the
pivot.

5.7 Dual Simplex Method. Cycling

Good discussion of cycling.
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5.8 Bounded Variables
A special case of the simplex method or dual simplex method where we have special constraints.

5.9 Multiplex Method
Similar to the simplex method, but uses projections on to planes to find the answer.

5.10 The Cross-Section Method
This involves starting from a lower dimensional problem and finding answers by putting in the
constraints one by one to higher dimensions.

5.11 The Primal-Dual Algorithm
This uses duality to help one get the optimal answer. It is somewhat complicated by constructing
new problems using previous methods, and then iterating on there.

5.12 Relaxation Method
This just takes arbitrary points in the region and uses some method to let them iterate to a good
solution.

5.13 Exercises

5.13.1 Problem 1

Solve the following problems by the Simplex method.

x1 + x2 ≤ 3 (5.13.1)
x1 − 2x2 ≤ 1 (5.13.2)
−2x1 + x2 ≤ 2 (5.13.3)

xi ≥ 0 (5.13.4)

(a) Minimize x1 − x2. (b) Maximize x1 − x2.

Solution:

We proceed with the tableau form for (a) first.

We see that we can initially rewrite the problem as

x1 + x2 + x3 = 3 (5.13.5)
x1 − 2x2 + x4 = 1 (5.13.6)
−2x1 + x2 + x5 = 2 (5.13.7)
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Then the solution x1 = x2 = 0 and x3 = 3, x4 = 1, and x5 = 2 is one trivial solution

1 −1
x1 x2

0 x3 1 1 3
0 x4 1 −2 1
0 x5 −2 1 2

B −1 1 0
Ck −2 0 5

(5.13.8)

As we are undergoing minimization, we choose values from the B row such that they are the most
positive. Hence we choose the x2 column. The ratios are then 3/1 = 3, 1/−2 = −0.5 and 2/1 = 2.
Thus we’d like to pivot on the x5 row as it has the smallest value. We cannot choose negative
value rows, as this does not guarantee positivity for future values (remember we take reciprocals,
etc.). Indeed, if all values were negative in the column, then there is a bounding problem.

We then perform the tableau rules with column x2 and row x5

1 0
x1 x5

0 x3 1− (−2)(1) −1 3− (1)(2)
0 x4 1− (−2)(−2) 2 1− (−2)(2)
−1 x2 −2 1 2

B −1− (−2)(1) −1 0− 2

(5.13.9)

=

1 0
x1 x5

0 x3 3 −1 1
0 x4 −3 2 5
−1 x2 −2 1 2

B 1 −1 −2
Ck −2 0 5

(5.13.10)

Clearly column x1 should now be chosen. The ratios are then 1/3, and the others are negative.
Thus the x3 row is the pivot row.

0 0
x3 x5

1 x1 1/3 −1/3 1/3
0 x4 1 2− (−1)(−3)/3 5− (−3)(1)/3
−1 x2 2/3 1− (−2)(−1)/3 2− (−2)(1)/3

B −1/3 −1− (1)(−1)/3 −2− (1)(1)/3

(5.13.11)

=

0 0
x3 x5

1 x1 1/3 −1/3 1/3
0 x4 1 1 6
−1 x2 2/3 1/3 8/3

B −1/3 −2/3 −7/3
Ck 2/3 −2/3 16/3

(5.13.12)
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which shows that the check row is not always so nice. Only when we pivot on a zero row.

We have now all negative coefficients on the B row and so have hit the minimization.

Thus our answer is x1 = 1/3, x2 = 8/3, x3 = 0, x4 = 6, x5 = 0 with B = −7/3. We can check this
by looking at our initial requirements and see that it does.

Now for (b). This time we proceed by choosing the most negative coefficient in the B row for the
pivot column. Then we switch with x4 since 1/1 < 3/1.

1 −1
x1 x2

0 x3 1 1 3
0 x4 1 −2 1
0 x5 −2 1 2

B −1 1 0

(5.13.13)

=

0 −1
x4 x2

0 x3 −1 1− (1)(−2) 3− (1)(1)
1 x1 1 −2 1
0 x5 2 1− (−2)(−2) 2− (−2)(1)

B 1 1− (−1)(−2) 0− (−1)(1)

(5.13.14)

=

0 −1
x4 x2

0 x3 −1 3 2
1 x1 1 −2 1
0 x5 2 −3 4

B 1 −1 1

(5.13.15)

We then pivot on the x2 column. the x3 row is the only possiblity and so

0 0
x4 x3

−1 x2 −1/3 1/3 2/3
1 x1 1− (−2)(−1)/3 2/3 1− (2)(−2)/3
0 x5 2− (−1)(−3)/3 1 4− (−3)(2)/3

B 1− (−1)(−1)/3 1/3 1− (2)(−1)/3

(5.13.16)

=

0 0
x4 x3

−1 x2 −1/3 1/3 2/3
1 x1 1/3 2/3 7/3
0 x5 1 1 6

B 2/3 1/3 5/3

(5.13.17)

So that the solution is x1 = 7/3, x2 = 2/3, x3 = x4 = 0, x5 = 6 and B = 5/3, which can be
checked.
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5.13.2 Problem 2

Show that by omitting one constraint in Problem 1 both (a) and (b) have an infinite solution.

Solution:

Suppose we eliminate x1 + x2 ≤ 3. Then the first row in the tableau is missing. And so there is
no positive number to pivot for the second time, but B still has a positive 1. Similarly, for the
maximization problem.

5.13.3 Problem 3

Indicate the limits of t in the objective function tx1 − x2 beyond which a finite minimum or finite
maximum exists when those constraints hold that were considered to remain in Problem 2.

Solution:

This is asking if we replace the objective function, what t are possible. We can see that we have
−t− (−2)(1) as our way of determining this for the minimization problem. In that case, we want
this to be less than or equal to zero and so −t+ 2 ≤ 0 means that t ≥ 2 gives us finite solutions.

For the maximization problem, we have 1−(−t)(−2) ≥ 0 for finite solutions. This means 1−2t ≥ 0
or t ≤ 1/2.

5.13.4 Problem 4

Solve the following problems.

−x1 + 2x2 − x3 = 1 (5.13.18)
−x1 − x2 + 2x3 = 1 (5.13.19)

xi ≥ 0 (5.13.20)

(a) Maximize 2x1 − x2 − x3. (b) Minimize 2x1 − x2 − x3.

Solution:

This is the same as our previous problems in form, and we can use the tableau to find the answer
again.

We do require an initial solution however. I’ll simply add two more slack variables to find this
with x4 = 1 and x5 = 1 (other xi = 0) for the system

−x1 + 2x2 − x3 + x4 = 1 (5.13.21)
−x1 − x2 + 2x3 + x5 = 1 (5.13.22)

xi ≥ 0 (5.13.23)

and change the maximization/minimization problem to 2x1 − x2 − x3 ±M(x4 + x5)
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For (a) (maximization) we use −M and find

2 −1 −1
x1 x2 x3

−M x4 −1 2 −1 1
−M x5 −1 −1 2 1

B −2 1 1 0
M 2 −1 −1 −2

(5.13.24)

We can then pivot off of either x2 or x3. These are entirely equivalent and so we’ll choose x2 We
then must pivot the row off of x4. This means we find

2 −M −1
x1 x4 x3

−1 x2 −1/2 1/2 −1/2 1/2
−M x5 −1− (−1)(−1)/2 1/2 2− (−1)(−1)/2 1− (−1)(1)/2

B −2− (−1)(1)/2 −1/2 1− (−1)(1)/2 0− (1)(1)/2
M 2− (−1)(−1)/2 1/2 −1− (−1)(−1)/2 −2− (1)(−1)/2

(5.13.25)

=

2 −M −1
x1 x4 x3

−1 x2 −1/2 1/2 −1/2 1/2
−M x5 −3/2 1/2 3/2 3/2

B −3/2 −1/2 3/2 −1/2
M 3/2 1/2 −3/2 −3/2

(5.13.26)

We can simply eliminate the x4 column for convenience now, as it is an extra variable we do not
care about.

2 −1
x1 x3

−1 x2 −1/2 −1/2 1/2
−M x5 −3/2 3/2 3/2

B −3/2 3/2 −1/2
M 3/2 −3/2 −3/2

(5.13.27)

We can then pivot off of x3 and x5.

2 −M
x1 x5

−1 x2 −1/2− (−1/2)(−3/2)(2/3) 1/3 1/2− (−1/2)(3/2)(2/3)
−1 x3 −1 2/3 1

B −3/2− (−3/2)(3/2)(2/3) −1 −1/2− (3/2)(3/2)(2/3)
M 3/2− (−3/2)(−3/2)(2/3) 1 −3/2− (−3/2)(3/2)(2/3)

(5.13.28)

=

2 −M
x1 x5

−1 x2 −1 1/3 1
−1 x3 −1 2/3 1

B 0 −1 −2
M 0 1 0

(5.13.29)
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which yields a solution of x1 = 0, x2 = 1, x3 = 1. with B = −2.

For the minimization problem we choose +M .

2 −1 −1
x1 x2 x3

M x4 −1 2 −1 1
M x5 −1 −1 2 1

B −2 1 1 0
M −2 1 1 2

(5.13.30)

We can then pivot off of either x2 or x3. These are entirely equivalent and so we’ll choose x2 We
then must pivot the row off of x4. This means we find

2 M −1
x1 x4 x3

−1 x2 −1/2 1/2 −1/2 1/2
M x5 −1− (−1)(−1)/2 1/2 2− (−1)(−1)/2 1− (−1)(1)/2

B −2− (−1)(1)/2 −1/2 1− (−1)(1)/2 0− (1)(1)/2
M −2− (−1)(−1)/2 −1/2 1− (−1)(−1)/2 2− (1)(−1)/2

(5.13.31)

=

2 M −1
x1 x4 x3

−1 x2 −1/2 1/2 −1/2 1/2
M x5 −3/2 1/2 3/2 3/2

B −3/2 −1/2 3/2 −1/2
M −5/2 −1/2 1/2 5/2

(5.13.32)

We can simply eliminate the x4 column for conveninence now, as it is an extra variable we do not
care about.

2 −1
x1 x3

−1 x2 −1/2 −1/2 1/2
M x5 −3/2 3/2 3/2

B −3/2 3/2 −1/2
M −5/2 1/2 5/2

(5.13.33)

We can then pivot off of x3 and x5.

2 −M
x1 x5

−1 x2 −1/2− (−1/2)(−3/2)(2/3) 1/3 1/2− (−1/2)(3/2)(2/3)
−1 x3 −1 2/3 1

B −3/2− (−3/2)(3/2)(2/3) −1 −1/2− (3/2)(3/2)(2/3)
M −5/2− (−3/2)(−3/2)(2/3) −1/3 5/2− (−3/2)(3/2)(2/3)

(5.13.34)
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=

2 −M
x1 x5

−1 x2 −1 1/3 1
−1 x3 −1 2/3 1

B 0 −1 −2
M −4 −1/3 4

(5.13.35)

which means we find the same solution for the minimization as well!

5.13.5 Problem 5

Solve the following problem by the Simplex method

−0.5x+ 1.3y ≤ 0.8 (5.13.36)
4x+ y ≤ 10.7 (5.13.37)
6x+ y ≤ 15.4 (5.13.38)
6x− y ≤ 13.4 (5.13.39)
4x− y ≤ 8.7 (5.13.40)

5x− 3y ≤ 10.0 (5.13.41)

Maximize 11x+ 10y for x, y ≥ 0.

Solution:

We introduce a bunch of slack variables and so the tableau becomes

11 10
x y

0 x1 −0.5 1.3 0.8
0 x2 4 1 10.7
0 x3 6 1 15.4
0 x4 6 −1 13.4
0 x5 4 −1 8.7
0 x6 5∗ −3 10.0

B −11 −10 0

(5.13.42)

Clearly we pivot off of column x (I have asterisked the pivot). The best ratio is then 10/5=2 on
row x6. Thus

0 10
x6 y

0 x1 0.5/5 1.3− (−0.5)(−3)/5 0.8− (−0.5)(10)/5
0 x2 −4/5 1− (4)(−3)/5 10.7− (4)(10)/5
0 x3 −6/5 1− (6)(−3)/5 15.4− (6)(10)/5
0 x4 −6/5 −1− (6)(−3)/5 13.4− (6)(10)/5
0 x5 −4/5 −1− (4)(−3)/5 8.7− (4)(10)/5
11 x 1/5 −3/5 2

B 11/5 −10− (−11)(−3)/5 0− (−11)(10)/5

(5.13.43)
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=

0 10
x6 y

0 x1 1/10 1 1.8
0 x2 −4/5 3.4 2.7
0 x3 −6/5 4.6 3.4
0 x4 −6/5 2.6 1.4
0 x5 −4/5 1.4∗ 0.7
11 x 1/5 −3/5 2

B 11/5 −16.6 −22

(5.13.44)

We then clearly should choose the y pivot. The optimal row is x5 with ratio 0.5. Thus

0 0
x6 x5

0 x1 1/10− (1)(−4/5)(10/14) −10/14 1.8− (1)(0.7)(10/14)
0 x2 −4/5− (3.4)(−4/5)(10/14) −34/14 2.7− (3.4)(0.7)(10/14)
0 x3 −6/5− (4.6)(−4/5)(10/14) −46/14 3.4− (4.6)(0.7)(10/14)
0 x4 −6/5− (2.6)(−4/5)(10/14) −26/14 1.4− (2.6)(0.7)(10/14)
10 y −8/14 10/14 7/14
11 x 1/5− (−3/5)(−4/5)(10/14) 6/14 2− (−3/5)(0.7)(10/14)

B 11/5− (−16.6)(−4/5)/(10/14) 166/14 22− (−16.6)(0.7)(10/14)

(5.13.45)

=

0 0
x6 x5

0 x1 33/70 −10/14 1.3
0 x2 8/7 −34/14 1
0 x3 10/7 −46/14 1.1
0 x4 2/7∗ −26/14 0.1
10 y −1/2 10/14 7/14
11 x −1/7 6/14 2.3

B −51/7 166/14 30.3

(5.13.46)

We can then pivot on x6. Row x4 provides the smallest ratio. We thus find

0 0
x4 x5

0 x1 −33/20 −10/14− (33/70)(−26/14)(7/2) 1.3− (33/70)(0.1)(7/2)
0 x2 −8/2 −34/14− (8/7)(−26/14)(7/2) 1− (8/7)(0.1)(7/2)
0 x3 −10/2 −46/14− (10/7)(−26/14)(7/2) 1.1− (10/7)(0.1)(7/2)
0 x6 7/2 −26/4 7/20
10 y 1/2 10/14− (−1/2)(−26/14)(7/2) 1/2− (−1/2)(0.1)(7/2)
11 x 1/2 6/14− (−1/7)(−26/14)(7/2) 2.3− (−1/7)(0.1)(7/2)

B 51/2 166/14− (−51/7)(−26/14)(7/2) 30.3− (−51/7)(0.1)(7/2)

(5.13.47)

This process continues. The book gives the final solution, but it requires a couple of more tableaus.
It turns out that had we chosen a pivot column initially on y the problem solves much more quickly.
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In that case, the best ratio is from row x1 at 8/13 = 0.61.

11 10
x y

0 x1 −0.5 1.3∗ 0.8
0 x2 4 1 10.7
0 x3 6 1 15.4
0 x4 6 −1 13.4
0 x5 4 −1 8.7
0 x6 5 −3 10.0

B −11 −10 0

(5.13.48)

=

11 0
x x1

10 y −5/13 10/13 8/13
0 x2 4− (−0.5)(1)(10/13) −10/13 10.7− (0.8)(1)(10/13)
0 x3 6− (−0.5)(1)(10/13) −10/13 15.4− (0.8)(1)(10/13)
0 x4 6− (−0.5)(−1)(10/13) 10/13 13.4− (0.8)(−1)(10/13)
0 x5 4− (−0.5)(−1)(10/13) 10/13 8.7− (0.8)(−1)(10/13)
0 x6 5− (−0.5)(−3)(10/13) 30/13 10.0− (0.8)(−3)(10/13)

B −11(−0.5)(−10)(10/13) 100/13 0− (0.8)(−10)(10/13)

(5.13.49)

=

11 0
x x1

10 y −5/13 10/13 8/13
0 x2 57/13∗ −10/13 1311/130
0 x3 83/13 −10/13 961/65
0 x4 73/13 10/13 911/65
0 x5 47/13 10/13 1211/130
0 x6 50/13 30/13 154/13

B −193/13 100/13 80/13

(5.13.50)

(5.13.51)

We then pivot on column x choosing row x2 with smallest ratio of 2.3. Then

=

11 0
x x1

10 y 5/57 10/13− (−5/13)(−10/13)(13/57) 8/13− (−5/13)(1311/130)(13/57)
0 x2 13/57∗ −10/57 23/10
0 x3 −83/57 −10/13− (83/13)(−10/13)(13/57) 961/65− (83/13)(1311/130)(13/57)
0 x4 −73/57 10/13− (73/13)(−10/13)(13/57) 911/65− (73/13)(1311/130)(13/57)
0 x5 −47/57 10/13− (47/13)(−10/13)(13/57) 1211/130− (47/13)(1311/130)(13/57)
0 x6 −50/57 30/13− (50/13)(−10/13)(13/57) 154/13− (50/13)(1311/130)(13/57)

B 193/57 100/13− (−193/13)(−10/13)(13/57) 80/13− (−193/13/13)(1311/130)(13/57)
(5.13.52)

DRAFT:MP Notes
July 20, 2020

©K. J. Bunkers



General Algorithms 55

=

11 0
x x1

10 y 5/57 40/57 3/2
0 x2 13/57 −10/57 23/10
0 x3 −83/57 20/57 1/10
0 x4 −73/57 100/57 11/10
0 x5 −47/57 80/57 1
0 x6 −50/57 170/57 3

B 193/57 290/57 403/10

(5.13.53)

which is the correct solution.

This is much better by hand, but would not matter much when we program a computer.

5.13.6 Problem 6

Solve the following problem.

2x1 + x2 + x3 = 10 (5.13.54)
−44x1 − 42x2 + x4 − x8 = −183 (5.13.55)

36x1 − 102x2 + x5 − x8 = 17 (5.13.56)
−164x1 + 298x2 + x6 − x8 = 1517 (5.13.57)
−12x1 − 6x2 + x7 − x8 = −79 (5.13.58)

xi ≥ 0 for i = 1, 2, 3, 4, 5, 6, 7 (5.13.59)

with x8 unrestricted in sign, minimizing x8.

Solution:

We can rewrite x8 = y1 − y2 with y1, y2 ≥ 0 minimizing y1 − y2. We can then also introduce new
variables zi ≥ 0 for the five equations such that they gives us the correct answer. Thus the system
becomes

2x1 + x2 + x3 + z1 = 10 (5.13.60)
−44x1 − 42x2 + x4 − y1 + y2 − z2 = −183 (5.13.61)

36x1 − 102x2 + x5 − y1 + y2 + z3 = 17 (5.13.62)
−164x1 + 298x2 + x6 − y1 + y2 + z4 = 1517 (5.13.63)
−12x1 − 6x2 + x7 − y1 + y2 − z5 = −79 (5.13.64)

Then the new problem tableau is then

0 0 0 0 0 0 0 −1 1
x1 x2 x3 x4 x5 x6 x7 y1 y2

0 z1 2 1 1∗ 0 0 0 0 0 0 10
0 z2 44 42 0 −1 0 0 0 1 −1 183
0 z3 36 −102 0 0 1∗ 0 0 −1 1 17
0 z4 −164 298 0 0 0 1∗ 0 −1 1 1517
0 z5 12 6 0 0 0 0 −1 1 −1 79

B 0 0 0 0 0 0 0 −1 1 0

(5.13.65)
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However, to do the method correctly, we’d need to change B with the M , and so put an M onto
all the zi. This then requires us to calculate zi in terms of the xi and find

0 0 0 0 0 0 0 −1 1
x1 x2 x3 x4 x5 x6 x7 y1 y2

M z1 2 1 1∗ 0 0 0 0 0 0 10
M z2 44 42 0 −1 0 0 0 1 −1 183
M z3 36 −102 0 0 1∗ 0 0 −1 1 17
M z4 −164 298 0 0 0 1∗ 0 −1 1 1517
M z5 12 6 0 0 0 0 −1 1 −1 79

B 0 0 0 0 0 0 0 −1 1 0
M −70 245 1 −1 1 1 −1 0 0 1806

(5.13.66)

I’d like to eliminate some of the variables quickly, and so we’ll swap the starred. Only the M line
will be modified. We’ll start with x3 and z1 first

0 0 M 0 0 0 0 −1 1
x1 x2 z1 x4 x5 x6 x7 y1 y2

M x3 2 1 1∗ 0 0 0 0 0 0 10
M z2 44 42 0 −1 0 0 0 1 −1 183
M z3 36 −102 0 0 1 0 0 −1 1 17
M z4 −164 298 0 0 0 1 0 −1 1 1517
M z5 12 6 0 0 0 0 −1 1 −1 79

B 0 0 0 0 0 0 0 −1 1 0
M −70− (2)(1) 245− (1)(1) −1 −1 1 1 −1 0 0 1806− (183)(1)

(5.13.67)

=

0 0 M 0 0 0 0 −1 1
x1 x2 z1 x4 x5 x6 x7 y1 y2

M x3 2 1 1∗ 0 0 0 0 0 0 10
0 z2 44 42 0 −1 0 0 0 1 −1 183
M z3 36 −102 0 0 1 0 0 −1 1 17
M z4 −164 298 0 0 0 1 0 −1 1 1517
M z5 12 6 0 0 0 0 −1 1 −1 79

B 0 0 0 0 0 0 0 −1 1 0
M −72 244 −1 −1 1 1 −1 0 0 1796

(5.13.68)
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We can then drop z1 and swap x5 and z3

0 0 0 M 0 0 −1 1
x1 x2 x4 z3 x6 x7 y1 y2

0 x3 2 1 0 0 0 0 0 0 10
M z2 44 42 −1 0 0 0 1 −1 183
0 x5 36 −102 0 1∗ 0 0 −1 1 17
M z4 −164 298 0 0 1 0 −1 1 1517
M z5 12 6 0 0 0 −1 1 −1 79

B 0 0 0 0 0 0 −1 1 0
M −72− (36)(1) 244− (−102)(1) −1 −1 1 −1 0− (1)(−1) 0− (1)(1) 1796− (17)(1)

(5.13.69)

=

0 0 0 M 0 0 −1 1
x1 x2 x4 z3 x6 x7 y1 y2

0 x3 2 1 0 0 0 0 0 0 10
M z2 44 42 −1 0 0 0 1 −1 183
0 x5 36 −102 0 1∗ 0 0 −1 1 17
M z4 −164 298 0 0 1 0 −1 1 1517
M z5 12 6 0 0 0 −1 1 −1 79

B 0 0 0 0 0 0 −1 1 0
M −108 346 −1 −1 1 −1 1 −1 1779

(5.13.70)

We can then eliminate the z3 column and swap x6 and z4

0 0 0 M 0 −1 1
x1 x2 x4 z4 x7 y1 y2

0 x3 2 1 0 0 0 0 0 10
M z2 44 42 −1 0 0 1 −1 183
0 x5 36 −102 0 0 0 −1 1 17
0 x6 −164 298 0 1∗ 0 −1 1 1517
M z5 12 6 0 0 −1 1 −1 79

B 0 0 0 0 0 −1 1 0
M −108− (−164)(1) 346− (298)(1) −1 −1 −1 1− (−1)(1) −1− (1)(1) 1779− 1517(1)

(5.13.71)

=

0 0 0 0 −1 1
x1 x2 x4 x7 y1 y2

0 x3 2 1 0 0 0 0 10
M z2 44 42 −1 0 1 −1 183
0 x5 36∗ −102 0 0 −1 1 17
0 x6 −164 298 0 0 −1 1 1517
M z5 12 6 0 −1 1 −1 79

B 0 0 0 0 −1 1 0
M 56 48 −1 −1 2 −2 262

(5.13.72)
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There are no other easy pivots, so let’s start with column x1 and so pivot on row x5. This gives

0 0 0 0 −1 1
x5 x2 x4 x7 y1 y2

0 x3 −1/18 20/3 0 0 1/18 −1/18 163/18
M z2 −11/9 500/3∗ −1 0 20/9 −20/9 1460/9
0 x1 1/36 −17/6 0 0 −1/36 1/36 17/36
0 x6 41/9 −500/3 0 0 −50/9 50/9 14350/9
M z5 −1/3 40 0 −1 4/3 −4/3 220/3

B 0 0 0 0 −1 1 0
M −14/9 620/3 −1 −1 32/9 −32/9 2120/9

(5.13.73)

Clearly the next pivot can be on x2 which gives z2 as the corresponding row.

0 M 0 0 −1 1
x5 z2 x4 x7 y1 y2

0 x3 −1/150 −1/25 1/25 0 −1/30 1/30 77/30
0 x2 −11/1500 3/500∗ −3/500 0 1/75 −1/75 73/75
0 x1 7/1000 17/1000 −17/1000 0 1/100 −1/100 323/100
0 x6 10/3 1 −1 0 −10/3 10/3 5270/3
M z5 −1/25 6/25 6/25 −1 4/5 −4/5 172/5

B 0 0 0 0 −1 1 0
M −1/25 −31/25 6/25 −1 4/5 −4/5 172/5

(5.13.74)

We can then eliminate z2 and we have

0 0 0 −1 1
x5 x4 x7 y1 y2

0 x3 −1/150 1/25 0 −1/30 1/30 77/30
0 x2 −11/1500 −3/500 0 1/75 −1/75 73/75
0 x1 7/1000 −17/1000 0 1/100 −1/100 323/100
0 x6 10/3 −1 0 −10/3 10/3 5270/3
M z5 −1/25 6/25 −1 4/5∗ −4/5 172/5

B 0 0 0 −1 1 0
M −1/25 6/25 −1 4/5 −4/5 172/5

(5.13.75)

Next let’s choose column y1 so that we can eliminate z5.

0 0 0 M 1
x5 x4 x7 z5 y2

0 x3 −1/120 1/20 −1/24 1/24 0 4
0 x2 −1/150 −1/100 1/60 −1/60 0 2/5
0 x1 3/400 −1/50 1/80 −1/80 0 14/5
0 x6 19/6 0 −25/6 25/6 0 1900
−1 y1 −1/20 3/10 −5/4 5/4∗ −1 43

B −1/20 3/10 −5/4 5/4 0 43
M 0 0 0 −1 0 0

(5.13.76)
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We can then elminiate the z5 column.

0 0 0 1
x5 x4 x7 y2

0 x3 −1/120 1/20∗ −1/24 0 4
0 x2 −1/150 −1/100 −1/60 0 2/5
0 x1 3/400 −1/50 −1/80 0 14/5
0 x6 19/6 0 −25/6 0 1900
−1 y1 −1/20 3/10 −5/4 −1 43

B −1/20 3/10 −5/4 0 43
M 0 0 0 0 0

(5.13.77)

There is no need to keep the M line now.

Let’s choose column x4 and so row x3.

0 0 0 1
x5 x3 x7 y2

0 x4 −1/6 20 −5/6 0 80
0 x2 −1/120 1/5 1/120 0 6/5
0 x1 1/240 2/5 −1/240 0 22/5
0 x6 19/6 0 −25/6 0 1900
−1 y1 0 −6 −1 −1 19

B 0 −6 −1 0 19

(5.13.78)

The hardest part is getting all of the arithmetic right. The book’s method has fewer pivot opera-
tions and hence is better when doing these by hand, as they are annoying.

My solution is x1 = 22/5 = 4.4, x2 = 6/5 = 1.2, x3 = 0, x4 = 80, x5 = 0, x6 = 1900, x7 = 0, and
x8 = 19. Compare the book’s solution of x1 = 19/10 = 1.9, x2 = 31/5 = 6.2, x3 = 0, x4 = 180,
x5 = 600, x6 = x7 = 0 and x8 = 19.

5.13.7 Problem 7

Solve the following problem by the Two-phase method

Maximize 0.98n+ 0.06x1 + 0.15x2 + 0.3x3 (5.13.79)

where n is a constant, subject to

x1 ≤ n, x2 − n2 ≤ 0, x3 − n3 ≤ 0 (5.13.80)
n2 + 0.3x1 = 0.6n, n3 + 0.18x1 + 0.3x2 = 0.36n (5.13.81)

where n2 and n3 are unknowns.

Solution:

Our new constraints are interesting mostly because we require xi ≤ ni for each i. This means we
have a further restriction beyond being positive.

Suppose we simply add our constraint equations after putting in some slack variables.
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x1 − n+ z1 = 0 (5.13.82)
x2 − n2 + z2 = 0 (5.13.83)
x3 − n3 + z3 = 0 (5.13.84)

n2 + 0.3x1 − 0.6n+ y1 = 0 (5.13.85)
n3 + 0.18x1 + 0.3x2 − 0.36n+ y2 = 0 (5.13.86)

Note that if we now add these together we get a constraint saying

1.48x1 + 1.3x2 + x3 − 1.96n+ z1 + z2 + z3 + y1 + y2 = 0 (5.13.87)

Note that we can view the first phase as ignoring the first three constraints for our objective
function. Thus, the new objective function is

C = n2 + n3 = −0.48x1 − 0.3x2 + 0.96n− y1 − y2 (5.13.88)

Thus, we can create a tableau

0 0 0 0 0 0
x1 x2 x3 n2 n3 n

0 z1 1∗ 0 0 0 0 −1 0
0 z2 0 1 0 −1 0 0 0
0 z3 0 0 1 0 −1 0 0
1 y1 0.3 0 0 1 0 −0.6 0
1 y2 0.18 0.3 0 0 1 −0.36 0

B −0.06 −0.15 −0.3 0 0 −0.98 0
C 0.48 0.3 0 1 1 −0.96 0

(5.13.89)

We want to minimize C and so we want to make all the C values negative. Let’s just start with
the column x1. Note that since we have all zeros in the far right row, we should choose a different
column for checking values. Let’s do the n column for consistency. Then row z1 is the correct
choice. We get

0 0 0 0 0 0
z1 x2 x3 n2 n3 n

0 x1 1 0 0 0 0 −1 0
0 z2 0 1∗ 0 −1 0 0 0
0 z3 0 0 1 0 −1 0 0
1 y1 −0.3 0 0 1 0 −0.3 0
1 y2 −0.18 0.3 0 0 1 −0.18 0

B 0.06 −0.15 −0.3 0 0 −1.04 0
C −0.48 0.3 0 1 1 −0.48 0

(5.13.90)
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We see the next choice forced on us is x2 and z2 yielding

0 0 0 0 0 0
z1 z2 x3 n2 n3 n

0 x1 1 0 0 0 0 −1 0
0 x2 0 1 0 −1 0 0 0
0 z3 0 0 1 0 −1 0 0
1 y1 −0.3 0 0 1∗ 0 −0.3 0
1 y2 −0.18 −0.3 0 0.3 1 −0.18 0

B 0.06 0.15 −0.3 −0.15 0 −1.04 0
C −0.48 −0.3 0 1.3 1.0 −0.48 0

(5.13.91)

So we now choose column n2 which means we choose row y1 (the lowest non-negative ratio) and
we find

0 0 0 1 0 0
z1 z2 x3 y1 n3 n

0 x1 1 0 0 0 0 −1 0
0 x2 −0.3 1 0 1 0 −0.3 0
0 z3 0 0 1 0 −1 0 0
0 n2 −0.3 0 0 1 0 −0.3 0
1 y2 −0.09 −0.3 0 −0.3 1.0∗ −0.09 0

B 0.015 0.15 −0.3 0.15 0 −1.085 0
C −0.09 −0.3 0 −1.3 1 −0.09 0

(5.13.92)

We are then forced to column n3 and row y2.

0 0 0 1 1 0
z1 z2 x3 y1 y2 n

0 x1 1 0 0 0 0 −1 0
0 x2 −0.3 1 0 1 0 −0.3 0
0 z3 −0.09 −0.3 1 −0.3 1 −0.09 0
0 n2 −0.3 0 0 1 0 −0.3 0
0 n3 −0.09 −0.3 0 −0.3 1 −0.09 0

B 0.015 0.15 −0.3 0.15 0 −1.085 0
C 0 0 0 −1 −1 0 0

(5.13.93)

This means we have minimized C. Then we can enter the second phase. We eliminate the yi
variables. Now we maximize B so try to get positive coefficients on the bottom row. We can start
with the x3 column enforcing a z3 row as the only viable pivot.

0 0 0.3 0.98
z1 z2 x3 n

0.06 x1 1 0 0 −1 0
0.15 x2 −0.3 1 0 −0.3 0
0 z3 −0.09 −0.3 1∗ −0.09 0
0 n2 −0.3 0 0 −0.3 0
0 n3 −0.09 −0.3 0 −0.09 0

B 0.015 0.15 −0.3 −1.085 0

(5.13.94)
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yielding

0 0 0 0.98
z1 z2 z3 n

0.06 x1 1∗ 0 0 −1 0
0.15 x2 −0.3 1 0 −0.3 0
0.3 x3 −0.09 −0.3 1 −0.09 0
0 n2 −0.3 0 0 −0.3 0
0 n3 −0.09 −0.3 0 −0.09 0

B −0.012 0.06 0.3 −1.112 0

(5.13.95)

I’ll choose the z1 column since it is the only one that is possible with row x1 giving us

0 0 0 0.98
x1 z2 z3 n

0.06 z1 1∗ 0 0 −1 0
0.15 x2 0.3 1 0 −0.6 0
0.3 x3 0.09 −0.3 1 −0.18 0
0 n2 0.3 0 0 −0.6 0
0 n3 0.09 −0.3 0 −0.18 0

B 0.012 0.06 0.3 −1.124 0

(5.13.96)

This is the maximum possible. Thus our answer is x1 = 0, x2 = 0.6n, x3 = 0.18n, z1 = n,
z2 = z3 = 0, n2 = 0.6n, n3 = 0.18n.

We of course don’t actually care about z1 since that only gives us the inequality. The maximum
is thus 1.124n.

5.13.8 Problem 8

Solve the following problem

x1 − x2 + x3 − x4 = 2 (5.13.97)
2x1 − 2x2 − x2 + x4 = 1 (5.13.98)
4x1 − 4x2 + x3 − x4 = 5 (5.13.99)

minimizing x1 + x2 + x3 + x4 (one of the equations is redundant), xi ≥ 0.

Solution:

We put in extra variables z1, z2 and z3 with the solution xi = 0 z1 = 2, z2 = 1, and z3 = 5. With
minimization we then need to add an objective M function to it.

We create the tableau
1 1 1 1
x1 x2 x3 x4

M z1 1 −1 1 −1 2
M z2 2∗ −2 −1 1 1
M z3 4 −4 1 −1 5

B −1 −1 −1 −1 0
M 7 −7 1 −1 8

(5.13.100)
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We can choose x1 and z2 which yields

M 1 1 1
z2 x2 x3 x4

M z1 −0.5 0 1.5 −1.5 1.5
1 x1 0.5 −1 −0.5 0.5 0.5
M z3 −2 0 3∗ −3 3

B 0.5 −2 −1.5 −0.5 0.5
M −3.5 0 4.5 −4.5 4.5

(5.13.101)

We use the x3 column and we could choose either row z3 or z1. I’ll choose z3.

M 1 M 1
z2 x2 z3 x4

M z1 0.5 0 −0.5 0 0
1 x1 1/6 −1 0 1/6 1
1 x3 −2/3 0 1/3 −1 1

B −0.5 −2 0.5 −2 2
M −0.5 0 −1.5 0 0

(5.13.102)

We can then see that we get a solution here of x2 = x4 = 0 and x1 = 1, x3 = 1, as a possibility.

Now let’s try the other possibility of a pivot on z1 giving

M 1 M 1
z2 x2 z1 x4

1 x3 −1 0 −2 0 0
1 x1 1/3 −1 1/3 0 1
M z3 −1/3 0 2/3 −1 1

B 0 −2 1 −2 2
M −2 0 −3 0 0

(5.13.103)

This means we require x1 = 1, z3 = 1, but this is not a valid solution.

5.13.9 Problem 9

Which constraints, and which objective function, are implied in the following tableau? Find the
minimum of the objective function.

4 22 −1 −1 −1 −1
x1 x2 x3 x4 x5 x6

0 x7 2 1 0 0 0 0 10
0 x8 16 −12 −1 0 0 2 44
0 x9 −12 34 0 −1 0 1 42
0 x10 0 0 0 0 −1 1 0

B 4 22 −1 −1 −1 4 86

(5.13.104)

Solution:
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The constraints are

2x1 + x2 ≤ 10 (5.13.105)
16x1 − 12x2 − x3 + 2x6 ≤ 44 (5.13.106)
−12x1 + 34x2 − x4 + x6 ≤ 42 (5.13.107)

−x5 + x6 ≤ 0 (5.13.108)

or

2x1 + x2 + x7 = 10 (5.13.109)
16x1 − 12x2 − x3 + 2x6 + x8 = 44 (5.13.110)
−12x1 + 34x2 − x4 + x6 + x9 = 42 (5.13.111)

−x5 + x6 + x10 = 0 (5.13.112)

with objective function

B = −4x1 − 22x2 + x3 + x4 + x5 − 4x6 + 86 (5.13.113)

To minimize we choose the x2 column which means we need the x9 row.

4 22 −1 −1 −1 −1
x1 x2 x3 x4 x5 x6

0 x7 2 1 0 0 0 0 10
0 x8 16 −12 −1 0 0 2 44
0 x9 −12 34∗ 0 −1 0 1 42
0 x10 0 0 0 0 −1 1 0

B 4 22 −1 −1 −1 4 86

(5.13.114)

yielding

4 0 −1 −1 −1 −1
x1 x9 x3 x4 x5 x6

0 x7 40/17∗ −1/34 0 1/34 0 −1/34 149/17
0 x8 200/17 6/17 −1 −6/17 0 40/17 1000/17
22 x2 −6/17 1/34 0 −1/34 0 1/34 21/17
0 x10 0 0 0 0 −1 1 0

B 200/17 −11/17 −1 −6/17 −1 57/17 1000/17

(5.13.115)

By convention, we choose column x1 which implies row x7 with the favorable ratio.

0 0 −1 −1 −1 −1
x7 x9 x3 x4 x5 x6

4 x1 17/40 −1/80 0 1/80 0 −1/80 149/40
0 x8 −5 1/2 −1 −1/2 0 5/2 15
22 x2 3/20 1/40 0 −1/40 0 1/40 51/20
0 x10 0 0 0 0 −1 1∗ 0

B −5 −1/2 −1 −1/2 −1 7/2 15

(5.13.116)
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and finally we go off of column x6 and row x10 leaving us

0 0 −1 −1 −1 0
x7 x9 x3 x4 x5 x10

4 x1 17/40 −1/80 0 1/80 −1/80 1/80 149/40
0 x8 −5 1/2 −1 −1/2 5/2∗ −5/2 15
22 x2 3/20 1/40 0 −1/40 1/40 −1/40 51/20
−1 x6 0 0 0 0 −1 1 0

B −5 −1/2 −1 −1/2 5/2 −7/2 15

(5.13.117)

and we are forced onto column x5 and row x8

0 0 −1 −1 0 0
x7 x9 x3 x4 x8 x10

4 x1 2/5 −1/100 −1/200 1/100 1/200 0 19/5
−1 x5 −2 1/5 −2/5 −1/5 2/5 −1 6
22 x2 1/5 1/50 1/100 −1/50 −1/100 0 12/5
−1 x6 −2 1/5 −2/5 −1/5 2/5 0 6

B 0 −1 0 0 −1 −1 0

(5.13.118)

This means the solution is x1 = 19/5 = 3.8, x2 = 12/5 = 2.4, x3 = 0, x4 = 0, x5 = 6, x6 = 6, and
all other xi = 0. The Basis function is clearly minimized at 0.

Looking at the original equations we find

2
19

5
+

12

5
= 10 (5.13.119)

16
19

5
− 12

12

5
− 0 + 2

6

1
= 44 (5.13.120)

−1219
5

+ 34
12

5
− 0 + 6 = 42 (5.13.121)

−6 + 6 = 0 (5.13.122)

with objective function

−419
5
− 22

12

5
+ 0 + 0 + 6− 4(6) + 86 = 0 (5.13.123)

5.13.10 Problem 10

Find all basic optimal solutions of

2x1 + x2 + z1 = 6 (5.13.124)
4x1 + 2x2 + z2 = 12 (5.13.125)

Minimize z1 + z2.

Solution:
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Phew, a simple problem that isn’t large in size. The tableau is

0 0
x1 x2

1 z1 2∗ 1 6
1 z2 4 2 12

B 6 3 18

(5.13.126)

which is a simple solution. There is a degeneracy here. We first choose x1 z1 and find

1 0
z1 x2

0 x1 1/2 1/2 3
1 z2 −2 0 0

B −3 0 0

(5.13.127)

And so x1 = 3, x2 = 0, z1 = z2 = 0. I’ll write this [3, 0, 0, 0].

We can pivot on x1 and x2 to get

1 0
z1 x1

0 x2 1 2 6
1 z2 −2 0 0

B −3 0 0

(5.13.128)

for [0, 6, 0, 0]. These must be all of the optimal solutions since any other changes in zi would lead
to an increase.

So two solutions [3, 0, 0, 0] and [0, 6, 0, 0].

5.13.11 Problem 11

Solve the following problem (a) by the M -method and (b) by the Dual Simplex method.

y3 + y4 − 2y5 − y1 = 1 (5.13.129)
y3 − 2y4 + y5 − y2 = −1 (5.13.130)

Minimize 3y3 + y4 + 2y5.

Solution:

(a) Let’s introduce z1 by adding z1 to the first equation left hand side. Then we penalize the z1
with an M constraint line (there’s only one so we only need it from the first equation)

3 1 2 0
y3 y4 y5 y1

M z1 1∗ 1 −2 −1 1
0 y2 1 −2 1 0 1

B −3 −1 −2 0 0
M 1 1 −2 −1 1

(5.13.131)
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Let’s pivot off of z1 and y3 giving

M 1 2 0
z1 y4 y5 y1

3 y3 1 1∗ −2 −1 1
0 y2 −1 −3 3 1 0

B 3 2 −8 −3 3
M −1 0 0 0 0

(5.13.132)

We can then drop the M equation line and ignore pivoting off of z1 as we want it to be zero. Then
we pivot off of row y3 and column y4

M 3 2 0
z1 y3 y5 y1

1 y4 1 1 −2 −1 1
0 y2 2 3 −3 −2 3

B 1 −2 −4 −1 1
M −1 0 0 0 0

(5.13.133)

which is the solution we desired. So y1 = 0, y2 = 3, y3 = 0, y4 = 1 and y5 = 0. We can test it with

0 + 1− 2(0)− 0 = 1 (5.13.134)
0− 2(1) + 0− (3) = −5 (5.13.135)

and so doesn’t work.

It appears the degeneracy just breaks the problem as given. Instead, we can take equation 1 minus
equation 2 to get

3y4 − 3y5 − y1 + y2 = 2 (5.13.136)

to replace the second equation giving us

3 1 2 0
y3 y4 y5 y1

M z1 1∗ 1 −2 −1 1
0 y2 0 3 −3 −1 2

B −3 −1 −2 0 0
M 1 1 −2 −1 1

(5.13.137)

pivoting on z1 and y3 gives

M 1 2 0
z1 y4 y5 y1

3 y3 1 1 −2 −1 1
0 y2 0 3∗ −3 −1 2

B 3 2 −8 −3 3
M −1 0 0 0 0

(5.13.138)
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We can then ignore the M row and the z1 column to pivot on row y2 and column y4.

M 0 2 0
z1 y2 y5 y1

3 y3 1 −1/3 −1 −2/3 1/3
1 y4 0 1/3 −1 −1/3 2/3

B 3 −2/3 −6 −7/3 5/3
M −1 0 0 0 0

(5.13.139)

yielding y3 = 1/3 and y4 = 2/3 as the correct values which do check out.

(b)

The dual method is not very well explained. Essentially, we let the values be the negatives in the
coefficient table. We then choose a pivot column based on the smallest absolute value (considering
only negative values) along the column. We do this for each basic variable that is negative (thus
| − 1/− 1| is smaller than | − 3/− 1| and we choose the y4 column.

3 1 2
y3 y4 y5

0 y1 −1 −1∗ 2 −1
0 y2 −1 2 −1 1

B −3 −1 −2 0

(5.13.140)

So we pivot on y1 and y4 (one could do y3 but it doesn’t really matter) giving

3 0 2
y3 y1 y5

1 y4 1 −1 −2 1
0 y2 −3∗ 2 3 −1

B −2 −1 −4 1

(5.13.141)

Now we choose y2 and y3 and find

3 0 2
y2 y1 y5

1 y4 1 −1/3 −1 2/3
3 y3 −1/3 −2/3 −1 1/3

B −2/3 −7/3 −6 5/3

(5.13.142)

Yielding y3 = 1/3 and y4 = 2/3 with B = 5/3 as the correct solution again.

5.13.12 Problem 12

(a) Find all optimal basic feasible solutions of

12x1+ 7x2+ 14x3+ 5x4+ 16x5 ≤ 1
7x1+ 14x2+ 5x3+ 16x4+ 3x5 ≤ 1
14x1+ 5x2+ 16x3+ 3x4+ 18x5 ≤ 1
5x1+ 16x2+ 3x3+ 18x4+ x5 ≤ 1
16x1+ 3x2+ 18x3+ 1x4+ 20x5 ≤ 1

(5.13.143)
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Maximize x1 + x2 + x3 + x4 + x5 using the Inverse Matrix Method.

(b) Discuss the solutions to the dual problem.

(c) Discuss the problem with initial matrices M
1 12 7 14 5 1 0 0 0 0
1 7 14 5 16 0 1 0 0 0
1 14 5 16 3 0 0 1 0 0
1 5 16 3 18 0 0 0 1 0
0 −1 −1 −1 −1 0 0 0 0 1

 (5.13.144)


1 12 7 14 1 0 0 0
1 7 14 5 0 1 0 0
1 14 5 16 0 0 1 0
0 −1 −1 −1 0 0 0 1

 (5.13.145)

1 12 7 1 0 0
1 7 14 0 1 0
0 −1 −1 0 0 1

 (5.13.146)

Solution:

(a) No way I am going to do this step by step for such a large problem. It is the same as the
tableau method but keeping track of basis changes explicitly, which may be useful for accuracy
sometimes, but is hardly worth it by hand. It’s just matrix algebra all over the place that doesn’t
teach me anything new.

(b)

The matrix is symmetric and so the dual solution must be the same as this solution.

(c)

There aren’t any problems, per se, they just remove variables successively from the problem above.
So we can find optimal solutions by using the basic optimal solutions for the larger problem where
those variables are actually zero.
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Chapter 6

Special Algorithms

Faster than simplex algorithm for some specific types of problems.

6.1 Transportation Problem
This explains some solution methods for the Transportation problem, where we have sources and
destinations and wish to transport from source to destination most efficiently (shortest/cheapest
route).

When we get to the “northwest” corner tabulation method, the algorithm as described makes no
sense since it never explains what to do with the subtracted quantity. Essentially you go along
from the northwest corner putting in the smallest value you can so that as you go right or down
you are less than or equal to the values on the topmost column or leftmost row. Basically, we start
by exhausting a column or row (making the sum equal to the column or row) and then head in
the other direction until we can no longer do so.

So the example they give

1 6 2 6
5
5
5

(6.1.1)

we see that we can exhaust the first 1 column by putting a 1 there. Then we can exhaust the row
along the first 5 by putting a 4 to the right of the one giving

1 6 2 6
5 1 4
5
5

→

1 6 2 6
5 1 4
5 2
5

→

1 6 2 6
5 1 4
5 2 3?
5

(6.1.2)

Note that 3 is too large to exhaus the 52 row, and so we must use a 2 instead

1 6 2 6
5 1 4
5 2 2 1
5

→

1 6 2 6
5 1 4
5 2 2 1
5 5

(6.1.3)
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which ends the algorithm. The book then discusses what to do if you end early. Basically, just go
southeast one and start over. Add zeros in some of the rows and columns if you need more basic
variables.

Note that we then can read off the values of the basic variables via

b1 b2 b3 b4
a1 x11 x12 x13 x14
a2 x21 x22 x23 x24
a3 x23 x32 x33 x34

=

1 6 2 6
5 1 4 0 0
5 0 2 2 1
5 0 0 0 5

(6.1.4)

The rest of the chapter is dealing with how to get to an optimal solution using the dual problem
and other methods. It explains the sense in which∑

j

xij = ai
∑
i

xij = bj, xij ≥ 0 (6.1.5)

Minimize
∑
i,j

xijcij (6.1.6)

is dual to

ui + vj ≤ cij (6.1.7)

Maximize
∑
i

aiui +
∑
j

bjvj (6.1.8)

where the ui correspond to the ithe equation from
∑

j xij = ai and vj corresponds to the jth
equation from

∑
i xij = bj. The book notes that ui and vj don’t actually have a sign restriction

because our original set is equations and not inequalities.

6.2 Transshipment

The book illogically decides to write the matrix in what seems to be a purposefully asymmetric
manner. It’s much easier to read as

D1 D2 D3 D4 S1 S2 S3

D1 0 1 3 2 5 9 9
D2 3 0 2 3 4 6 7
D3 2 3 0 1 3 4 9
D4 4 1 2 0 4 7 3
S1 5 4 3 2 0 2 1
S2 10 8 4 7 1 0 4
S3 9 9 8 4 3 2 0

(6.2.1)

which makes the failures of symmetry in shipping much more apparent.

Then if we play the northwest corner game with L = 100 on the diagonal and the following
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coefficients, we find

101 106 102 106 100 100 100
100 100
100 100
100 100
100 100
105 100
105 100
105 100

(6.2.2)

Then the 105 row is a good northewest corner.

101 106 102 106 100 100 100
100 100
100 100
100 100
100 100
105 1 4 100
105 2 2 1 100
105 5 100

(6.2.3)

Using the shadow costs of ui and vj we could then find a better solution as given in the book by

101 106 102 106 100 100 100
100 100
100 100
100 100
100 100
105 1 3 1 100
105 3 2 100
105 5 100

(6.2.4)

Now, we use the shadow costs again and when ui+vj = cij and there is a zero in the entries above,
we can transfer to it while improving our objective function. This then leads to the solution
proposed in the book.

A proof that is ok for proving optimality follows the solution.

6.3 Transportation With Capacity Restrictions
Discussion on how to incorporate restrictions on the traffic. Restricts possible solutions and may
cause there to be no solution, but usually changed into a transshipment problem.

6.4 Network Flow Method
A not remarkably clear presentation of the Ford-Fulkerson method. I recommend online resources
which make the method much easier to understand. The basic idea is to look for the best pipelines
to route through rather than go through all possible pipelines when doing the extremizing.
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6.5 The Assignment Problem
This is basically a simpler version of the network flow method, but we use the primal dual (so
essentially working with the dual problem) because of possible degeneracies in the problem.

A not remarkably clear presentation of the Ford-Fulkerson method. I recommend online resources
which make the method much easier to understand. The basic idea is to look for the best pipelines
to route through rather than go through all possible pipelines when doing the extremizing.

6.6 The Assignment Problem. The Hungarian Method
An alternative way of solving the problem.

6.7 The Bottleneck Assignment Problem
Just what the book describes

6.8 Multiple Distribution
The book doesn’t explain the notation for its cube and so the example is more of a puzzle than an
aid. The book really needs someone to go through and say, “explain a bit more here what this is
showing”.

6.9 Exercises
I’m not sure I’ll do them, because the book has such awful explanations, and so probably not worth
the effort since it basically becomes learning how to actually do the problems by experimenting
for hours and looking at other sources.
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Chapter 7

Uses of Duality. Economic Interpretation

Good explanation of why duals are often useful constructs to solve problems.

7.1 Shadow Prices
The shadow price is simply the coefficients on the objective function using the non-basic z variables
(multiplied by the corresponding original right-hand sides). It tells us how much we should value
increasing the amount we buy in those non-basic variables.

Thus in the problem

3x1 + 4x2 + x3 ≤ 20 (7.1.1)
x1 + 3x2 + 2x3 ≤ 10 (7.1.2)

x1, x2, x3 ≥ 0 (7.1.3)

and maximize B = 3x1 + 6x2 + 2x3 (we can add slack variables to make equalities) we get a final
tableau of

0 0 2
x4 x5 x3 2

3 x1 0.6 −0.8 −1 4
6 x2 −0.2 0.6 1 2

B 0.6 1.2 1 24

(7.1.4)

So the shadow prices are 0.6 for x1 and 1.2 for x2. Note that 20(0.6) + 1.2(10) = 12 + 12 = 24 the
same as 3(4) + 6(2) = 12, as it should.

Then if we increased the amount available (keeping the basic variables the same) this will lead
to a corresponding increase in profit (or loss, or whatever you are calculating). So in our case, if
we originally had a constraint of 21 instead of 20, we know that the profit would increase by 0.6
to 24.6. This is why the bottom z entries are called marginal or shadow prices. Sometimes they
are called opportunity costs or multipliers. Note that this argument really only works if the basic
variables remain the same, but for very small perturbations, this is true enough and so they are
used more generically as marginal/shadow prices.

The duality relations let us find the dual y values easily under such changes.
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7.2 Efficient Points

This uses the tableau and is essentially just looking at the problem such that we keep an objective
function (to be maximized) at zero. Thus, we need to think about what variables can be changed
such that the objective function remains zero.

7.3 Input-Output Analysis

Pretty straightforward.

7.4 Exercises

7.4.1 Problem 1

How does the minimum of x1 − x2 change when the right-hand side of the second inequality in
Exercise 5-1 is changed (a) to 2, (b) to 4?

Solution:

Exercise 5-1 is given by

x1 + x2 ≤ 3 (7.4.1)
x1 − 2x2 ≤ 1 (7.4.2)
−2x1 + x2 ≤ 2 (7.4.3)

xi ≥ 0 (7.4.4)

(a) Minimize x1 − x2. (b) Maximize x1 − x2.

With final tableau for 5-1(a) given by

0 0
x3 x5

1 x1 1/3 −1/3 1/3
0 x4 1 1 6
−1 x2 2/3 1/3 8/3

B −1/3 −2/3 −7/3
Ck 2/3 −2/3 16/3

(7.4.5)

Of course, we don’t know if by changing the second row (a priori) whether it will cause different
basic variables to arise. Thus, we must redo the tableau for each problem.

(a) We replace 1 with 2 and so get
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−1 1
x1 x2

0 x3 1 1 3
0 x4 1 −2 2
0 x5 −2 1∗ 2

B −1 1 0

(7.4.6)

yielding

−1 0
x1 x5

0 x3 3∗ −1 1
0 x4 −3 2 6
1 x2 −2 1 2

B 1 −1 −2

(7.4.7)

and
0 0
x3 x5

−1 x1 1/3 −1/3 1/3
0 x4 1 1 7
1 x2 2/3 1/3 8/3

B −1/3 −2/3 −7/3

(7.4.8)

Thus, no change in the price.

(b) We start with

−1 1
x1 x2

0 x3 1 1 3
0 x4 1 −2 2
0 x5 −2 1∗ 2

B −1 1 0

(7.4.9)

to get

−1 0
x1 x5

0 x3 3∗ −1 1
0 x4 −3 2 8
1 x2 −2 1 2

B 1 −1 −2

(7.4.10)

0 0
x3 x5

−1 x1 1/3 −1/3 1/3
0 x4 1 1 9
1 x2 2/3 1/3 8/3

B −1/3 −2/3 −7/3

(7.4.11)
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which also makes no difference to the basis and doesn’t change the cost function.

The book lies, and says they do change, because they consider what happens to the maximum of
x1−x2, not the minimum, which is unaffected. . . You’d think the book would realize the difference
between minimum and maximum. This book is so awful at times.

If we do the maximum, then we can see that it might make a difference because the pivot operations
actually are affected by things in the second row.

The original final tableau yields

0 0
x4 x3

−1 x2 −1/3 1/3 2/3
1 x1 1/3 2/3 7/3
0 x5 1 1 6

B 2/3 1/3 5/3

(7.4.12)

so that if no basis change happened, we’d expect an increase by 2/3 to 7/3.

We can easily see this

−1 1
x1 x2

0 x3 1 1 3
0 x4 1∗ −2 2
0 x5 −2 1 2

B −1 1 0

(7.4.13)

and so

0 1
x4 x2

0 x3 −1 3∗ 1
−1 x1 1 −2 2
0 x5 2 −3 6

B 1 −1 2

(7.4.14)

and

0 0
x4 x3

1 x2 −1/3 1/3 1/3
−1 x1 1/3 2/3 8/3
0 x5 1 1 7

B 2/3 1/3 7/3

(7.4.15)
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For the other case, we can already see we will have to use a different basis.

−1 1
x1 x2

0 x3 1∗ 1 3
0 x4 1 −2 4
0 x5 −2 1 2

B −1 1 0

(7.4.16)

0 1
x3 x2

−1 x1 1 1 3
0 x4 −1 −3 1
0 x5 2 3 8

B 1 2 3

(7.4.17)

And we end, so that now the new maximum is just 3.

7.4.2 Problem 2

Consider the numerical example at the end of Chapter 1. How much should we be prepared to
pay for another ten yards of (a) red wool, (b) green wool?

Solution:

This problem was

3x1 + 4x2 + x3 ≤ 20 (7.4.18)
x1 + 3x2 + 2x3 ≤ 10 (7.4.19)

xi ≥ 0 (7.4.20)

Maximize 3x1 + 6x2 + 2x3.

We have to check for each case if the final tableau uses different basic variables. Thus we start
with (a).

The tableau is
3 6 2
x1 x2 x3

0 x4 3 4 1 30
0 x5 1 3∗ 2 10

B −3 −6 −2 0

(7.4.21)

We choose column row x5 and column x2.

3 0 2
x1 x5 x3

0 x4 5/3∗ −4/3 −5/3 50/3
6 x2 1/3 1/3 2/3 10/3

B −1 2 2 20

(7.4.22)
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This leaves pivoting on row x4 and column x1 (though there is now a degeneracy) giving

0 0 2
x4 x5 x3

3 x1 3/5 −4/5 −1 10
6 x2 −1/5 3/5 1 0

B 3/5 6/5 1 30

(7.4.23)

This is simply the shadow price outwards, of course. That is, if we did ten more yards we increase
the profit by 3/5(10) = 6.

If we increase the number of green yards available we then have

3 6 2
x1 x2 x3

0 x4 3 4∗ 1 20
0 x5 1 3 2 20

B −3 −6 −2 0

(7.4.24)

giving

3 0 2
x1 x4 x3

6 x2 3/4 1/4 1/4 5
0 x5 −5/4 −3/4 5/4∗ 5

B 3/2 3/2 −1/2 30

(7.4.25)

and

3 0 2
x1 x4 x3

6 x2 1 2/5 −1/5 4
0 x5 −1 −3/5 4/5 4

B 1 6/5 2/5 32

(7.4.26)

and so the we now have an increase to 32.

Note that we could have constructed a non-optimal tableau from the original final tableau, which
involves just changing the final column values and then iterated from there.

7.4.3 Problem 3

A unit of product A, B, or C sells at 5, 3, or 4 respectively. The following table shows how much
of raw materials a or b is required for one unit of A, B, or C, and also how much of a and b is
altogether available.

A B C Available
a 3 2 3 12
b 4 1 2 15

(7.4.27)
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Impute costs to the raw materials such that the total cost of all material equals the total price
obtained for the finished commodities, nd such that no commodity contains material of less imputed
cost than the selling price of that commodity.

Solution:

Let xi correspond to A, B, and C via i = 1, 2, 3. Then we’d like to maximize 5x1+3x2+4x3. Thus

5 3 2
x1 x2 x3

0 x4 3 2 3 12
0 x5 4∗ 1 2 15

B −5 −3 −2 0

(7.4.28)

pivoting on row x5 and column x1 yields

0 3 2
x5 x2 x3

0 x4 −3/4 5/4∗ 3/2 3/4
5 x1 1/4 1/4 1/2 15/4

B 5/4 −7/4 1/2 75/4

(7.4.29)

Then the next pivot is row x4 and column x2 giving

0 0 2
x5 x4 x3

3 x2 −3/5 4/5 6/5 3/5
5 x1 2/5 −1/5 1/5 18/5

B 1/5 7/5 13/5 99/5

(7.4.30)

Then we must have 0.2 for the cost of a and 1.4 for the cost of b. The thing to note is that we were
asked to maximize the profit in a very ugly way. (Maximizing the profit is the same as minimizing
the costs, and so we could have minimized the dual problem.)
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Chapter 8

Selected Applications

No comment. They are worked out examples.
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Chapter 9

Parametric Linear Programming

This is simply the same methods and ideas, but using variables in the objective function. There
is nothing really new about this idea.

9.1 Exercises

9.1.1 Problem 1

Find the various basic sets and the values of the objective function corresponding to the values of
the parameter t in the following problem.

x1 + x2 + x3 = 3 (9.1.1)
x1 − 2x2 + x4 = 1 (9.1.2)
−2x1 + x2 + x5 = 2 (9.1.3)

Maximize (1 + t)x1 − (1− t)x2.

Solution:

We start with the tableau

(1 + t) (t− 1)
x1 x2

0 x3 1 1 3
0 x4 1∗ −2 1
0 x5 −2 1 2

B −1− t 1− t 0

(9.1.4)

If t ≤ −1, then this is an optimal tableau as the B row is completely non-negative. For t > −1,
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then we clearly have the first column x1 as the most negative, and so we pivot on row x4 to get

0 (t− 1)
x4 x2

0 x3 −1 3∗ 2
1 + t x1 1 −2 1
0 x5 2 −3 4

B 1 + t −1− 3t 1 + t

(9.1.5)

Clearly in this case if −1 < t < −1/3 we have an optimal tableau, but if t > −1/3 then the second
column should be pivoted upon with the only possible row x3.

0 0
x4 x3

t− 1 x2 −1/3 1/3 2/3
1 + t x1 1/3 2/3 7/3
0 x5 1 1 6

B 2/3 1/3 + t 5/3 + 3t

(9.1.6)

To summarize

t B i, j, k xi xj xk
t ≤ −1 0 3,4,5 3 1 2

−1 < t ≤ −1
3

1 + t 3,1,5 2 1 3
t ≥ −1

3
5
3
+ 3t 2,1,5 2

3
7
3

6

Table 9.1: This shows the basis (i, j, k) for xi, xj, xk, the values of the x’s, the basis function B,
for various parameter values t.

9.1.2 Problem 2

Find the various basic sets and the values of the objective function corresponding to the values of
the parameters u and v in the following problem.

x1 + x2 ≤ 3 (9.1.7)
2x1 − x2 ≤ 2 (9.1.8)
x1, x2 ≥ 0 (9.1.9)

Maximize (2 + 2u+ v)x1 + (1 + u− v)x2.

Solution:

We set up the tableau

2 + 2u+ v 1 + u− v
x1 x2

0 x3 1 1 3
0 x4 2∗ −1 2

B −2− 2u− v v − 1− u 0

(9.1.10)
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With two parameters, we have a much larger number of cases to consider. We see that if 2u+v < −2
with v > 1 + u then this is an optimal solution. In any other case we pivot on row x4 and column
x1 to

0 1 + u− v
x4 x2

0 x3 −1/2 3/2∗ 2
2 + 2u+ v x1 1/2 −1/2 1

B 1 + u+ v/2 −2u+ v/2− 2 2 + 2u+ v

(9.1.11)

This is clearly good for 2+2u+ v ≥ 0 and −2u+ v/2− 2 ≥ 0. In the case that the second column
is negative we find

0 0
x4 x3

1 + u− v x2 −1/3 2/3 4/3
2 + 2u+ v x1 1/3∗ 1/3 5/3

B (u+ 2v + 1)/3 (4u+ 4− v)/3 (14u+ v + 14)/3

(9.1.12)

Which is good for when the bottom leftmost two B are greater than or equal to zero.

It is not obvious, but the next one to consider is the first column. If we collected our conditions,
then it’s essentially because that is the only region in uv space that we have not actually covered.

2 + 2u+ v 0
x1 x3

1 + u− v x2 1 1 3
0 x4 3 1 5

B 2v − u− 1 1 + u− v 3 + 3u− 3v

(9.1.13)

Because the book is not very good, they never actually explain how you would figure this out.
Plotting would be the most accessible way, but such a thing would never work in more complicated
cases. In those cases, you would have to actually have to go through all sorts of cases. It would
make more sense to consider things one parameter at a time, rather than two parameters at a
time.

9.1.3 Problem 3

Solve the following problem for all values of t.

3x1 + x4 + 2x5 = 12 (9.1.14)
3x2 − x4 + x5 + y = 3 (9.1.15)

x3 + x4 + x5 = 9 (9.1.16)

Minimize x2 − x1 + ty.

Solution:
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The initial solution is easy with x1 and x2 and x3 appearing in each equation only once. We need
x2 − x1 in terms of x3, x4, x5 and y for the objective function. So

x2 − x1 + ty =
3− x5 + x4 − y

3
− 12− 2x5 − x4

3
+

3ty

3
(9.1.17)

=
−9 + x5 + (3t− 1)y + 2x4

3
=

2x4
3

+
x5
3

+

(
t− 1

3

)
y − 3 (9.1.18)

Thus our new objective function is the above and we write (divide the coefficients by 3 in the first
two equations so that there is no trickiness about the solutions)

0 0 0
x4 x5 y

−1 x1 1/3 2/3 0 4
1 x2 −1/3 1/3 1/3∗ 1
0 x3 1 1 0 9

B −2/3 −1/3 (1/3− t) −3

(9.1.19)

Clearly this is a minimum if t ≥ 1/3. Otherwise we pivot on column y and row x2

0 0 0
x4 x5 y

−1 x1 1/3 2/3 0 4
1 x2 −1 1 3 3
0 x3 1∗ 1 0 9

B −t− 1/3 t− 2/3 3t− 1 3t− 4

(9.1.20)

For t < 1/3 we see that this is a minimum only if t > −1/3 (then the x4 column no longer is
negative). Thus we pivot on row x3 and column x4.

0 0 0
x3 x5 y

−1 x1 −1/3 1/3 0 1
1 x2 1 2 3 12
0 x4 1 1 0 9

B t+ 1/3 2t− 1/3 3t− 1 12t− 1

(9.1.21)

In this case, we see that we have a minimum for t < −1/3 which exhausts all possible cases.

9.1.4 Problem 4

Solve the following problem for all values of t.

−2x1 + 2x2 + x3 ≤ 12 (9.1.22)
3x1 − 18x2 − 4x3 ≤ 24 (9.1.23)
x1 + 2x2 + 4x3 ≤ 24 (9.1.24)

Minimize C = (−1 + t)x1 + (2 + t)x2 + (2 + t)x3.
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Solution:

We can introduce slack variables to find some of the solutions. This means that we need to solve
the objective function in terms of these new variables.

The tableau is then

−1 + t 2 + t 2 + t
x1 x2 x3

0 x4 −2 2 1 12
0 x5 3∗ −18 −4 24
0 x6 1 2 4 24

B 1− t −2− t −2− t 0

(9.1.25)

This will be an optimal tableau for t ≥ 1. Otherwise the first column will be positive and so we
pivot off of x5 and x1.

0 2 + t 2 + t
x5 x2 x3

0 x4 2/3 −10 −5/3 28
−1 + t x1 1/3 −6 −4/3 8

0 x6 −1/3 8∗ 16/3 16
B t/3− 1/3 4− 7t (−7t− 2)/3 8t− 8

(9.1.26)

For t < 1 the first column is clearly negative. Then t = 4/7 or t = −2/7 is the next change point
We see that for 1 > t ≥ 4/7 that all the columns are negative, and so row x6 and column x2 is the
next pivot.

0 0 2 + t
x5 x6 x3

0 x4 1/4 5/4 5 48
−1 + t x1 1/12 3/4 8/3 20
2 + t x2 −1/24 1/8 2/3∗ 2

B t/24− 1/6 7t/8− 1/2 (7t− 10)/3 22t− 16

(9.1.27)

Which is going to be negative for t < 4/7 on every column. Thus we have found all of our possible
solutions.
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Chapter 10

Discrete Linear Programming

This just means integer linear programming and mixed integer linear programming.

10.1 Travelling Salesman

This does not give a solution to the problem, just discusses it and how it is difficult to find integer
solutions.

10.2 Allocation Problem

This is given a radius for a radio tower, and a bunch of towers, how can frequencies be distributed.

10.3 Logical Relations

This is simply the idea that we can write logical relationships using binary encodings with inte-
gers/real numbers.

10.4 Fixed Charge Problem

This simply says that if we minimize a problem without considering an on switch for extra costs,
then we get the minimum even when considering the on switch. This only works if the on switch
turns at the same level for every variable. The proof in the book is pretty clear.

10.5 Discrete Linear Programming Algorithms

This is a clever idea. It uses “cuts” where we consider the fractional parts of a solution and add a
constraint based on that to the original problem to get us to integer solutions. The only real big
problem is that we might be forced to continually keep making cuts.
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10.6 Discrete Linear Programming Algorithms. Mixed Case

This shows a method to use the Simplex method when we want only some values to be integer.
It is more involved than the “cut” algorithm, but allows a mix of integers and real numbers in the
solution for the best objective function.

10.7 Exercises

10.7.1 Problem 1

Derive the constraints which make the region of Figure 10-6 feasible.

Solution:

We need x1 ≤ 2 and x2 ≤ 2 with x1 ≤ 1 or x2 ≤ 1 or both x1, x2 ≤ 1 as our feasible region
constraints.

The book explains one could rewrite this as a logical relation (using the binary encoded integers).
Then

1− d ≤ x1 (10.7.1)
2− d ≤ x2 (10.7.2)

with d = 0 or d = 1 as our sets of constraints.

10.7.2 Problem 2

Consider Example 10-3 and (a) starting by considering the variable x′5 (b) consider x1.

Solution:

Example 10-3 is given

−x1 + 10x2 ≤ 40 (10.7.3)
x1 + x2 ≤ 20 (10.7.4)

Maximize −10x1 + 111x2 = B.

The tableau goes to

0 0
x3 x4

−10 x1 −1/11 10/11 160/11
111 x2 1/11 1/11 60/11

B 11 1 460

(10.7.5)
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The variable x′5 comes from looking at row x1. We see that −1 + 10/11 = −1/11 and 160/11 =
14 + 6/11 so that the row to add is [x5,−10/11,−10/11,−6/11] to the tableau for

0 0
x3 x4

−10 x1 −1/11 10/11 160/11
111 x2 1/11 1/11 60/11
0 x5 −10/11 −10/11∗ −6/11

B 11 1 460

(10.7.6)

We can use the Dual simplex algorithm. We choose between 1/(10/11) = 11/10 and 11/(10/11) =
121/10. Clearly column x4 has the smaller value and so we choose that.

0 0
x3 x5

−10 x1 −1 1 14
111 x2 0 1/10 27/5
0 x4 1 −11/10 3/5

B 10 11/10 2297/5

(10.7.7)

We are now forced to consider adding another column to eliminate the fractions. We can consider
one for x2 or for x4. Since x2 was our original one, we’ll do that one first. Clearly the new row is
[x6, 0,−1/10,−2/5] for

0 0
x3 x5

−10 x1 −1 1 14
111 x2 0 1/10 27/5
0 x4 1 −11/10 3/5
0 x6 0 −1/10∗ −2/5

B 10 11/10 2297/5

(10.7.8)

and so we get

0 0
x3 x6

−10 x1 −1 10 10
111 x2 0 1 5
0 x4 1 −11 5
0 x5 0 −10 4

B 10 11 455

(10.7.9)

which if we allow x5 as a variable gives us a final solution.

Note that had we chosen to eliminate x4 as a fraction, we’d add the row [x6, 0,−(20−11)/10,−3/5] =
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[x6, 0,−9/10,−3/5].

0 0
x3 x5

−10 x1 −1 1 14
111 x2 0 1/10 27/5
0 x4 1 −11/10 3/5
0 x6 0 −9/10∗ −3/5

B 10 11/10 2297/5

(10.7.10)

to
0 0
x3 x6

−10 x1 −1 10/9 40/3
111 x2 0 1/9 16/3
0 x4 1 −11/9 4/3
0 x5 0 −10/9 2/3

B 10 11/9 1376/3

(10.7.11)

We then need to add another line. Since we’ve already done x1 and x4, then x2 is the only one
left. So our new line is [x7, 0,−1/9,−1/3] and we get

0 0
x3 x6

−10 x1 −1 10/9 40/3
111 x2 0 1/9 16/3
0 x4 1 −11/9 4/3
0 x5 0 −10/9 2/3
0 x7 0 −1/9∗ −1/3

B 10 11/9 1376/3

(10.7.12)

=

0 0
x3 x6

−10 x1 −1 10 10
111 x2 0 1 5
0 x4 1 −11 5
0 x5 0 −10 4
0 x7 0 −9 3

B 10 11 455

(10.7.13)

which is another possible solution.

(b) We start by considering x1. But this is just the same as considering x5 and so we do the exact
same things.

10.7.3 Problem 3

Consider those values of u and v in Exercise 9-2 for which

u+ 2v ≥ −1⇒ u+ 2v + 1 ≥ 0 (10.7.14)
−4u+ v ≤ 4⇒ 4u+ 4− v ≥ 0 (10.7.15)
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subject to the further condition that all variables have integer values.

We need to look back at the tableau given by

0 0
x4 x3

1 + u− v x2 −1/3 2/3 4/3
2 + 2u+ v x1 1/3∗ 1/3 5/3

B (u+ 2v + 1)/3 (4u+ 4− v)/3 (14u+ v + 14)/3

(10.7.16)

which satisfies the given constraints. Now if we want integers, we can consider changing x1. Then
we need to add a new row. Unfortunately, we don’t know which column is larger, so we will just
consider each case. First (u+ 2v + 1) > 4u+ 4− v. Then

0 0
x4 x3

1 + u− v x2 −1/3 2/3 4/3
2 + 2u+ v x1 1/3 1/3 5/3

0 x5 −1/3 −1/3∗ −2/3
B (u+ 2v + 1)/3 (4u+ 4− v)/3 (14u+ v + 14)/3

(10.7.17)

=

0 0
x4 x5

1 + u− v x2 −1 2 0
2 + 2u+ v x1 0 1 1

0 x3 1 −3 2
B −u+ v − 1 4u− v + 4 2u+ v + 2

(10.7.18)

Because we are using the dual simplex method, we don’t have to worry about the bottom row being
positive (though we can certainly check if we desire). u+ 2v + 1 > 4u+ 4− v ⇒ −3u+ 3v − 3 >
0⇒ v − u− 1 > 0 and so the first column is fine. In any case, we should now consider the other
case where 4u+ 4− v > u+ 2v + 1 and so we pivot on the other column

0 0
x4 x3

1 + u− v x2 −1/3 2/3 4/3
2 + 2u+ v x1 1/3 1/3 5/3

0 x5 −1/3∗ −1/3 −2/3
B (u+ 2v + 1)/3 (4u+ 4− v)/3 (14u+ v + 14)/3

(10.7.19)

=

0 0
x5 x3

1 + u− v x2 −1 1 2
2 + 2u+ v x1 1 0 1

0 x4 −3 1 2
B u+ 2v + 1 u− v + 1 4u− v + 4

(10.7.20)

which is the other possible solution.
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10.7.4 Problem 4

Let a triangle ABC have sides of length

BC = 3 AC = 4 AB = 5 (10.7.21)

Lay pipes along its sides with capacities such that

1. the pipes leading out of A have a total capacity of 3.

2. the pipes leading out of B or of C have total capacities of either 2 or 3.

3. no pipe between any two vertices must have a capacity exceeding 2.

Only pipes of an integer number of capacity units are available, and the cost of a pipe is proportional
to its capacity and to its length. It is required to determine the cheapest system of piping.

Solution:

This is a confusingly worded problem. A picture is worth a thousand words here. . . Anyway it is
saying that xAB + xAC = 3 with 2 ≤ xBC + xAB ≤ 3 and 2 ≤ xAC + xBC ≤ 3 with 0 ≤ xij ≤ 2.
We’d like to minimize 5xAB + 4xAC + 3xBC .

In tableau form we write for

xAB + xAC − x1 = 3⇒ −xAB − xAC + x1 = −3 (10.7.22)
xAB + xBC + x2 = 3 (10.7.23)
xAC + xBC + x3 = 3 (10.7.24)

xAB + xBC − x4 = 2⇒ −xAB − xBC + x4 = −2 (10.7.25)
xAC + xBC − x5 = 2⇒ −xAC − xBC + x5 = −2 (10.7.26)

then we use the dual simplex algorithm

5 4 3
xAB xAC xBC

1 + u− v x1 −1 −1 0 −3
2 + 2u+ v x2 1 0 1 3

0 x3 0 1 1 3
0 x4 −1 0 −1∗ −2
0 x5 0 −1 −1 −2

B −5 −4 −3 0

(10.7.27)

=

5 4 3
xAB xAC x4

1 + u− v x1 −1∗ −1 0 −3
2 + 2u+ v x2 0 0 1 1

0 x3 −1 1 1 1
0 xBC 1 0 −1 2
0 x5 1 −1 −1 0

B −2 −4 −3 6

(10.7.28)
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Note that had we not used the dual xAB + xAC − x1 = 3, but xAB + xAC + x1 = 3, we would have
to think carefully about how to continue on to an optimum. We use the dual simplex algorithm
to flip x1 and xAB.

=

5 4 3
x1 xAC x4

1 + u− v xAB −1 1 0 3
2 + 2u+ v x2 0 0 1 1

0 x3 −1 2 1 4
0 xBC 1 −1 −1 −1
0 x5 1 −2∗ −1 −3

B −2 −2 −3 12

(10.7.29)

An application of the dual simplex again on x5 and xAC yields

=

5 4 3
x1 x5 x4

1 + u− v xAB −1/2 1/2 −1/2 3/2
2 + 2u+ v x2 0 0 1 1

0 x3 0 1 0 1
0 xBC 1/2 −1/2 −1/2 1/2
0 xAC −1/2 −1/2 1/2 3/2

B −3 −1 −2 15

(10.7.30)

Let’s now remove the fractions from xAB with row [x6,−1/2,−1/2,−1/2,−1/2]

=

5 4 3
x1 x5 x4

1 + u− v xAB −1/2 1/2 −1/2 3/2
2 + 2u+ v x2 0 0 1 1

0 x3 0 1 0 1
0 xBC 1/2 −1/2 −1/2 1/2
0 xAC −1/2 −1/2 1/2 3/2
0 x6 −1/2 −1/2∗ −1/2 −1/2

B −3 −1 −2 15

(10.7.31)

yielding

=

5 4 3
x1 x6 x4

1 + u− v xAB −1 1 −1 1
2 + 2u+ v x2 0 0 1 1

0 x3 −1 2 −1 0
0 xBC 1 −1 0 1
0 xAC 0 −1 1 2
0 x5 1 −2 1 1

B −2 −2 −1 16

(10.7.32)

which yields a solution of xAB = 1, xBC = 1 and xAC = 2 with cost 16.

This is the same solution as the book, though they used a different method.
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10.7.5 Problem 5

In Exercise 5-7 let the value of n be 15, and solve the problem for integer, non-negative values of
the variables.

Solution:

With n = 15 the problem becomes maximize 14.7 + 0.06x1 + 0.15x2 + 0.3x3 subject to

x1 ≤ 15 (10.7.33)
x2 − n2 ≤ 0 (10.7.34)
x3 − n3 ≤ 0 (10.7.35)

n2 + 0.3x1 = 9 (10.7.36)
n3 + 0.18x1 + 0.3x2 = 5.4 (10.7.37)

We can then use our previous tableau with n = 15 in it

=

0.06 0 0
x1 z2 z3

0 z4 1 0 0 15
0.15 x2 3/10 1 0 9
0.3 x3 9/100 −3/10 1 27/10
0 n2 3/10 0 0 9
0 n3 9/100 −3/10 0 27/10

B 12/1000 6/100 3/10 1686/100

(10.7.38)

We can then apply our fraction method to x3 with a row [y1,−9/100,−7/10, 0,−7/10]

=

0.06 0 0
x1 z2 z3

0 z4 1 0 0 15
0.15 x2 3/10 1 0 9
0.3 x3 9/100 −3/10 1 27/10
0 n2 3/10 0 0 9
0 n3 9/100 −3/10 0 27/10
0 y1 −9/100 −7/10∗ 0 −7/10

B 12/1000 6/100 3/10 1686/100

(10.7.39)

Then dual simplex on row y1 and column z2 yields

=

0.06 0 0
x1 y1 z3

0 z4 1 0 0 15
0.15 x2 6/35 10/7 0 8
0.3 x3 9/70 −3/7 1 3
0 n2 3/10 0 0 9
0 n3 9/70 −3/7 0 3
0 z2 9/70 −10/7 0 1

B 3/700 3/35 3/10 84/5

(10.7.40)

which yields a solution of x1 = 0, x2 = 8, x3 = 3, n2 = 9 and n3 = 3.
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10.7.6 Problem 6

Solve the problem

3x1 + 4x2 + x3 ≤ 2 (10.7.41)
x1 + 3x2 + 2x3 ≤ 1 (10.7.42)

Maximize 3x1 + 6x2 + 2x3 with x1, x2 non-negative integers, and x3 any non-negative value.

Solution:

We have a mixed problem. Let’s first solve the problem without worrying about integer values.

=

3 6 2
x1 x2 x3

0 x4 3 4 1 2
0 x5 1 3∗ 2 1

B −3 −6 −2 0

(10.7.43)

pivoting on x5 and x2 gives

=

3 0 2
x1 x5 x3

0 x4 5/3∗ −4/3 −5/3 2/3
6 x2 1/3 1/3 2/3 1/3

B −1 2 2 2

(10.7.44)

Now a pivot on x4 and x1 yields

=

0 0 2
x4 x5 x3

3 x1 3/5 −4/5 −1 2/5
6 x2 −1/5 3/5 1 1/5

B 3/5 6/5 1 12/5

(10.7.45)

One would usually now use the tricks. Essentially, we see what the nearby integers do to our
objective function. First let’s consider x1 = 1. There can be no feasible solution since this implies
x2 = x3 = 0 which does not satisfy our initial constraints. x2 = 1 is also fairly obviously not
suitable. Thus, we are left with x1 = 0 or x2 = 0 as possibilities.

In this case, we need not use the tricks since we see that of the available integers, only the zeros
will do. x1 = x2 = 0 is the only possibility, which is x3 = 1/2 is the maximum and B = 1.
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Chapter 11

Stochastic Linear Programming

The idea is how should we approach problems where we are unsure that the actual coefficients for
our problem. Say we know they’re within a certain range, though, and we can make some general
statements.

11.1 Range of Values

The easy way to understand these is simply from looking at the chain of inequalities. They are
pretty clear how they work out. In this case, the naive thought that using the smallest coefficients
leads to a value that is smallest, and the largest coefficients lead to the largest possible value. This
of course requires thinking about the constraints. I’ll reproduce the coefficient requirements

min
∑

i c
−
i xi∑

i a
+
ijxi ≥ b−j

≤ min
∑

i cixi∑
i aijxi ≥ bj

≤ min
∑

i c
+
i xi∑

i aijx
−
i ≥ b+j

(11.1.1)

max
∑

i c
−
i xi∑

i a
+
ijxi ≥ b−j

≤ max
∑

i cixi∑
i aijxi ≥ bj

≤ max
∑

i c
+
i xi∑

i aijx
−
i ≥ b+j

(11.1.2)

11.2 Distribution Problems and Expected Value Problems

Essentially how to look at things when we use distribution functions for the values rather than
just pure ranges.

When we get to page 213, there is bad notation, we should have

M0 =
∑
j

y0j bj = E

(∑
j

y0j [bj + bjt]

)
≤ E(M0t) (11.2.1)

Where M0 is the minimum for the problem with bjt = 0.
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11.3 Exercises

11.3.1 Problem 1

Use the following example to illustrate M0 ≤
∑

t ptM0t.

2x1 + x2 − x3 = 1 + b1t (11.3.1)
x1 + 2x2 − x3 = 1 + b2t (11.3.2)

Minimize x1 + x2 + x3 where b1t = −2, 0, 2 and b2t = −2, 0, 2.

Solution:

Since pt is not given, it’s not exactly obvious what the correct choice would be. So let’s find M0.
I’ll just add two new slack variables to make it easy. Then we’ll penalize them to get rid of them.

1 1 1
x1 x2 x3

M y1 2 1 −1 1
M y2 1 2∗ −1 1

B −1 −1 −1 0
M 3 3 −2 2

(11.3.3)

1 M 1
x1 y2 x3

M y1 3/2∗ −1/2 −1/2 1/2
1 x2 1/2 1/2 −1/2 1/2

B −1/2 1/2 −3/2 1/2
M 3/2 −3/2 −1/2 1/2

(11.3.4)

M M 1
y1 y2 x3

1 x1 2/3 −1/3 −1/3 1/3
1 x2 −1/3 2/3 −1/3 1/3

B 1/3 1/3 −5/3 2/3
M −1 −1 0 0

(11.3.5)

(11.3.6)

So that M0 = 2/3.

Now we repeat with M01 where b11 = b21 = −2. We could perform the same functions, though we
now need to use the dual simplex algorithm.

1 1 1
x1 x2 x3

M y1 2 1 −1 −1
M y2 1 2 −1∗ −1

B −1 −1 −1 0
M 3 3 −2 −2

(11.3.7)
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1 1 M
x1 x2 y2

M y1 1∗ −1 −1 0
1 x3 −1 −2 −1 1

B −2 −3 −1 1
M 1 −1 −2 0

(11.3.8)

M 1 M
y1 x2 y2

1 x1 1 −1 −1 0
1 x3 1 −3 −2 1

B 2 −5 −3 1
M −1 0 −1 0

(11.3.9)

1
x2

1 x1 −1 0
1 x3 −3 1

B −5 1

(11.3.10)

Which tells us this is an optimum. Note that x1 = x2 = 0 and x3 = 1 is a minimum has a
degeneracy but M01 = 1.

M02 is clearly the same as M0 = 2/3. Finally M03 with b13 = b23 = 2. Then this is similar to our
original problem (no dual simplex necessary).

1 1 1
x1 x2 x3

M y1 2 1 −1 3
M y2 1 2∗ −1 3

B −1 −1 −1 0
M 3 3 −2 2

(11.3.11)

1 M 1
x1 y2 x3

M y1 3/2∗ −1/2 −1/2 3/2
1 x2 1/2 1/2 −1/2 3/2

B −1/2 1/2 −3/2 3/2
M 3/2 −3/2 −1/2 −5/2

(11.3.12)

M M 1
y1 y2 x3

1 x1 2/3 −1/3 −1/3 1
1 x2 −1/3 2/3 −1/3 1

B 1/3 1/3 −5/3 2
M −1 −1 0 −4

(11.3.13)

(11.3.14)

Which means x1 = x2 = 1 and x3 = 0 giving M03 = 2.
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Thus we have

M0 = 2/3 ≤ p1M01 + p2M02 + p3M03 = p1(1) + p2(2/3) + p3(2) (11.3.15)

with p1 + p2 + p3 = 1. Clearly the smallest the right hand side can ever be is 2/3 when p2 = 1.

The book, because it is unclear, apparently mean that you can choose b1t independently of b2t so
that b10 = −2 and b20 = 2 is a possibility. In any case, it would then pay to consider this problem
in its most general form (the parametric form) and figure out all the possible basic variables. We
can then just form a table of the possible values. In any case, we would find that M0 = 2/3 is the
smallest possible value.

11.3.2 Problem 2

Use the following example to illustrate the relationship between M0, M1, and M2.

2x1 + x2 − x3 ≤ 1 + b1t (11.3.16)
x1 + 2x2 − x3 ≤ 1 + b12 (11.3.17)

Minimize x1+x2+x3+Ef1(1+b1t−2x1−x2+x3)+Ef2(1+b2t−x1−2x2+x3). Take f1 = f2 = 1.

Solution:

Since bit is not given, I guess we are just supposed to assume it is the same as the previous problem.
E(bit) = 0 so we are minimizing

x1 + x2 + x3 + (1− 2x1 − x2 + x3) + (1− x1 − 2x2 + x3) = 2− 2x1 − 2x2 + 3x3 (11.3.18)

Previously, we showed M0 = 2/3 where fj = 0. To find M1, we use the minimum values possible
for bit which from the previous problem is −2. Thus, including the penalty and using the dual
simplex algorithm we get

−2 −2 3
x1 x2 x3

M y1 2 1 −1 −1
M y2 1 2 −1∗ −1

B 2 2 −3 2
M 3 3 −2 −2

(11.3.19)

−2 −2 M
x1 x2 y2

M y1 1∗ −1 −1 0
2 x3 −1 −2 −1 1

B −1 −4 −3 5
M 1 −1 −2 4

(11.3.20)

M −2 M
y1 x2 y2

−2 x1 1 −1 −1 0
2 x3 1 −3 −2 1

B 1 −5 −4 5
M −1 0 −1 4

(11.3.21)
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Which tells us x1 = x2 = 0 and x3 = 1 gives M1 = 5 and M1 ≥M0 clearly.

Now if we didn’t put in the bit at all and went through the above we would get M2 yielding

−2 −2 3
x1 x2 x3

M y1 2 1 −1 1
M y2 1 2∗ −1 1

B 2 2 −3 2
M 3 3 −2 −2

(11.3.22)

−2 M 3
x1 y2 x3

M y1 3/2∗ −1/2 −1/2 1/2
−2 x2 1/2 1/2 −1/2 1/2

B 1 −1 −2 1
M 3/2 −3/2 −1/2 1/2

(11.3.23)

M M 3
y1 y2 x3

−2 x1 2/3 −1/3 −1/3 1/3
−2 x2 −1/3 2/3 −1/3 1/3

B −2/3 −2/3 −5/3 2/3
M −1 −1 0 0

(11.3.24)

which indicates x1 = x2 = 1/3, x3 = 0 with M2 = 2/3 is a solution. Since M0 = 2/3 they (M2 and
M0) are equal in this instance.
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Chapter 12

Nonlinear Programming

We have methods for some nonlinear cases, though they have more restrictions for use.

12.1 Definitions
Just the definition of a convex function.

12.2 Approximations
This is the use of basis functions and minimizing of some error function (objective function).
Basically, this is the basis for numerical approximation schemes like finite elements. Note that the
constraints are still limited to linear, but the objective function can be nonlinear.

12.3 Quadratic Programming
This is with a quadratic objective functions. Most of the ways are like those for linear, but with
some caveats. Such as needing to use derivative information.

12.4 Quadratic Duality
The duality relies on semidefinite forms of the objective function.

12.5 Exercises

12.5.1 Problem 1

Minimize

4t20 + 4t0t1 + 6t21 + 4t0 − 56t1 + 180 (12.5.1)

subject to t0 ≥ −3, and t1 ≤ 6.
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Solution:

Well, let’s first find the derivatives calling the objective function C.

∂C

∂t0
= 8t0 + 4t1 + 4 (12.5.2)

∂C

∂t1
= 4t0 + 12t1 − 56 (12.5.3)

Should we set both to zero we’d find

8t0 + 4t1 + 4 = 0 (12.5.4)
4t0 + 12t1 − 56 = 0 (12.5.5)
8t0 + 24t1 − 112 = 0 (12.5.6)

20t1 + (−112− 4) = 0 (12.5.7)

t1 =
108

20
t0 = −

16

5
(12.5.8)

Which is the total minimum. Unfortuantely, t0 ≤ −3, and so it is not an acceptable solution.

I like Lagrange multipliers, so let’s add a constraint of the form t0 +3 = 0. To force t0 to be at its
smallest allowed value. Then we look at

C1 = C + λ(t0 + 3) (12.5.9)

then we have

∂C1

∂t0
= 8t0 + 4t1 + 4 + λ

∂C1

∂t1
= 4t0 + 12t1 − 56

∂C1

∂λ
= t0 + 3 (12.5.10)

Then t0 = −3, and

4t0 + 12t1 − 56 = 0⇒ t1 =
56− 4t0

12
=

68

12
=

17

3
(12.5.11)

If we looked at the derivative values at this position we see(
∂C

∂t0

)
ti

= 2.66 (12.5.12)(
∂C

∂t1

)
ti

= 0 (12.5.13)

This is good because it means we can’t move any direction for t1 to increase the value, which is
exactly what we wanted.

12.5.2 Problem 2

Minimize

x21 + x22 − 4x1 − 2x2 + 5 (12.5.14)
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subject to x1 + x2 ≤ 4 with xi ≥ 0.

Solution:

Let’s try and make some perfect squares.

x21 + x22 − 4x1 − 2x2 + 5 = (x1 − 2)2 + x22 − 2x2 + 1 = (x1 − 2)2 + (x2 − 1)2 (12.5.15)

Clearly the minimum would be x1 = 2 and x2 = 1. This is clearly the answer since x1 + x2 ≤ 4
and this is the global minimum.

12.5.3 Problem 3

Which of the following quadratic forms are positive definite, positive semidefinite, or neither? Give
examples to illustrate your answers.

1. 5x21 + 2x22 + 2x23 − 2x1x2 − 2x1x3 + 4x2x3

2. 5x21 + 3x22 + 2x23 − 2x1x2 − 2x1x3 + 4x2x3

3. 5x21 + x22 + 2x23 − 2x1x2 − 2x1x3 + 4x2x3

Solution:

For the 1., we can write the matrix and find the eigenvalues of the matrix. This is usually faster
than trying to figure out a possible factorization. If the eigenvalues are all non negative we have
a positive semidefinite form, if they’re all positive, then it is positive definite. We use that xMx
is the same as our quadratic and so we must put halves on some of the entries.

M =

 5 −2/2 −2/2
−2/2 2 4/2
−2/2 4/2 2

 (12.5.16)

M − λ1 =

5− λ −1 −1
−1 2− λ 2
−1 2 2− λ

 = −λ3 + 9λ2 − 18λ (12.5.17)

The eigenvalues are thus λ1 = 6, λ2 = 3, and λ3 = 0. Thus it is positive semidefinite. For example,
we can get zero by x1 = 0, x2 = −1 and x3 = 1.

5(0)2 + 2(−1)2 + 2(1)2 + 4(−1)(1) = 2 + 2− 4 = 0 (12.5.18)

For 2., we perform the same operation

M =

 5 −2/2 −2/2
−2/2 3 4/2
−2/2 4/2 2

 (12.5.19)

M − λ1 =

5− λ −1 −1
−1 3− λ 2
−1 2 2− λ

 = −λ3 + 10λ2 − 25λ+ 9 (12.5.20)
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The eigenvalues are thus λ1 ≈ 6.2, λ2 ≈ 3.4, and λ3 ≈ 0.43. Thus it is positive definite.

We can thus write it as a sum of perfect squares.

For 3., we can use x1 = 0, x2 = −1, x3 = 1 to find

5(0)2 + (−1)2 + 2(1)2 − 2(0)(−1)− 2(0)(1) + 4(−1)(0) = 1 + 2− 4 = −1 < 0 (12.5.21)

where as x2 = 1 would yield 1 + 2 + 4 = 7 > 0 and so it is not definite.

12.5.4 Problem 4

Construct and solve the problem which is dual to Example 12-1.

Solution:

Example 12-1 is of the form Minimize

183− 44x1 − 42x2 + 8x21 − 12x1x2 + 17x22 (12.5.22)

with constraints 2x1 + x2 + x3 = 10 and xi ≥ 0.

Thus the dual is maximize

D = −8u21 + 12u1u2 − 17u22 + 10y (12.5.23)

subject to

2y − 16u1 + 12u2 ≤ −44 (12.5.24)
y + 12u1 − 34u2 ≤ −42 (12.5.25)

We can easily create a tableau for this pseudolinear problem. However, we see that y ≤ 0, and
we’d prefer the opposite, so we introduce a new y = −y and get

Maximize

D = −8u21 + 12u1u2 − 17u22 − 10y (12.5.26)

subject to

2y + 16u1 − 12u2 ≥ 44 (12.5.27)
y − 12u1 + 34u2 ≥ 42 (12.5.28)

where y ≥ 0.

Let’s find the general maximum

∂D

∂u1
= −16u1 + 12u2 (12.5.29)

∂D

∂u2
= 12u1 − 34u2 (12.5.30)

∂D

∂y
= −10 (12.5.31)
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This means that the larger y is the smaller the value of our objective function. This indicates that
we’d like y to be as small as possible while also satisfying the constraints. Let’s then rewrite the
constraints as

2y ≥ 44 + 12u2 − 16u1 (12.5.32)
y ≥ 42 + 12u1 + 34u2 (12.5.33)

Let’s add these constraints as 2y − 44 − 12u2 + 16u1 and y − 42 − 12u1 − 34u2. Then our new
function is

D1 = −8u21 + 12u1u2 − 17u22 − 10y + λ1 (2y − 44− 12u2 + 16u1)

+ λ2 (y − 42− 12u1 + 34u2)
(12.5.34)

And so

∂D1

∂u1
= −16u1 + 12u2 + 16λ1 − 12λ2 (12.5.35)

∂D1

∂u2
= 12u1 − 34u2 − 12λ1 + 34λ2 (12.5.36)

∂D2

∂y
= −10 + 2λ1 + λ2 (12.5.37)

in addition to the constraint equations. Thus our matrix is (with columns giving coefficients of
[u1, u2, y, λ1, λ2]) 

−16 12 0 16 −12 0
12 −34 0 −12 34 0
0 0 0 2 1 10
16 −12 2 0 0 44
−12 34 1 0 0 42

 (12.5.38)

If we assume all constraints are active so that λ1 and λ2 ≥ 0 then y < 0 then we find u1 = 19/5 =
3.8, u2 = 12/5 = 2.4, and y = 6. This is a good solution. But we need to check other possibilities
for answers.

So let’s try λ2 = 0 and remove that constraint. This yields u1 = 5, u2 = 0, and y = −18 which is
excluded.

Finally λ1 = 0 gives u1 = 0, u2 = 10, and y = −298 which is also an excluded possibility.

Thus we find that both constraints being active gives us our maximum.

This seems to indicate that Lagrangian multipliers won’t work, which is wrong. Something must
be wrong with my formulation. If we simply took u1 and u2 added slack variables and solved our
constraint equations for u1 and u2 in terms of y and the slack variables, then we could put that in
our constraint and find values. This is what the book does.
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Chapter 13

Dynamic Programming

This includes “time” as a factor. Mostly, it just means we can do some iterations.

13.1 Principle of Optimality
This is a statement that is not at all obviously true for most problems. It says that if we want
an optimal procedure at the end of a long chain (over the entire process), then we should choose
the optimal procedure along each link in the chain to the end. This is clearly not always true.
Sometimes you can get more out by choosing a non-optimal way early on that allows a huge boon
later on. But for linear programs, this principle often applies, and makes it much easier to find
solutions.

The convexity of functions makes this a more likely to be true statement, in that it makes only
the edges the most optimal.

13.2 Functional Equations
Here we delve briefly into equations that define functions, and so we have functional equations.

The proof is not very satisfying since it is essentially a proof by verification. How one would guess
(a/k)k is not at all obvious, but then it can easily be shown to give the correct value for k > 1.
For we can take a derivative to find the maximum.

13.3 Exercises

13.3.1 Problem 1

Solve Example 13-1 for the following numerical data

N = 3, a =
1

3
, b =

2

3
, g(x) = 3x, h(y) = 2.5y (13.3.1)

Solution:
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The fact that a and b are constants show that the book makes no sense. This would say that
no matter how many machines we initially had, they actually magically turn into 1/3 or 2/3 of a
machine. Presumably they mean that a(x) = x/3 and b(x) = 2x/3 or else this problem literally
makes no sense.

We follow the principle of optimality and so we find

f1(n) = max
0≤x≤n

(g(x) + h(n− x)) = max
0≤x≤n

(3x+ 2.5(n− x))

= max
0≤x≤n

(0.5x+ 2.5n)
(13.3.2)

This is clearly at its maximum value when n = x giving f1(n) = 3n.

We then apply

f2 = max
0≤x≤n

(g(x) + h(n− x) + f1 (a+ b)) = max
0≤x≤n

(
0.5x+ 2.5n+ f1

(
x

3
+

2(n− x)
3

))
= max

0≤x≤n
(0.5x+ 2.5n+ 2n− x) = max

0≤x≤n
(−0.5x+ 4.5n)

x=0
= 4.5n

(13.3.3)

for f2(n) = 4.5n Finally,

f3 = max
0≤x≤n

(g(x) + h(n− x) + f2 (a+ b)) = max
0≤x≤n

(
0.5x+ 2.5n+ f2

(
x

3
+

2(n− x)
3

))
= max

0≤x≤n

(
0.5x+ 2.5n+

45

10

2n− x
3

)
= max

0≤x≤n
(0.5x+ 2.5n+ 3n− 1.5x)

= max
0≤x≤n

(−x+ 5.5n)
x=0
= 5.5n

(13.3.4)

We have thus found x3 = n and x2 = x1 = 0 (because we go backwards with the value for f3
corresponding to x1, etc.). The chart is given by

Stage First Job Second Job Results Remaining Machines
1 0 n 5n/2 2n/3
2 0 2n/3 5n/3 4n/9
3 4n/9 0 4n/3

Total
11n/2

Table 13.1: This shows the results from our calculations in tabular form.

13.3.2 Problem 2

A merchant can buy a number of items at 10 each, and resells them at 25 each. He can return
those which he has not sold after one month and recover 5 for each, and he can also buy new items,
again at 10 each. At the end of two months he can return unsold items for 2 each. Determine the
best policy: How many should he buy to begin with, or after one month? How may should he
return after one month?
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Assume the following probability distribution of demands during the first two months: First month:
required number of items

Probability 0 1 2 3 4 5
1/8 1/8 1/4 1/4 1/8 1/8

(13.3.5)

Second month: required number of items:

Probability 0 1 2
1/4 1/2 1/4

(13.3.6)

It is required to optimize the expected profit.

Solution:

As with the previous problem, we work backwards. We start with possibilities after the first month
has ended and find what all the possibilities are, then use those possibilities with the possibilities
in the first month to look at all the potential ways of getting a profit.

There is nothing clever about it, as there are just a lot of steps of doing arithmetic with the given
probabilities (expected cost if buying 7 selling 3, for example). The only other thing required is
that there is no reason to every have more than 7 bought since that is the most it is possible to
sell in this scenario.

13.3.3 Problem 3

Solve Example 4-1 by an application of the Principle of Optimality.

Solution:

Example 4-1 is a find the shortest route problem. This would entail us starting at the end, finding
the shortest route backwards We can note that to get to H from any of the nodes Y, S, or D there
is clearly a shortest route. Y, S, and D all connect variously to L and B. So we need to check
which values are optimal from L to H and B to H via all various paths. Clearly L to S to H is
fastest from L and B to D to H is fastest from B. Then from M we have to choose between the M
to L to S to H giving 95 or from M to B to D to H giving 98 and so choose M to L to S to H.

13.3.4 Problem 4

A man who can swim at a speed c wants to cross a river. At a distance x from the opposite
bank the speed of the river’s flow is vx. It is required to determine in which direction to swim at
any given stage so as to make the deviation downstream from the point opposite to the start as
small as possible. Formulate the functional equation for solving the problem, assuming that vx is
constant for all values above x− 1 up to and including x. Solve the functional equation for vx = x
(a constant larger than c).

Solution:
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The book has a crucial typo again. It meant for vx = v > c since vx cannot both be a constant and
vary with x at the same time. If the book just could make clear questions, it would be possible to
solve these without so many headaches. The book is not very good at making clear, unambiguous
questions. What is stated is very confusing, and I honestly don’t know what it means by assume
that the velocity is constant for values above x − 1 up to including x. Especially since the very
next line says to assume vx simply is a constant. I think it just means assume vx is a constant
across the river.

In that case, we can make an angle α from simply pointing yourself at the opposite bank and
swimming. Then during any time t across the river, the deviation from going to the opposite shore
will be (if your speed is c) (−c sinα+ vx)t. And, the time can be found fairly easily. If we cover a
distance d, then we must have t = d/(c cosα). Thus the deviation will be

−c sinα + vx
c cosα

d = d
( vx
c cosα

− tanα
)

(13.3.7)

Now we can make the distance d = 1 so that the deviation will be per unit across the river for
convenience (which is what I think the book is trying to say with its odd x− 1 and x sentences).
Then we must have (calling the deviation F (x) for location x) that

F (x) =
( vx
c cosα

− tanα
)
+ F (x− 1) (13.3.8)

F (x) = d
( vx
c cosα

− tanα
)
+ F (x− d) (13.3.9)

where the latter equation is the more general form that makes sense for a constant velocity river.
We want to find one that minimizes this, so we look for

F (x) = min
[
d
( vx
c cosα

− tanα
)
+ F (x− d)

]
(13.3.10)

We can try what looks like a possible recursive solution via

f(x) = x
( vx
c cosα

− tanα
)

(13.3.11)

which yields

d
( vx
c cosα

− tanα
)
+ (x− d)

( vx
c cosα

− tanα
)

(13.3.12)

= x
( vx
c cosα

− tanα
)

(13.3.13)

and so is a solution to the above functional relationship. We then just need to minimize it (with the
idea that this is the most generic function that satisfies the relationship). This involves taking a
derivative with respect to α and setting it equal to zero to find the smallest deviation as a function
of α.

df

dα
= x

(
−vx(− sinα)

c cos2 α
− sec2 α

)
= x

(
vx tanα

c cosα
− sec2 α

)
= 0 (13.3.14)

vx tanα

c cosα
=

1

cos2 α
(13.3.15)

vx sinα

c
= 1 (13.3.16)

α = sin−1
(
c

vx

)
(13.3.17)

Thus, this is the optimal α with which to minimize the deviation from directly across the river.

DRAFT:MP Notes
July 20, 2020

©K. J. Bunkers


	Contents
	Background
	The Algebra of Linear Equalities
	Definitions
	Basic Feasible Solutions
	Geometric Transformations
	Geometric Representation
	Exercises
	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5


	The Algebra of Duality
	Definitions
	Homogeneous Systems
	Polarity
	Inhomogeneous Inequalities. Duality Theorem. Existence Theorem
	Orthogonality
	Exercises
	Problem 1
	Problem 2
	Problem 3
	Problem 4


	Theory of Graphs and Combinatorial Theory
	Definitions
	Shortest Path
	Maximal Flow. Minimum Cut
	Dual Graphs
	Directed Network of the Transportation Problem
	Trees. Triangularity
	Dantzig Property. Unimodular Property
	Systems of Distinct Representatives. Related Theorems
	Exercises
	Problem 1
	Problem 2
	Problem 3
	Problem 4


	General Algorithms
	Simplex Method
	Simplex Method. Finding a first feasible solution
	Simplex Method. Degeneracy
	The Inverse Matrix Method
	Constructive Proof of the Duality and Existence Theorems
	Dual Simplex Method
	Dual Simplex Method. Cycling
	Bounded Variables
	Multiplex Method
	The Cross-Section Method
	The Primal-Dual Algorithm
	Relaxation Method
	Exercises
	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5
	Problem 6
	Problem 7
	Problem 8
	Problem 9
	Problem 10
	Problem 11
	Problem 12


	Special Algorithms
	Transportation Problem
	Transshipment
	Transportation With Capacity Restrictions
	Network Flow Method
	The Assignment Problem
	The Assignment Problem. The Hungarian Method
	The Bottleneck Assignment Problem
	Multiple Distribution
	Exercises

	Uses of Duality. Economic Interpretation
	Shadow Prices
	Efficient Points
	Input-Output Analysis
	Exercises
	Problem 1
	Problem 2
	Problem 3


	Selected Applications
	Parametric Linear Programming
	Exercises
	Problem 1
	Problem 2
	Problem 3
	Problem 4


	Discrete Linear Programming
	Travelling Salesman
	Allocation Problem
	Logical Relations
	Fixed Charge Problem
	Discrete Linear Programming Algorithms
	Discrete Linear Programming Algorithms. Mixed Case
	Exercises
	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5
	Problem 6


	Stochastic Linear Programming
	Range of Values
	Distribution Problems and Expected Value Problems
	Exercises
	Problem 1
	Problem 2


	Nonlinear Programming
	Definitions
	Approximations
	Quadratic Programming
	Quadratic Duality
	Exercises
	Problem 1
	Problem 2
	Problem 3
	Problem 4


	Dynamic Programming
	Principle of Optimality
	Functional Equations
	Exercises
	Problem 1
	Problem 2
	Problem 3
	Problem 4



