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Interesting Physics Problems 1 CURRENT CARRYING WIRES WITH SPRINGS

1 Current carrying wires with springs

I I

...

...

`

Figure 1: Schematic of current carrying wire and springs.

Consider two current carrying wires as in Figure 1 with springs (evenly spaced, ` apart, all with
spring constant k) in between. If the uncompressed spring has equilibrium length x0, what is the
position of the two wires when the force from the spring balances the force due to the magnetic
field? (That is what is the distance between the two wires at equilibrium). If you get more than
one answer explain which answers are physical and which are unphysical (and why), and which
are stable and which are unstable.

Solution:

The force applied to the left (right) per unit length on the right (left) wire is

F = I×B = IB = I
µ0I

2πx
(1.1)

where x is the distance between the two wires. So the force will be

F =
µ0I

2`

2πx
(1.2)

The spring will have a force

F = k(x− x0) (1.3)

©K. J. Bunkers 3 of 14 Updated March 31, 2020



Interesting Physics Problems 1 CURRENT CARRYING WIRES WITH SPRINGS

Now let a force to the right (looking at the right wire) be positive. Then we have

−µ0I
2`

2πx
+ k(x0 − x) = 0 (1.4)

k(x0 − x) =
µ0I

2`

2πx
(1.5)

(xx0 − x2) =
µ0I

2`

2πk
(1.6)

x2 − xx0 +
µ0I

2`

2πk
= 0 (1.7)

⇒

x =
x0 ±

√
x20 −

2µ0I2`
πk

2
≡ x±eq. (1.8)

Now we need to determine if either of these solutions are stable. If they are stable, then when we
put in a small deviation, the force should act against the change.

So let’s put in a δx to equilibrium x±eq..

− µ0I
2`

2π(x±eq. + δx)
+ k(x0 − (x±eq. + δx)) (1.9)

≈ − µ0I
2`

2π (x±eq.)

(
1− δx

x±eq.

)
+ k(x0 − x±eq.)− kδx (1.10)

≈

(
µ0I

2`

2π (x±eq.)
2 − k

)
δx+− µ0I

2`

2πx±eq.
+ k(x0 − x±eq.)︸ ︷︷ ︸
=0

(1.11)

≈

(
µ0I

2`

2π (x±eq.)
2 − k

)
δx (1.12)

≈

 2µ0I
2`

π

(
x0 ±

√
x20 −

2µ0I2`
πk

)2 − k

 δx (1.13)

≈


2µ0I2`
π
− k

(
x0 ±

√
x20 −

2µ0I2`
πk

)2

(
x0 ±

√
x20 −

2µ0I2`
πk

)2

 δx (1.14)

(1.15)

Now we must have x20 >
2µ0I2`
πk

, so that

2µ0I
2`

π
< kx20 (1.16)
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Interesting Physics Problems 1 CURRENT CARRYING WIRES WITH SPRINGS

and so for x+eq. we have

k

(
x0 +

√
x20 −

2µ0I2`

πk

)2

> kx20 (1.17)

⇒

2µ0I
2`

π
− k

(
x0 +

√
x20 −

2µ0I2`

πk

)2

< 0 (1.18)

and so for δx > 0 we have a negative force, and for δx < 0 we have a positive force. This means
it is a stable equilibrium.

For x−eq., it must be unstable (as there are only two roots, and so if one is stable, the other one
must be unstable, as can be seen in Figure 2).

(Alternatively, we can plot −µ0I
2`

2πx
+ k(x0 − x) as a function of x and look at its roots. We see in

Figure 2 that the root closest to zero is unstable (if you move a little to the left on it, then the
force pushes to the left, and if you move a little to the right, the force pushes to the right), while
the larger root is stable (if you move a little to the left on it, then the force pushes to the right,
and if you move a little to the right, the force pushes to the left), just as our previous analysis
showed.)

Figure 2: Qualitative behavior of force as function of distance, x.

So we see both answers are physical, although the unstable equilibrium will collapse the spring if
x gets any smaller, and the wires will hit each other.

As an example, given x0 = 2 cm, I = 100 A, ` = 10 cm, and k = 6 N/m, we would find

x±eq. = 0.018 m, 0.0018 m

x+eq. = 1.8 cm

x−eq. = 1.8 mm

©K. J. Bunkers 5 of 14 Updated March 31, 2020



Interesting Physics Problems 2 COIN ON CARD ON GLASS

2 Coin on Card on Glass

You’ve undoubtedly heard of the experiment where you place a playing card on top of a glass with
a coin on top of the playing card. If you pull quickly, you learn that the coin falls into the glass,
while if you pull slowly the coin comes off with the card. (Assume for the sake of simplicity that
you always pull the card out at a constant velocity.) Why does this occur?

Solution:

An often used answer is friction; that is the friction changes depending on the velocity, but this
turns out to be incorrect. Experimentally, one finds that friction between two solids is independent
of velocity (at least in the Newtonian picture). The answer one might say is inertia, but this is a
qualitative answer.

The answer is to look at the forces on the coin. There is of course gravity, but we’re only concerned
with motion along the horizontal direction. In this direction there is only a force from the friction
of the coin and the card. Call the coefficient of friction µ and the mass of the coin m. Then we
see that the force on the coin must be F = µmg.

Now this acceleration is constant for as long as the card is in contact with the coin. The velocity
of the coin after t seconds in contact with the card will be∫ t

0

dv

dt′
dt′ =

∫ t

0

µg dt′ ⇒ v(t) = µgt (2.1)

and the distance covered (calling the initial coin location x0 = d/2 with d the diameter, so the
coin was in the center of the glass) will be

x(t) =
µgt2

2
+
d

2
. (2.2)

Now if we pull the card out at a velocity V then the maximum time the coin could be in contact
with the card is the half the diameter of the glass from d/2 to d. Then the maximum time is
d
2V

= T . The coin must not move farther than d/2 in this time, hence

µgT 2

2
+
d

2
=
µgd2

8V 2
+
d

2
≤ d⇒ µgd

4V 2
≤ 1. (2.3)

If you prefer the radius of the glass (r = d/2) we have

µgr

2V 2
≤ 1 . (2.4)

This makes things much clearer. The amount of time of contact between the coin and the card is
what matters, and while friction does matter, the less time of contact, the less the card can affect
the coin.

©K. J. Bunkers 6 of 14 Updated March 31, 2020
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3 Relativistic Rocket at Constant Acceleration

A spaceship is going to be sent to a distant star, which is a distance D away from Earth (measured
by Earth). It uses a magic engine that causes it to accelerate at a′ (in its frame) without losing
any appreciable amount of its mass until it reaches the midpoint of the trip and then the spaceship
magically decelerates at a′ until it reaches its destination.

Both in the Earth frame and in the rocket frame answer: What time does it take for the spaceship
to get from Earth to the star (it starts at x = 0 and v = 0 at t = 0)? How long does it take to go
to the star and return via the same flight plan ignoring the time spent at the star?

For Alpha-Centauri at a distance of D = 4.3 light years = 4.3 lyr and an acceleration of a′ =
1.0 m/s2, what are the values of these times?

[The Earth frame is the “stationary frame” and the rocket frame is the the frame that the astronauts
on the spaceship consider themselves to be in. That is, for example, the astronauts measure a
certain time for a process in the rocket frame.]

Solution:

Following the lead of a′ let values in the rocket frame be primed and measurements in the Earth
frame be unprimed.

Then as, always, we have the Lorentz transformation between the rocket frame and the Earth
frame as 

γ −βγ 0 0
−βγ βγ 0 0

0 0 1 0
0 0 0 1



ct
x
y
z

 =


ct′

x′

y′

z′

 (3.1)

Or

cγt− βγx = ct′ (3.2)

−cβγt+ γx = x′ (3.3)

where γ = 1√
1−β2

and β = v
c

where v is the instanteous velocity of the rocket relative to Earth.

Let u = dx
dt

the velocity of the rocket in the Earth frame and u′ = dx′

dt′
be the velocity of the rocket

in the rocket frame.

cγ dt− βγ dx = c dt′ (3.4)

γ dt− βγ dx

c
= dt′ (3.5)

−cβγ dt+ γ dx = dx′ (3.6)

dx′

dt′
=
−cβγ dt+ γ dx

γ dt− β γ
c

dx
=
−cβγ + γ dx

dt

γ − γ β
c
dx
dt

(3.7)
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u′ =
−cβγ + γu

γ − γ β
c
u

(3.8)

u′ =
−cβ + u

1− β
c
u

(3.9)

and so using this for a small change in acceleration we find

du′ =

(
1− β

c
u
)

( du)− (−cβ + u)
(
−β

c
du
)(

1− β
c
u
)2 (3.10)

=
du
(
1− β

c
u− β2 + β

c
u
)

(1− β
c
u)2

(3.11)

=
du (1− β2)

(1− β
c
u)2

= du
γ−2

(1− β
c
u)2

(3.12)

now as u = v then

du′ = duγ−2γ4 = duγ2 (3.13)

du′

dt′
=

du

dt′
γ2 =

du

dt

dt

dt′
γ2 =

du

dt
γ3 (3.14)

a′ =
d2x

dt2
γ3 (3.15)

with γ =

(
1− 1

c2

(
dx

dt

)2
)−1/2

.

We can notice that the right hand side can be written

d(γv)

dt
= v

dγ

dt
+ γ

dv

dt
(3.16)

= v
−2β

c
a

−2 (1− β2)3/2
+ γa (3.17)

= (β2γ2 + 1)aγ =

(
β2 + 1− 1

1− β2
+ 1

)
aγ (3.18)

d(γv)

dt
=

(
−1 +

1

1− β2
+ 1

)
aγ = γ3a =

d2x

dt2
γ3 . (3.19)

So we have that

a′ = γ3a =
d(γv)

dt
(3.20)∫ t

0

a′ dt =

∫ t

0

d(γv)

dt
dt (3.21)

a′t = γv (3.22)
v√

1− v2/c2
= a′t (3.23)
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v2 =

(
1− v2

c2

)
a′2t2 (3.24)

v2
(

1 +
a′2t2

c2

)
= a′2t2 (3.25)

v =
a′t√

1 + a′2t2

c2

=
dx

dt
(3.26)

and so with u = a′t/c and du = a′ dt/c∫ t

0

dx

dt
dt =

∫ t

0

a′t√
1 + a′2t2

c2

dt (3.27)

x =
c2

a′

∫ a′t/c

0

u du√
1 + u2

(3.28)

and using y =
√

1 + u2 so dy = (1 + u2)
−1/2

u du we find

x =
c2

a′

∫ √1+a′2t2/c2

1

dy (3.29)

x =
c2

a′

(√
1 + a′2t2/c2 − 1

)
. (3.30)

Now we need to employ some symmetry in the situation. If the rocket is accelerating constantly
to the midpoint and then decelerating constantly to the end, it should take the same amount of
time to go from the beginning to the midpoint as from the midpoint to the end.

If this is unclear to you, I suggest you ask yourself if you start at some position, accelerate away
at a constant rate for some time t and then turn around and accelerate in the opposite direction
with the same rate of acceleration as before (just a different direction). How long will it take until
you stop? It should take a time t as that is the time it took to accelerate to the current velocity.

So we only need to find the time it takes to get halfway from Earth to the star. We then muliply
by two to find the total time to take the trip from Earth to the star. We then only need to multiply
this last result by 2 again to find the total time to go from the Earth to the star and back, as the
return trip should take the same amount of time as trip there.

So using that x = D/2 we find

D

2
=
c2

a′

√
1 + a′2t2/c2 − c2

a′
(3.31)

a′D

2c2
=
√

1 + a′2t2/c2 − 1 (3.32)(
a′D

2c2
+ 1

)2

= 1 +
a′2t2

c2
(3.33)

a′2t2

c2
=

(
a′D

2c2
+ 1

)2

− 1 (3.34)
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t2 =
c2

a′2

(
a′D

2c2
+ 1

)2

− c2

a′2
(3.35)

t2 =
c2

a′2

(
a′2D2

4c4
+
a′D

c2
+ 1− 1

)
(3.36)

t2 =

(
D2

4c2
+
D

a′

)
(3.37)

t =

√
D2

4c2
+
D

a′
(3.38)

Now we need t′. Let’s use that
dt′

dt
=

1

γ
so that

a′ = γ3
d2x

dt2
= γ3

dv

dt
= γ3

dv

dt′
dt′

dt
(3.39)

= γ3
dv

dt′
1

γ
(3.40)

= γ2
dv

dt′
(3.41)

(3.42)

and so we see that we have (letting vmid be the velocity of the spaceship at the midpoint relative
to Earth) ∫ t′

0

a′ dt′ =

∫ vmid

0

1√
1− v2

c2

dv (3.43)

a′t′ =

∫ vmid

0

1√
1− v2

c2

dv (3.44)

a′t′ = c tanh−1
(vmid

c

)
(3.45)

t′ =
c

a′
tanh−1

(vmid

c

)
. (3.46)

And we know from 3.26 that

vmid =
a′t√

1 + a′2t2

c2

(3.47)

vmid = a′
√
D2

4c2
+
D

a′

(
1 +

a′2

c2

(
D2

4c2
+
D

a′

))−1/2
(3.48)

Note we can use

v2mid = c2
a′2t2/c2

1 + a′2t2/c2
= c2

(1 + a′D
2c2

)2 − 1

1 + (1 + a′D
2c2

)2 − 1

= c2
(1 + a′D

2c2
)2 − 1

(1 + a′D
2c2

)2
= c2

(
1− 1(

1 + a′D
2c2

)2
) (3.49)
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Summarizing, the time in the Earth frame to get from Earth to the star is

ttrip = 2t = 2

√
D2

4c2
+
D

a′
(3.50)

the total time for there and the return trip is

treturn = 4t (3.51)

and for the people in the rocket frame the time is

t′trip = 2t′ = 2
c

a′
tanh−1

(vmid

c

)
(3.52)

and the total time for there and the return trip is

t′return = 4t′ (3.53)

with

vmid =
a′t√

1 + a′2t2

c2

= a′
√
D2

4c2
+
D

a′

(
1 +

a′2

c2

(
D2

4c2
+
D

a′

))−1/2
(3.54)

vmid

c2
= 1− 1(

1 + a′D
2c2

)2 . (3.55)

For the specific case of Alpha-Centauri, we then find

ttrip = 2

√
(4.3 lyr)2

4c2
+

(4.3 lyr)

(1.0 m/s2)
= 2

√
(4.3)2 yr2 +

4.3 yr

1.0 m/s2
(299792458 m/s)(3.156× 107 s/yr)

(3.156× 107 s/yr)2

(3.56)

= 2

√
(4.3)2 yr2

4
+

4.3 yr

1.0 m/s2
(299792458 m/yr)

(3.156× 107 s/yr)
(3.57)

≈ 2(6.743 yr) = 13.486 yr (3.58)

and so

treturn = 4(6.743 yr) = 26.972 yr . (3.59)

We have

βmid =
vmid

c
=

a′t

c
√

1 + a′2t2

c2

(3.60)

≈ (1.0 m/s)(6.743 yr)√
c2 + (1.0 m/s2)(6.743 yr)2

(3.61)

≈ (1.0 m/s)(6.743 yr)(3.156× 107 s/yr)√
(299792458 m/s)2 − (1.0 m/s2)(6.743 yr)2(3.156× 107 s/yr)2

(3.62)

βmid ≈ .579 (3.63)
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and so

t′trip = 2t′ = 2
c

a′
tanh−1 (βmid) (3.64)

≈ 2
299792458 m/s

1.0 m/s2(3.156× 107 s/yr)
tanh−1 (.579) (3.65)

t′trip = 2(6.279) = 12.56 yr (3.66)

and

t′return = 4t′ = 4(6.279) = 25.12 yr . (3.67)
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4 Spinning Meter Stick

Consider a meter stick with one end marked in red. In the lab frame, the stick moves in the z
direction at a velocity v, which may be relativistic. Suppose that in the rest frame of the meter
stick, that angular distribution of the meter stick is uniform (i.e., that the red part is equally likely
to point in any direction). Find the probability P (θ) dΩ that the stick is pointing in the solid angle
Ω about θ where θ measures the angle from the z axis.

Solution:

Let’s align the z axis with our z axis in spherical coordinates. Then clearly, the biggest difference
between the rest frame and the laboratory frame is that the z direction in the lab frame is length
contracted. For clarity, call the pion frame the primed frame. Then P (θ′) is simply 1/4π for a flat
probability distribution. Then we need the conversion from dΩ′ → dΩ. We have

dΩ′ = sin θ′ dθ′ dφ′ (4.1)

In addition, from length contraction, we have for a vector of length R′ in the pion frame γ2 =
1/(1− v2/c2), so z = z′/γ. Thus (with r2 = x2 + y2 = x′2 + y′2)

tan θ =
r

z
=
γr

z′
= γ tan θ′ (4.2)

tan2 θ

γ2
= sec2 θ′ − 1 (4.3)

sec2 θ′ =
tan2 θ

γ2
+ 1 (4.4)

Thus

sec2 θ dθ = γ sec2 θ′ dθ′ = γ

[
tan2 θ

γ2
+ 1

]
dθ′ (4.5)

So then using sin θ′ =
√

1− cos2 θ′ we find

sin θ′ dθ′ =

√
1− cos2 θ′ cos2 θ′

γ cos2 θ
dθ (4.6)

We have

cos2 θ′
√

1− cos2 θ′ =
1

tan2 θ
γ2

+ 1

√
1− 1

tan2 θ
γ2

+ 1
=

γ2

tan2 θ + γ2

√√√√ tan2 θ
γ2

1 + tan2 θ
γ2

(4.7)

=
γ2

tan2 θ + γ2

√
tan2 θ

γ2 + tan2 θ
=

γ2 tan θ

(tan2 θ + γ2)3/2
(4.8)
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and so

P (θ′) dΩ′ =
1

4π
sin θ′ dθ′ dϕ′ =

1

4π

γ2 tan θ

γ cos2 θ (γ2 + tan2 θ)
3/2

dθ dϕ =
1

4π

γ2

γ cos3 θ (γ2 + tan2 θ)
3/2

sin θ dθ dϕ

(4.9)

=
1

4π

γ2

γ cos3 θ (γ2 + tan2 θ)
3/2

dΩ =
γ

4π
(
γ2 cos2 θ + sin2 θ

)3/2 dΩ =
γ

4π
(

1 + v2

γ2c2
cos2 θ

)3/2 dΩ

(4.10)

(4.11)

So that

P (θ) =
γ

4π
(

1 + v2

γ2c2
cos2 θ

)3/2 =
γ

4π ([γ2 − 1] cos2 θ + 1)3/2
(4.12)

At θ = 0 we find

P (0) =
γ

4π (γ2)3/2
=

γ

4πγ3
=

1

4πγ2
(4.13)

and for θ = π/2 we find

P (0) =
γ

4π (1)3/2
=

γ

4π
(4.14)

which makes sense. In the lab frame, as v → c, then γ ≫ 1 and we are more likely to find the
meter stick pointing towards θ = π/2 than towards θ = 0 because of the length contraction of the
meter stick. We also see that as v/c→ 0 that we recover a uniform probability distribution.
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