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Chapter 1

Mathematical Physics

1.1 Strange Birth Control

A community practices birth control in the following peculiar fashion. Each set of parents continues
having children until a son is born; then they stop. What is the ratio of boys to girls in this
community if, in the absence of birth control, 51% of the babies born are male.

Solution:

There is no change. We still have 51% of babies born as male, and 49% as female. Every baby
still has a 51% chance of being a baby boy, and stopping does not change this ratio, so that on
average we still have 51/49 split.

Another way to think about is consider two child families (GB) that would have gone on to have
three children. Given GB, there was a 49% chance for GBG that was eliminated , but note also
that there was a 51% chance that the family would have had GBB that was also eliminated. So
it didn’t change the sex ratio of two child families on average because it eliminated the would-be
three child families equally.

1.2 Painting Cubes/Dice

A die consists of a cube which has a different color on each of 6 faces. (a) How many distinguishably
different kinds of dice can be made? (b) How many different ways are there to make a pair of dice?

Solution:

(a)

There are clearly 6! dice if we disregard rotation. So we need to see how many possible rotation
states are the same. Choose one face of the 6 faces to be on the bottom. Then the top is fixed.
Then choose one of the 4 remaining faces to be facing you. Thus, there are 6 · 4 = 24 equivalent
dice through rotations. We thus find 6!/(6 · 4) = 5 · 3 · 2 = 30 different dice.

(b)
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8 Painting an Octahedron

Assuming that both dice have the same six colors, we must be careful about whether die 1 or die
2 are swappable. That is if we swap the labels for die 1 and die 2, is it equivalent to another entry
in our list of all permutations. Clearly, we have 30 choices for the first die. Let the two dice be
designated AB. We use that AB=BA for any two set of dice so that we divide our 30 · 30 choices
in half. However, this overcounts the corrections because if A and B happen to be the same dice,
it shouldn’t be divided out twice. We need to be careful of the 30 cases of the dice being identical.
The simplest way to see this is consider there are N dice. Then we can construct a matrix

(1, 1) (1, 2) (1, 3) · · · (1, N)
(2, 1) (2, 2) (2, 3) · · · (2, N)

... (1, 2) (1, 3) · · · (3, N)
. . .

(N, 1) (N, 2) (N, 3) · · · (N,N)

 (1.1)

We then see that there are N2 total elements, but that the upper and lower half are identical since
we cannot distinguish (1, 2) from (2, 1) for example. We must keep the main diagonal though. So

we have N + (N2 −N)/2 = 2N+N2−N
2

= N2+N
2

= N(N+1)
2

distinct sets. Thus, for N = 30 we have
15 · 31 = 450 + 15 = 465 possibilities.

1.3 Painting an Octahedron

Each face of a regular octahedron is to be given a different color. If eight different colors are
available, how many distinguishable octahedra can be made?

Solution:

(An octahedron is made purely of triangle faces along a square “base” in the center). We have
8! ways of painting the octahedron, but we have to remove symmetries. Choose one of the 6
vertices as pointing up, and then choose one of the four top faces to be pointing towards us. Thus
there are 6 · 4 = 24 degeneracies and we thus have

8!

24
= 8 · 7 · 5 · 3 · 2 = 56 · 30 = 1680 (1.2)

distinct octahedra.

1.4 Card Dealing

In dealing 52 cards, consisting of 4 suits of 13 cards each among 2 teams (each team containing two
partners), what is the probability that a particular pair of partners obtains at least one complete
suit between them?

Solution:

Each team will get 26 cards. There are 52 choose 26 possible ways of putting a 52 card deck into
two 26 card hands. Pick a specific suit. Then the opposite pair must choose their 26 cards from
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Mathematical Physics 9

39 non spades which has 39 choose 26 possibilities. Now there are 4 ways of choosing the suit. So
the probability for this would be

4

(
39
26

)
(

52
26

) (1.3)

However, note we have certainly over-counted (in fact double counted) because the top number
includes cases where we have two suits that are the same counted twice (if we chose spades as
the specific suit above, then there is a hand where we have all spades and hearts, so we can’t just
multiply by four because that counts this case again in the hearts specific suit case). So we need
to subtract off the number of ways of getting exactly two specific suites. How many ways are there
of dealing two specific suites to each side? There are 6 or 4 choose 2 ways (choose the two suits to
be given). So the probability actually is

4

(
39
26

)
− 6(

52
26

) =
4 39!

26!13!
− 6

52!
26!26!

=
439!26!

13!
− 6(26!26!)

52!
≈ 0.0000655 = 0.00655% (1.4)

1.5 Probability Process

A certain process has the property that, regardless of what has transpired in an interval [0, t],
the probability that an event will take place in the interval [t, (t + h)] is λh. Assume that the
probability of more than one event is of higher order in h. Determine the probability that at a
time t, n events have taken place, passing to the limit of h going to zero. Evaluate the average
value of n and the average value of n2 for the distribution function.

Solution:

We have (λh)n(1−λh)t/h−n as the probability of a specific string of n events and t/h−n non-events
taking place. There are t/h ≡ N choose n ways of getting n events so that the probability is

P =
N !

n!(N − n)!

(
λt

N

)n(
1− λt

N

)N−n
(1.5)

In the limit h→ 0 then N →∞ so that for the factorials we can use Stirling’s formula which says

lim
N→∞

N !→
√

2πN

(
N

e

)N
∼ NN (1.6)

We also know that the top factorial will dominate so that

Ph→0 =
NN

n!NN−n (λt)nN−n
(

1− λt

N

)N−n
=

(λt)n

n!

(
1− λt

N

)−n(
1− λt

N

)N
(1.7)
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10 Probability Process

and (1− λt
N

)N → e−λt. Therefore

Ph→0 =
(λt)n

n!
e−λt (1.8)

To find the average for n we use

〈n〉 =
N∑
n=0

nP =
N∑
n=0

n
N !

n!(N − n)!

(
λt

N

)n(
1− λt

N

)N−n
(1.9)

For N →∞

〈n〉 =
∞∑
n=0

nPh =
∞∑
n=0

n
(λt)n

n!
e−λt = e−λt

∞∑
n=0

n(λt)n

n!
(1.10)

We remember that

eαx =
∞∑
n=0

(αx)n

n!
(1.11)

So using

deαx

dα
= xeαx =

∞∑
n=0

d

dα

(αx)n

n!
=
∞∑
n=0

nx(αx)n−1

n!
=

1

α

∞∑
n=0

n(αx)n

n!
(1.12)

∞∑
n=0

n(λt)n−1

n!
= λteλt (1.13)

Thus the average becomes

〈n〉 = e−λt
∞∑
n=0

n(λt)n

n!
= e−λtλteλt = λt (1.14)

Next we find 〈
n2
〉

=
∞∑
n=0

n2Ph =
∞∑
n=0

n2 (λt)n

n!
e−λt = e−λt

∞∑
n=0

n2(λt)n

n!
(1.15)

We use a similar trick to last time.

d2eαx

dα2
= x2eαx =

∞∑
n=0

d2

dα2

(αx)n

n!
=
∞∑
n=0

n(n− 1)x2(αx)n−2

n!
=

1

α2

∞∑
n=0

(n2 − n)(αx)n

n!
(1.16)

=
1

α2

∞∑
n=0

n2(αx)n

n!
− 1

α2

∞∑
n=0

n(αx)n

n!︸ ︷︷ ︸
=αxeαx

(1.17)

∞∑
n=0

n2(αx)n

n!
= (α2x2 + αx)eαx (1.18)

and so 〈
n2
〉

= e−λt
∞∑
n=0

n2(λt)n

n!
= e−λt(λ2t2 − λt)eλt = λ2t2 + λt (1.19)
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Mathematical Physics 11

1.6 Star Distribution

there are about 6500 stars visible to the naked eye. Sometimes two stars appear very close together,
though upon careful examination no physical connection is found between them. Such a pair is
called an optical double star. (a) Assuming the stars to be distributed at random on the celestial
sphere, compute the expectation value of the number of optical double stars with a separation of
no more than 1′ of arc. (b) What is the probability that there are precisely two optical double
stars? (c) Estimate roughly the probability of an optical triple star.

Solution:

(a)

The celestial sphere has 4π steradians of surface. The solid angle carved out by a θ = 1′ = 1
3600

◦ ≈
2.9× 10−4 rad angle is given by (Ω is solid angle and in the following formula θ is in radians)
Ω = 2π(1− cos θ). Because θ is so small this is essentially Ω = πθ2. Since all solid angle is equally
likely for the first star we have no weighting for that one (i.e., it’s one), and for the next star we
see that the weighting factor p for likelihood of a star being in the solid angle around the first star

p ≈ πθ2

4π
≈ θ2

4
≈ 2.1× 10−8 (1.20)

as this is the likelihood of the second star being in that bit of solid angle.

If we want only double stars (that is, we do not count triple stars and above as double stars) we
have the probability as p(1− p)N−2 so that no other stars are in this area, with N the number of
stars [here N = 6500] . Because Np � 1 [(1 − p)N−2 ≈ 1 − (N − 2)p + · · · ≈ 1] we can ignore
this additional factor. The number of independent pairs (that is, we count each double star once

rather than each star in a double star twice) is N(N−1)
2

pairings, so the average number of double
stars would be

N(N − 1)

2
p ≈ 0.45 (1.21)

(b)

For there to be exactly two optical double stars, we require the above to happen exactly twice.
For a specific two pairs that are distinct, the first star can be anywhere, the second star must be
within the radius so p, the next star can be anywhere but this area so (1− p) and its pair must be
at this same location so probability p. The rest of the stars have increasingly less area to choose
from

Pdouble = p(1− p)p(1− 2p)(1− 3p) · (1− (N − 3)p) (1.22)

We now need to find the number of ways that this could be done (call this number W ). We first

must choose 4 stars from the N , and then choose 2 of the 4 to form a pair giving

(
N
4

)(
4
2

)
ways

of choosing these stars. We must also divide by 2 because we don’t care the order of the stars in
each pairing. Thus

W =
1

2

N !

4!(N − 4)!

4!

2!2!
=

1

2

N !

2!2!(N − 4)!
∼ 1

23

NN

NN−4
∼ 1

2

(
N2

2

)2

(1.23)
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12 Eigenvalues and Eigenvectors

If we use a trick that for jp� 1

logX = log
N−3∑
n=1

[(1− jp)] ≈ log
N−3∑
n=1

(−jp) =
−p(N − 3)(N − 2)

3
∼ −pN

2

2
(1.24)

which is nearly the same as the average number of double stars before with the same scaling. If
we call pN2/2 = λ. We see that in the appropriate limit this is basically

WPdouble ∼
1

2

(
N2p

2

)2

X =
1

2
λ2e−λ ≈ 0.063 (1.25)

(c)

To find a triple optical star let’s look at the number of ways to get a specific three stars first.
The first star can be anywhere, the second must be in the correct solid angle, so its there with
probability p, and so must the third star, giving another p. If we want the rest to not be in the
triplet, then we tack on the necessary (1 − p)N−3. So we have p2 if it is a triplet or higher, and
p2(1− p)N−3 if it must be a triplet.

Now how many ways are there to form this triplet? There are N choose 3 ways. Thus the
probability is

p2 N !

3!(N − 3)!
∼ p2N3

6
≈ 2× 10−5 (1.26)

1.7 Eigenvalues and Eigenvectors

Find eigenvalues and normalized eigenvectors of the matrix

M =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 (1.27)

Solution:

There are four eigenvalues. We note that this matrix is the inverse of itself, thus it has four
eigenvalues with two eigenvalues being inverses of two others. We also see that it is Hermitian,
and so its eigenvalues have absolute value 1. We also note the trace is zero. Thus

λ1 +
1

λ1

+ λ2 +
1

λ2

= 0 (1.28)

λ2
1 − 1

λ1

=
1− λ2

2

λ2

(1.29)

Clearly λ1 = 1 and λ2 = −1 will satisfy these equations. We see

M =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



x1

x2

x3

x4

 =


x4

x3

x2

x1

 = µ


x1

x2

x3

x4

 (1.30)
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So for µ = 1 we see we require x1 = x4 and x2 = x3. For µ = −1 we require x1 = −x4 and
x2 = −x3.

Thus two eigenvectors are

1√
2


1
0
0
1

 , 1√
2


0
1
1
0

 , 1√
2


−1
0
0
1

 , 1√
2


0
−1
1
0

 (1.31)

1.8 Trace and Square Trace

Let λi (for i = 1, 2, 3) be the eigenvalues of the matrix

H =

 2 −1 −3
−1 1 2
−3 2 3

 (1.32)

Calculate the sums (a)
∑3

i=1 λi and (b)
∑3

i=1 λ
2
i .

Solution:

The trace doesn’t change when diagonalizing a matrix. Thus

3∑
i=1

λi = 2 + 1 + 3 = 6 (1.33)

One way to see this is to write matrix M as Mij. Then the trace (with the Einstein sum notation)
is Tr[M] = Mii. When diagonalizing a matrix, we have the matrix M = P−1DP with D the
eigenvalue matrix. We use

Tr[AB] = AijBji = BjiAij = BijAji = Tr[BA] (1.34)

Tr[ABC] = AijBjkCki = BjkCkiAij = BijCjkAki = Tr[BCA] (1.35)

So that TrM = Tr[P−1DP] = Tr[DP−1P] = Tr[D].

We can find the sum of the squares either by squaring the matrix and taking the trace, or by finding
the eigenvalues. We can also note that the matrix is symmetric. I prefer matrix multiplication to
eigenvalue solving (esp. since we need only calculate the diagonals), so

H2 =

 2 −1 −3
−1 1 2
−3 2 3

 2 −1 −3
−1 1 2
−3 2 3

 =

4 + 1 + 9 ∗ ∗
∗ 1 + 1 + 4 ∗
∗ ∗ 9 + 4 + 9

 =

14 ∗ ∗
∗ 6 ∗
∗ ∗ 22


(1.36)

Thus the sum of the squares of the eigenvalues is 14 + 6 + 22 = 42. Even more simply, since the
matrix is symmetric we could use

Tr[H2] = Tr[HHT ] = HijHij =
3∑

i,j=1

H2
ij = 4 + 1 + 9 + 1 + 1 + 4 + 9 + 4 + 9 = 14 + 6 + 22 = 42

(1.37)
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14 Pauli Matrices

1.9 Pauli Matrices

Calculate T = Tr[eiσ·aeiσ·b], where the components of σ are the three standard Pauli matrices σi
for spin 1/2.

Solution:

The Pauli matrices are as below

σ1 =

[
0 1
1 0

]
(1.38)

σ2 =

[
0 −i
i 0

]
(1.39)

σ1 =

[
1 0
0 −1

]
(1.40)

We easily see that σ1σ1 = σ2σ2 = σ3σ3 = 1, and σaσb = δab1 + iεabcσc. Thus

aabbσaσb = aabbδab1 + iεabcaabbσc (1.41)

(a · σ)(b · σ) = (a · b)1 + i(a× b) · σ (1.42)

So for a = b we find

(a · σ)2 = a21 (1.43)

So using that an̂a = a and bn̂b = b we get

eiσ·a = 1 cos a+ i(n̂a · σ) sin a (1.44)

eiσ·b = 1 cos b+ i(n̂b · σ) sin b (1.45)

(1.46)

We use

eiσ·a = 1 + ia · σ +
i2

2!
(a · σ)2 +

i3

3!
(a · σ)3 + . . . (1.47)

= 1 + i(a · σ) +
i2a2

2!
1 +

i3a3

3!
(a · σ) + · · · (1.48)

= 1(1 +
i2a2

2!
+
i4a4

4!
+
i6a6

6!
+ · · · ) + i(a · σ)

(
a

1!
+
a3

3!
+
a5

5!
+ · · ·

)
(1.49)

= 1(1− a2

2!
+
a4

4!
− a6

6!
+ · · · ) + i(a · σ)

(
a

1!
+
a3

3!
+
a5

5!
+ · · ·

)
(1.50)

= 1 cos a+ i(a · σ) sin a (1.51)

Thus,

eiσ·aeiσ·b = (1 cos a+ i(n̂a · σ) sin a) (1 cos b+ i(n̂b · σ) sin b) (1.52)

= 1 cos a cos b+ i(n̂b · σ) cos a sin b+ i(n̂a · σ) sin a cos b− (n̂a · σ)(n̂b · σ) sin a sin b
(1.53)
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We can use Tr[σa] = 0 and Tr[σaσb] = 2δab. Thus, the two central terms are zero when we take
the trace. So we then need

Tr[(n̂a · σ)(n̂b · σ)] = Tr[na,aσanb,bσb] = 2na,anb,bδab = 2n̂a · n̂b (1.54)

So we get altogether

T = 2 cos a cos b− 2(n̂a · n̂b) sin a sin b = 2 (cos a cos b− a · b sin a sin b) (1.55)

1.10 Symmetric Second Rank Tensor

Consider a symmetric second-rank tensor
↔
T with components Tik (i, k = 1, 2, 3). (a) Show that

there exist three invariants, say I0, I1, I2, with respect to coordinate transformations, associated

with
↔
T. (b) Associate a surface 1 =

∑
i,k TikXiXk (Xj are Cartesian coordinates) with

↔
T. Give

interpretations of the three invariants in terms of properties of the surface.

Solution:

(a) A coordinate transformation can be written as PTPᵀ. Where PPᵀ = 1 with eigenvalues of
±1. This leaves distances unchanged, for example. This property also ensures that the trace is
left unchanged, as it is equivalent to finding the eigenvalues of T.

To see, this we use that

det(T− λ1) = 0 (1.56)

must remain unchanged by transformation. This implies that the characteristic polynomial gener-
ated must be unchanged. Because the powers of λ are independent, then we also must have their
coefficients be independent. Writing these out yields

det(T− λ1) = λ3 + λ2(T11 + T22 + T33)

+ λ (T12T21 − T11T22 + T13T31 + T23T32 − T11T33 − T22T33)

+ (−T13T22T31 + T12T23T31 + T13T21T32 − T11T23T32 − T12T21T33 + T11T22T33)

(1.57)

We note the λ0 coefficient is the determinant of T itself.

In other words, the invariants are

I0 = det(T) (1.58)

I1 = T12T21 − T11T22 + T13T31 + T23T32 − T11T33 − T22T33 (1.59)

I2 = Tr(T) = T11 + T22 + T33 (1.60)

(b)

If we go in a system where are axes are aligned with the eigenvectors, we can more easily explain
our three values. Let the three diagonal entries be T11 = a−2, T22 = b−2, and T33 = c−2. Then
1 = TikXiXk is an ellipsoid surface. The volume of the ellipsoid is related to the determinant, I0.

Then if we slice ellipses along the ellipsoid, I1 is related to the areas of these ellipses. Finally, I2 is
simply saying that an ellipsoid is the sum of the reciprocal squares of the lengths of the intercepts
form the center of the ellipse.
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16 Residues of Simple Functions

1.11 Residues of Simple Functions

What are the residues of the following functions at the points indicated? (a) eaz/z5 at z = 0. (b)
1/ sin3(z) at z = 0.

Solution:

(a) We remember the residue comes from finding
∮

Cdz
z

, where C is the residue. In other words,
in the Laurent series of a function f(z) =

∑∞
n=−∞ anz

n, it is the coefficient a−1. All other powers
of z will vanish in the contour integral. Thus, writing out the power series, we see

1

z5
eaz =

1

z5

(
1 + az +

(az)2

2!
+

(az)3

3!
+

(az)4

4!
+

(az)5

5!
+ · · ·

)
(1.61)

=
1

z5
+

a

z4
+

a2

2!z3
+

a3

3!z2
+
a4

4!z
+ · · · (1.62)

Thus the residue is a4/4! = a4

24
.

(b) The power series may be written as

1

sin3(z)
=

1

(z − z3

3!
+ z5

5!
)3 + · · ·

=
1

z3

1(
1− z2

3!
+ · · ·

) =
1

z3

1

1− 3 z
3

3!
+ · · ·

=

=
1

z3

(
1 + 3

z2

3!
+ · · ·

)
=

1

z3
+

1

2z
+ · · ·

(1.63)

and so the residue is 1
2
.

1.12 Integral 1

Calculate

lim
ε→0+

∫ ∞
−∞

dk

(k2 − a2 − iε)3
, a > 0 (1.64)

Solution:

We note that we can extend the integral into a contour integral because if we parameterize k = Reiθ

for this part of the contour the integrand will rapidly approach zero if we let R → ∞ due to a
scaling of 1

R5 for the integrand. We note that we have poles here as the denominator goes to zero

at k2 = a2 + iε or k = ±
√
a+ iε. Note that these poles are both order 3, because of the cube in

the denominator. Thus,

lim
ε→0+

∫ ∞
−∞

dk

(k2 − a2 − iε)3
+ lim

R→∞

∫ 0

π

iReiθ dθ

(R2e−2iθ − a2 − iε)3︸ ︷︷ ︸
→0

= lim
ε→0+

∮
dk

(k2 − a2 − iε)3
(1.65)
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Here, I will close the contour in the upper half-plane so the only residue is at
√
a2 + iε ≡ z0. We

need to find the integral, and using the sum of the residues, we see∮
dk

(k2 − a2 − iε)3
=

2πi

(3− 1)!

d2

dk2

[
(z − z0)3 1

(z − z0)3(z +
√
a2 + iε)3

]
z=z0

= iπ
d

dk

[
−3

(z +
√
a2 + iε)4

]
z=z0

(1.66)

= iπ

[
12

(z +
√
a2 + iε)5

]
z=z0

= 12iπ
1

25(a2 + iε)5/2
=

12iπ

32
(a2 + iε)−5/2 = i

3π

8
(a2 + iε)−5/2

(1.67)

Thus, as ε→ 0+, we find

lim
ε→0+

∮
dk

(k2 − a2 − iε)3
=

3πi

8a5
(1.68)

Hence,

lim
ε→0+

∫ ∞
−∞

dk

(k2 − a2 − iε)3
=

3πi

8a5
(1.69)

1.13 Integral 2

Evaluate

I =

∫ ∞
−∞

sin3 x

x3
dx (1.70)

Solution:

This integral would normally require the use of the Plemlej formula, but we are lucky that the
possible residue at z = 0 is completely removable and so adds nothing to the contour integral.

We can change this into a contour integral if we extend the integral into the upper plane with a
giant half circle, and make a tiny half-circle dip around the origin (to miss z = 0), that we will
get a proper answer. For the upper half plane, we will show that choosing this appropriately will
make this part go to zero. Call this contour C1. If we make the small half-circle dip near the origin
contour C2 and let it get smaller and smaller so that we get back to our original integral in the
limit. The entire contour (contour C) is then∮
C

sin3 z

z3
dz = lim

ε→0+

[ ∫ −ε
−∞

sin3 z

z3
dz +

∫ ∞
ε

sin3 z

z3
dz︸ ︷︷ ︸

→
∫∞
−∞ dx sin3 x

x3

]
+

∫
C1

sin3 z

z3
dz︸ ︷︷ ︸

?→0

+ lim
ε→0+

∫ 2π

π

iεθeiθ sin3(εeiθ) dθ

ε3e3iθ

(1.71)

The C1 part seems like it would go to zero because it goes as R−3 → 0 as R→∞, but remember
that for imaginary z, that sin(z) can be greater than 1. We will remedy this later. We note that
the final term in C2 still goes to zero because as ε → 0+ then sin(εeiθ)3 → ε3e3iθ + O(ε4) so that
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18 Integral 2

the integrand approaches zero. As we will soon see, the
∮
c
dz sin3 z/z3 won’t actually be what we

want on the left hand side.

Note, that because sin(z)→ 0 as z → 0, we need to be careful about the application of Cauchy’s
theorem. That is, note that

sin3 z

z3
=

(z − z3

3!
+ · · · )3

z3
= 1− 3z5

z3
+ · · · (1.72)

which would seem to imply that we do not have any poles for us to calculate over. So we use
instead that sin z = eiz−e−iz

2i
and so sin3 z = ei3z+3eize−i2z−3e−ize2iz−e−3iz

(2i)3
= e3iz+3e−iz−3eiz−e−3iz

(2i)3
Then

it is clear that we have some poles, as

e3iz

z3
=

1

z3
+

3iz

z3
+

(3iz)2

2!z3
+ · · · (1.73)

for example.

Now the exponentials with positive imaginary exponent are closed in the upper half plane so that
i=[z] < 0. Those with negative imaginary exponent will be closed in the lower half plane so
that −i=[z] < 0. The lower half-plane calculations do not contribute as there are no residues
surrounded at z = 0. That is we can write

sin3 z

z
=
ei3z − 3eiz + 3e−iz − e−3iz

(2iz)3
(1.74)

And we close the contour in the upper half with our indent around the origin for

e3iz − 3eiz

(2iz)3
(1.75)

and close for the lower half with the indent excluding the origin for

e−3iz + 3e−iz

(2iz)3
(1.76)

Because the arcs into the upper half plane and lower half plane are zero for both of these, we can
add them together to form the contour for sin3(z)/z3.

Thus ∫ ∞
−∞

sin3 z

z3
dz =

∮
C

e3iz

(2i)3z3
− 3

∮
C

eiz

(2i)3z3
(1.77)

=
2πi

2!(2i)3
[(3i)2e3iz]z=0 −

2πi

2!(2i)3
[3(i2)eiz]z=0 (1.78)

= π

[
32

23
− 3

23

]
=

6π

8
=

3π

4
(1.79)

Alternatively, we could use that for real x we have

sin3(x)

x3
= =

[
−e3ix + 3eix

4x3

]
(1.80)
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And so we could just use (−e3ix + 3eix)/x3 and take the imaginary part at the end. This would
yield

−
∮
C

e3iz

4z3
+ 3

∮
C

eiz

4z3
= −2πi

2!4
[(3i)2e3iz]z=0 +

2πi

2!4
[3(i2)eiz]z=0 (1.81)

= iπ

[
32

4
− 3

4

]
= i

6π

4
= i

3π

2
(1.82)

and so ∫ ∞
−∞

sin3 z

z3
dz = =

[
−
∮
C

e3iz

4z3
+ 3

∮
C

eiz

4z3

]
=

3π

4
(1.83)

1.14 Integral 3

Calculate (a)

I1 =

∫ ∞
0

x dx

ex − 1
(1.84)

(b)

I3 =

∫ ∞
0

x3 dx

ex − 1
(1.85)

Solution:

(a)

Consider extending the integral into a contour where we go up to iπ (with z = x + iy). So the
contour goes from the origin to inf, up to y = iπ back to x = 0 and down to the origin. There are
no singularities for this integrand in this region, so this contour is zero. Thus we have for n ≥ 1
(Note that the contour integral going up to y = iπ at infinity vanishes because 1/(e∞+iy−1) makes
the integrand so small).

0 =

∮
xn dx

ex − 1
=

∫ ∞
0

xn dx

ex − 1
+

∫ 0

∞

(x+ iπ)n dx

ex+iπ − 1
+

∫ 0

π

(iy)ni dy

eiy − 1
(1.86)∫ ∞

0

xn dx

ex − 1
=

∫ ∞
0

(x+ iπ)n dx

−(ex + 1)
+ in+1

∫ π

0

yn dy

eiy − 1
(1.87)

We use (for n odd)

2<
[
in+1 yn

eiy − 1

]
=
in+1yn

eiy − 1
+

(−i)n+1yn

e−iy − 1
= in+1y

n(e−iy − 1 + [eiy − 1])

(eiy − 1)(e−iy − 1)
= ynin+1 e

−iy + eiy − 2

2− e−iy − eiy
= −ynin+1

(1.88)

And so taking the real part of the integral, we find∫ ∞
0

xn dx

ex − 1
= −

∫ ∞
0

<[(x+ iπ)n] dx

ex + 1
− in+1

∫ π

0

yn

2
dy (1.89)
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20 Fourier Integral

Consider n = 1 now. Then ∫ ∞
0

x dx

ex − 1
= −

∫ ∞
0

x dx

ex + 1
+

∫ π

0

y

2
dy (1.90)

We can then use that
1

ex − 1
− 1

ex + 1
=

2

e2x − 1
(1.91)

So, with u = 2x and du = 2 dx we see∫ ∞
0

dx

[
xn

ex − 1
− xn

ex + 1

]
=

∫ ∞
0

dx
2xn

e2x − 1
=

∫ ∞
0

du
un

2n(eu − 1)
= 2−n

∫ ∞
0

dx
xn

ex − 1
(1.92)

(1− 2−n)

∫ ∞
0

dx
xn

ex − 1
=

∫ ∞
0

dx
xn

ex + 1
(1.93)

Therefore, ∫ ∞
0

x dx

ex − 1
= −1

2

∫ ∞
0

dx
x

ex − 1
+
π2

4
(1.94)

3

2

∫ ∞
0

x dx

ex − 1
=
π2

4
(1.95)∫ ∞

0

x dx

ex − 1
=
π2

6
(1.96)

Then for n = 3, we see ∫ ∞
0

x3 dx

ex − 1
= −

∫ ∞
0

(x3 − 3π2x) dx

ex + 1
−
∫ π

0

y3

2
dy (1.97)∫ ∞

0

x3 dx

ex − 1
= −

∫ ∞
0

x3 dx

ex + 1
+ 3π2

∫ ∞
0

dx
x

ex + 1︸ ︷︷ ︸
1
2
π2

6

−π
4

8
(1.98)

15

8

∫ ∞
0

x3 dx

ex − 1
=
π4

4
− π4

8
=
π4

8
(1.99)∫ ∞

0

x3 dx

ex − 1
=

8

15

π4

8
=
π4

15
(1.100)

1.15 Fourier Integral

Develop f(x) = cos(x2) in a Fourier integral.

Solution:

I think this means, find the Fourier transform of cos(x2). Then with

f(x) =

∫ ∞
−∞

dk eikxf̂(k) (1.101)

f̂(k) =
1

2π

∫ ∞
−∞

dx e−ikx cos(x2) (1.102)

cos(x2) =
eix

2
+ e−ix

2

2
(1.103)
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Thus,

2f̂(k) =
1

2π

[∫ ∞
−∞

dx e−ikx(eix
2

+ e−ix
2

)

]
(1.104)

We can complete the square to find

i(x2 − kx) = i[(x− k

2
)2 − k2

4
] (1.105)

−i(x2 + kx) = −i[(x+
k

2
)2 − k2

4
] (1.106)

and so

f̂(k) =
1

4π

[∫ ∞
−∞

dx e−ikxeix
2

+

∫ ∞
−∞

dx e−ikxe−ix
2

]
=

1

4π

[∫ ∞
−∞

dx ei(x−
k
2

)2e−ik
2/4 +

∫ ∞
−∞

dx e−i(x+ k
2

)2eik
2/4

]
(1.107)

Then with y = (x± k/2) we see we have

f̂(k) =
1

4π

[
e−ik

2/4

∫ ∞
−∞

dy e−iy
2

+ c.c.

]
=

1

2π
<
[
e−ik

2/4

∫ ∞
−∞

dy e−iy
2

]
(1.108)

We can use x = (−i)1/2y = (e−iπeiπ/2)1/2y = e−iπ/4y, thus

∫ ∞− i√
2

−∞− i√
2

dx e−iπ/4e−x
2

= e−iπ/4
√
π = (1− i)

√
π

2
(1.109)

where the − i√
2

indicates we are actually not on the real axis with our integration. To show this

is legitimate, make y the complex z and consider the parametrization z = t−ti√
2

so that dz
dt

= 1−i√
2

.
This is a line starting from the upper left quadrant and going to the bottom right quadrant as t
increases.∫

C

e−iz
2

dz =

∫ ∞
−∞

e−i(t−ti)
2/2 1− i√

2
dt =

∫ ∞
−∞

e−it
2(1−2i−1)/2e−iπ/4 dt = e−iπ/4

∫ ∞
−∞

e−t
2

dt (1.110)

Clearly we can form contours for each half of the real plane, where we create a contour that goes
from the origin out to ± inf along the parameterization, arcs back to the real axis and returns to
the origin. The arc will not contribute to the integral, and so the integral along the real axis and
this parametrization must be equal.

Hence,

f̂(k) =
1

2π
<
[
e−ik

2/4

∫ ∞
−∞

dy e−iy
2

]
=

√
π√

22π
<
[(

cos(k2/4) + i sin(k2/4)
)

(1− i)
]

(1.111)

=
1√
8π

[
cos(k2/4) + sin(k2/4)

]
(1.112)
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22 Laplace Transform

1.16 Laplace Transform

Find f(t) by inverting the Laplace transform

a2

p2 + a2
=

∫ ∞
0

dt e−ptf(t) (1.113)

Solution:

To invert a Laplace transform, we must use (γ is chosen so that it is above all the singularities of
f(t) in the complex plane)

1

2πi

∫ γ+i∞

γ−i∞
dp ept

∫ ∞
0

dt′ e−pt
′
f(t′) =

1

2πi

∫ ∞
0

dt′
∫ γ+i∞

γ−i∞
dp epte−pt

′
f(t′) (1.114)

and use q = p− γ and we find

=
1

2πi

∫ ∞
0

dt′
∫ +i∞

−i∞
dq e(q+γ)(t−t′)f(t′) =

eγt

2πi

∫ ∞
0

dt′
∫ +i∞

−i∞
dq eq(t−t

′)e−γt
′
f(t′) (1.115)

and we use that
∫∞
−∞ dk e−ik(t−t′) = 2πδ(t−t′) so with z = iq, we find

∫ i∞
−i∞ dq eq(t−t

′) = −
∫ −∞
∞ dz ie−iz(t−t

′) =
2πiδ(t− t′)

=
2πieγt

2πi

∫ ∞
0

dt′ e−γt
′
iδ(t− t′)f(t′) = eγt−γtf(t) = f(t) (1.116)

assuming that t > 0. Otherwise we get zero, as we should for a Laplace transform. Thus

f(t) =
1

2πi

∫ γ+i∞

γ−i∞
dp ept

a2

p2 + a2
(1.117)

For this we see that we must find the poles and choose γ such that it contains all the poles when
we hook around for our contour integration. We see we have

p2 + a2 = 0⇒ p = ±ia (1.118)

and so we need only choose γ > 0. Both are order one poles, so that the residue is simply

eiata2

ia+ ia
+

e−iata2

−ia− ia
= a

eiat − e−iat

2i
= a sin(at) (1.119)

and so

f(t) =
1

2πi
2πi(a sin(at)) = a sin(at) (1.120)
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1.17 Integral 4

Calculate ∫ 2π

0

dϕ

α + cosϕ
(1.121)

(a) when α > 1, (b) when α = α0 + iε, α0 and ε real, ε > 0 and 0 < α0 < 1 as ε → 0, (c) when
α = −1.

Solution:

Consider making this a closed circular contour (around the unit circle) in the complex plane with
z being parameterized around this point. Then∮

f(z)dz =

∫ 2π

0

f(eiφ)ieiφdϕ (1.122)

while ∫ 2π

0

dϕ

α + eiϕ+e−iϕ

2

=

∮
−ie−iϕ dz

α + z+z∗

2

=

∮
−i dz

zα + z z+z
∗

2

(1.123)

which becomes (zz∗ = 1)∫ 2π

0

dϕ

α + cosϕ
=

2

i

∮
dz

z2 + 2zα + 1
=

2

i

∮
dz

[z − (−α +
√
α2 − 1)][z − (−α−

√
α2 − 1)]

(1.124)

The roots are at z = −α±
√
α2 − 1.

(a)

For α > 1 then z is purely real and we see that in order for a root to be inside the unit circle we
require −α±

√
α2 + 1 < 1. Clearly −α > 1 implies that the α−

√
α2 − 1 is outside the unit circle.

We can also see that at α = 1 both roots are on the unit circle, so the + sign will go into the unit
circle and is our only pole.

Thus, as this is an order one pole∮
dz

[z − (−α +
√
α2 − 1)][z − (−α−

√
α2 − 1)]

= 2πi
1

−α +
√
α2 − 1− (−α−

√
α2 − 1)

=
2πi

2
√
α2 − 1

(1.125)

so for α > 1 we find ∫ 2π

0

dϕ

α + cosϕ
=

2

i

πi√
α2 − 1

=
2π√
α2 − 1

(1.126)

(b) ∮
dz

[z − (−α +
√
α2

0 + 2iα0ε− ε2 − 1)][z − (−α−
√
α2

0 + 2iα0ε− ε2 − 1)]
(1.127)
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24 Integral 5

We see that as ε→ 0 that we will get a small deflection up or down on the imaginary axis of about
i
√

1− α2
0. If we include first order ε terms, then we have

z = −α0 − iε± i
√

1− α2
0 − 2iα0ε = −α0 − iε± i

√
1− α2

0 ∓
2iiα0ε

2
√

1− α2
0

(1.128)

= −α0 − iε± i
√

1− α2
0 ±

α0ε√
1− α2

0

(1.129)

thus

|z±|2 = (−α0 ±
α0ε√
1− α2

0

)2 + (−ε±
√

1− α2
0)2 = α2

0(1∓ 2ε√
1− α2

0

) + 1− α2
0 ∓ 2ε

√
1− α2

0

(1.130)

= 1∓

(
2εα2

0√
1− α2

0

+ 2ε
√

1− α2
0

)
(1.131)

and so we see that only the + sign’s residue will contribute as the − root is ever so slightly outside
the unit circle as ε→ 0. Thus∮

dz

[z − (−α + i
√

1− α2
0)][z − (−α− i

√
1− α2

0)]
(1.132)

= 2πi

[
1

[−α + i
√

1− α2
0 − (−α− i

√
1− α2

0)]

]
(1.133)

= 2πi

[
1

2i
√

1− α2
0

]
=

π√
1− α2

0

(1.134)

and so ∫ 2π

0

dϕ

α + cosϕ
=

2

i

∮
dz

z2 + 2zα + 1
=
−2πi√
1− α2

0

(1.135)

(c)

For this case, we see that the integral diverges. One way to see this is to use 1 + cos(2x) = sin2(x)
and so the integral becomes csc2(θ).

1.18 Integral 5

Evaluate

I1 =

∫ +∞

−∞

dx

coshx
(1.136)

I3 =

∫ +∞

−∞

dx

cosh3 x
(1.137)

Solution:
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Use u = sinh(x) so du = cosh(x) dx =
√

1 + u2 dx. Then

I1 =

∫ ∞
−∞

du√
1 + u2

√
1 + u2

=

∫ ∞
−∞

du

1 + u2
(1.138)

There are poles at u = ±i. So we hook the contour in the upper (one could do the lower if desired)
half plane, and it’s clear that the denominator will vanish as R → ∞ for u = z = Reiθ, so the
residue from the +i root is

I1 =

∫ ∞
−∞

du

1 + u2
= 2πi

1

i− (−i)
=

2πi

2i
= π (1.139)

Note for I3 that we get

I3 =

∫ ∞
−∞

du

(1 + u2)2
= 2πi

d

du

[
1

(z + i)2

]
z=i

= 2πi
−2

(i+ i)3
=
−4πi

−8i
=
π

2
(1.140)

1.19 Integral 6

Evaluate

I =

∫ 2π

0

dφ
b+ a cosφ

a2 + b2 + 2ab cosφ
(1.141)

with |a| 6= |b|.

Solution:

If we write z = eiφ dz = iz dφ then we see the integral becomes

I =

∮
dz

b+ a
z+ 1

z

2

iz(a2 + b2 + 2ab z+z
∗

2
)

=

∮
dz

2bz + az2 + a

2iz(abz2 + z(a2 + b2) + ab)
(1.142)

=
1

2iab

∮
2bz + a(z2 + 1)

z(z2 + 2zα + 1)
(1.143)

where α = a2+b2

2ab
. It’s clear we have poles at z = β± = −α±

√
α2 − 1 = β+ and z = 0. Call

Ia =

∮
2bz + a(z2 + 1)

z(z2 + 2zα + 1)
=

2bz + a(z2 + 1)

z(z − β+)(z − β−)
(1.144)

We can just calculate the β±

α2 − 1 =
(a2 + b2)2 − 4a2b2

4a2b2
=

(a2 − b2)2

4a2b2
(1.145)

β+ = −a
2 + b2

2ab
+
a2 − b2

2ab
= − b

a
(1.146)

β− = −a
2 + b2

2ab
− a2 − b2

2ab
= −a

b
(1.147)
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26 Gamma Function

First let’s choose |a| > |b| so that β+ is the pole inside the unit circle (with z = 0). Then

Ia = 2πi

[
2bβ+ + a(β2

+ + 1)

β+(β+ − β−)
+

a

β+β−

]
(1.148)

β+β− = 1 (1.149)

β+ − β− = 2
√
α2 − 1 (1.150)

Ia = 2πi

[
2b−b

a
+ a( b

2

a2
+ 1)

−b
a

(a
2−b2
ab

)
+ a

]
= 2πi

[
a− b2

a
b2

a2
− 1

+ a

]

= 2πi

[
a

1− b2

a2

b2

a2
− 1

+ a

]
= 0

(1.151)

and

I =
1

2iab
(0) = 0 (1.152)

So then choose |b| > |a| so that β− and 0 are the poles, and we find

Ia = 2πi

[
2bβ− + a(β2

− + 1)

β−(β− − β+)
+

a

β+β−

]
= 2πi

[
2b−a

b
+ a(a

2

b2
+ 1)

−a
b
b2−a2
ab

+ a

]

= 2πi

[
−2a+ a3

b2
+ a

a2−b2
b2

+ a

]
= 2πi

[
a
a2

b2
− 1

a2

b2
− 1

+ a

]
= 4πia

(1.153)

and so

I =
Ia

2iab
=

4πia

2iab
=

2π

b
(1.154)

1.20 Gamma Function

The gamma function is defined by

Γ(x) =

∫ ∞
0

dt tx−1e−t , <(x) > 0 (1.155)

Show that for 0 < x < 1, ∫ ∞
0

dt tx−1 cos t = Γ(x) cos
(πx

2

)
(1.156)∫ ∞

0

dt tx−1 sin t = Γ(x) sin
(πx

2

)
(1.157)

Solution:

DRAFT:Graduate Problems in Physics Notes
January 8, 2018

c©K. J. Bunkers



Mathematical Physics 27

Consider the integral ∫ ∞
0

dt tx−1eit (1.158)

Create an arc in the upper plane (we should be careful around 0, but we can simply make a small
arc around it as well to exclude it). The far arc part will obviously disappear. Go up to y = ∞.
We then have no poles in our box and so (note =[eiθ] > 0 for π/2 > θ > 0 so that the exponential
is of the form e−R). So

∮
dt tx−1eit =

∫ ∞
0

dt tx−1eit +
��

���
���

���
���

�∫ π/2

0

dθ iReiθ(Reiθ)x−1eiRe
iθ

+

∫ 0

∞
dt i(it)x−1e−t = 0 (1.159)

And so

ix
∫ ∞

0

dt tx−1e−t =

∫ ∞
0

dt tx−1eit (1.160)

ixΓ(x) =

∫ ∞
0

dt tx−1eit (1.161)

We remember

ix = (eiπ/2)x = eiπx/2 = cos
(πx

2

)
+ i sin

(πx
2

)
(1.162)

and thus taking first the Real part of the above equation and then the Imaginary part we find

cos
(πx

2

)
Γ(x) =

∫ ∞
0

dt tx−1 cos(t) (1.163)

sin
(πx

2

)
Γ(x) =

∫ ∞
0

dt tx−1 sin(t) (1.164)

as desired.

1.21 Integral 7

Show that ∫ ∞
0

dx
sinh(αx)

sinh(πx)
=

1

2
tan

a

2
(1.165)

for −π < a < π by integrating eaz/ sinh(πz) around an appropriate contour.

Solution:

Consider a contour that extends from −∞ to ∞ on the real line, goes up to y = 1 and returns
from x =∞ to −∞. The upward portions clearly vanish as they are too far away and the sinh(πx)
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28 Integral 7

goes to ∞ causing the integrand to vanish. Note that

sinh(πz) =
eπz − e−πz

2
(1.166)

sinh(π0) =
1− 1

2
= 0 (1.167)

sinh(πi) =
eiπ − e−iπ

2
=
−1− (−1)

2
= 0 (1.168)

sinh(π(x± i)) =
e±iπeπx − e∓iπe−πx

2
=
e−πx − eπx

2
= sinh(−πx) = − sinh(πx) (1.169)

and so we have two poles on our contours. Thus, we must add πi times the residue of these two
poles.

So∮
dz

eaz

sinh(πx)
=

∫ 0

−∞
dx

eax

sinh(πx)
+

∫ ∞
0

dx
eax

sinh(πx)
+

∫ 0

∞
dx

ea(i+x)

sinh(π(i+ x))
+

∫ −∞
0

dx
ea(i+x)

sinh(π(i+ x))

(1.170)

= πiResz=0,z=i = πi lim
x→0

(x)eax

sinh(πx)
+ πi lim

z→i

(z − i)eai

sinh(πz)︸ ︷︷ ︸
(z−i)ezi/−sinh(π(z−i))

= πi

[
1

π
− eai

π

]

(1.171)

And we also have∫ 0

−∞
dx

eax

sinh(πx)
= −

∫ −∞
0

dx
eax

sinh(πx)
=

∫ ∞
0

d(−x)
e−a(−x)

sinh(−π[−x])
= −

∫ ∞
0

dx
e−ax

sinh(πx)
(1.172)∫ 0

∞

ea(i+x)

sinh(π(i+ x))
= −

∫ ∞
0

dx
ea(i+x)

− sinh(πx)
=

∫ ∞
0

dx
ea(i+x)

sinh(πx)
(1.173)∫ −∞

0

ea(i+x)

sinh(π(i+ x))
= −

∫ ∞
0

d(−x)
ea(i−(−x))

sinh(−πx)
= −

∫ ∞
0

dx
ea(i−x)

sinh(πx)
(1.174)

And so ∫ 0

−∞
dx

eax

sinh(πx)
+

∫ ∞
0

dx
eax

sinh(πx)
=

∫ ∞
0

dx
eax − e−ax

sinh(πx)
= 2

∫ ∞
0

dx
sinh(ax)

sinh(πx)
(1.175)∫ 0

−∞
dx

ea(i+x)

sinh(π(i+ x))
+

∫ ∞
0

dx
ea(i+x)

sinh(π(i+ x))
= eai

∫ ∞
0

dx
eax − e−ax

sinh(πx)
= 2eai

∫ ∞
0

dx
sinh(ax)

sinh(πx)
(1.176)

Thus, using

tan(x/2) =
1

i

eix/2 − e−ix/2

eix/2 + e−ix/2
=

e−ix/2

ie−ix/2
eix − 1

eix + 1
=

1

i

eix − 1

eix + 1
(1.177)
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and so

2(1 + eai)

∫ ∞
0

dx
sinh(ax)

sinh(πx)
= i(1− eai) (1.178)∫ ∞

0

dx
sinh(ax)

sinh(πx)
= − 1

2i

1− eai

1 + eai
=

1

2
tan
(a

2

)
(1.179)

as desired.

1.22 Integral 8

Evaluate by contour integration ∫ ∞
0

x1/2 dx

1 + x2
(1.180)

Show your contour and all poles and branch cuts in the complex plane.

Solution:

We will take a contour from −∞ to ∞ and close it in the upper half of the complex plane using a
trick for what the value is along the −∞ to 0 contour. This is effectively choosing a branch cut.
The upper half-circle arc will clearly vanish as the integrand goes as RR1/2R−2 ∼ R−1/2 and so as
R→∞ we will indeed have the arc contribution vanish.

Thus, we have ∫ 0

−∞
dx

x1/2 dx

1 + x2
+

∫ ∞
0

dx
x1/2 dx

1 + x2
= 2πiResz=i (1.181)

First ∫ 0

∞
d(−x)

[−(−x)]1/2 dx

1 + (−[−x])2
= −

∫ ∞
0

dx
(−x)1/2

1 + x2
= −

∫ ∞
0

dx
ix1/2

1 + x2
(1.182)

and so ∫ 0

−∞
dx

x1/2 dx

1 + x2
+

∫ ∞
0

dx
x1/2 dx

1 + x2
= (1 + i)

∫ ∞
0

x1/2 dx

1 + x2
(1.183)

The residue is for a pole of order one, so[
x1/2
��

��(x− i)
(x+ i)���

�(x− i)

]
x=i

=
i1/2

2i
=

eiπ/4

2eiπ/2
=
e−iπ/4

2
=

1− i
2
√

2
(1.184)

Thus

(1 + i)

∫ ∞
0

x1/2 dx

1 + x2
= 2πi

1− i
2
√

2
(1.185)∫ ∞

0

x1/2 dx

1 + x2
= i

π√
2

1− i
1 + i

=
π√
2

i+ 1

1 + i
=

π√
2

(1.186)
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30 Evaluate Series Through Contour Integration

To do this integral through contour integration, one has to actually use a “keyhole” arc. That is
we choose the positive real axis as our branch cut, and have a keyhole-like curve. Then the small
circle around z = 0 will not contribute anything and we have∮

dz
z1/2

1 + z2
= lim

ε→0+

[∫ iε+∞

iε

dz
z1/2

1 + z2
+

∫ −iε
−iε+∞

dz
z1/2

1 + z2

]
+ lim

ε→0+

[
lim
R→∞

∫ 2π−ε

ε

dθ
iRR1/2eiθ/2

1 +R2e2iθ
+

∫ 2π−ε

ε

dθ
iεε1/2eiθ/2

1 + ε2e2iθ

] (1.187)

The last two integrals vanish in the limits. The first integral simply becomes the integral we
desire when we take the limit. For the second integral, it would at first appear that we would
get the negative of the first integral, but remember that we have a branch cut. We write z1/2 =
exp(1

2
log(z)). Then in the first quadrant log(z) → log(|z|) so we write z1/2 →

√
z whereas in

the fourth quadrant log(z) → log(|z|) + 2πi since log(z) = log(|z|) + i arg(z) and so z1/2 →√
z exp(iπ) = −

√
z. So then the integral in the fourth quadrant becomes∫ −iε

−iε+∞
dz

z1/2

1 + z2
→
∫ 0

∞
dz

exp
(

1
2

log |z|+ 2iπ
2

)
1 + exp (log |z|+ 2πi)

=

∫ 0

∞
dz
−
√
z

1 + z2
=

∫ ∞
0

dx

√
x

1 + x2
(1.188)

and so we get ∮
dz

z1/2

1 + z2
= 2

∫ ∞
0

dx

√
x

1 + x2
(1.189)

We then find the residue as before for z = ±i [our branch cut makes −i = exp(3iπ/2)] and so

1

2πi

∮
dz

z1/2

1 + z2
=

[
x1/2
��

��(x− i)
(x+ i)���

�(x− i)

]
x=i

+

[
x1/2
��

��(x+ i)

���
�(x+ i)(x− i)

]
x=−i

=
i1/2

2i
+

(−i)1/2

−2i

=
exp(iπ/4)

2 exp(iπ/2)
− exp(3iπ/4)

2 exp(iπ/2)
=

exp(−iπ/4)

2
− exp(iπ/4)

2

=
1− i
2
√

2
− 1 + i

2
√

2
= − 2i√

2

(1.190)

and so

�2

∫ ∞
0

dx

√
x

1 + x2
= 2πi

−�2i√
2

(1.191)∫ ∞
0

dx

√
x

1 + x2
=

2π√
2

=
π√
2

(1.192)

which agrees with our previous, cleverer substitution method above.

1.23 Evaluate Series Through Contour Integration

Evaluate the series

∞∑
n=1

(−1)n

n4
=
−7π4

720
(1.193)
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by contour integral techniques. [Hint: Use the fact that the function 1
sin(πz)

has poles along the

real axis at z = 0,±1,±2, · · · .]

Solution:

We can use the fact that if we have a contour enclosing the real axis then∮
dz

sin(πz)
= 2πi Resz=0,±1,... (1.194)

and that

Resz=±n =
(z ∓ n)

(−1)n sin(π(z ∓ n))
=

(−1)n

π
(1.195)

Let’s consider an integral around the origin as a circle with the radius increasing to ∞ in all
directions. As our integral goes as 1/z4 this will clearly vanish. For the poles on the real and
negative real axis we can find that for |n| > 0 that (

∮
+∞ is for counting poles on the positive real

axis)

∮
+∞

dz

z4 sin(πz)
= 2πi

∞∑
n=1

(−1)n

n4π
(1.196)∮

−∞

dz

z4 sin(πz)
= 2πi

∞∑
n=1

(−1)n

(−n)4π
= 2πi

∞∑
n=1

(−1)n

n4π
(1.197)

Adding these means that

4i
∞∑
n=1

(−1)n

n4
(1.198)

We left out the residue at n = 0

Thus we use that the residue of 1/[z4 sin(πz)] at z = 0 is given by a−1 of its Laurent series. To
simplify this, the Taylor series for 1/ sin(z) is

1

sin(z)
=

1

z
+
z

6
+

7z3

360
+O(z4) (1.199)

so

1

z4 sin(z)
=

1

z5
+

1

6z3
+

7

360z
+O(z4) (1.200)

and so the residue is 7/360. However we used sin(zπ) and so it is given by 7π3/(360). And so
adding these residues and realizing the contour integral must be zero, we find

4i
∞∑
n=1

(−1)n

n4
+ 2πi

7π3

360
= 0 (1.201)

∞∑
n=1

(−1)n

n4
=
−7π4

720
(1.202)
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1.24 Riemann Surface Analytic Surface

Consider the analytic function

F (z) = ρ(z) ln

[
1− 2z

a
{1− ρ(z)}

]
(1.203)

with ρ(z) =
√
z − a/

√
z. Here a is real and positive. Choose the branch lines for ρ(z) along the

real axis from −∞ to 0 and from a to ∞.

(a) Discuss the Riemann surface of F (z). (b) Show that there is one sheet where F (z) may be
represented in the form

F (z) = F (z0) + (z − z0)

∫ ∞
a

ds
W (s)

(s− z)(s− z0)
(1.204)

and determine W (s).

Solution:

(a) We worry about the multivaluedness of F (z) due to the logarithm and the square root term.

(b) For the logarithm we have

log(z) = log(reiθ) = log |r|+ iθ + 2πip (1.205)

for p an integer and −π < θ ≤ π. The principal value is p = 0.

For the square root

ρ(z) ≡
√
z − a
z

=

√
1− a

z
(1.206)

if we take z = x+ iε with ε→ 0 we see

ρ =

√
1− a

x(1− iε
x

)
=

√
1− a

x
(1 + iε+ (iε2) + · · · ) (1.207)

We see as ε→ 0 then we get

ρ =

√
1− a

x
(1.208)

For a > 0 we see that ρ will be purely real if x < 0 and if x > a. For these cases

ρ =

√
1− a

x
(1.209)

However, there is another solution, namely the negative square root. Call the two solutions ± so

ρ± = ±
√

1− a

z
(1.210)
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Then we have for consistency the two possible solutions (assuming p has been chosen for the
logarithm)

F± = ±
√

1− a

z
ln

(
1− 2z

a

[
1∓

√
1− a

z

])
(1.211)

We then note that for x < 0 the argument of the ln is positive for both cases. That is

1 +
2|x|
a

[
1∓

√
1 +

a

|x|

]
> 0 (1.212)

the + sign is obvious, for the − sign note that for x < 0 and |x| > a it is also clear. For x < 0 and
|x| < a we then have

a2

4|x|2
> 0 (1.213)

1 +
a

|x|
+

a2

4|x|2
> 1 +

a

|x|
(1.214)

(1 +
a

2|x|
)2 > 1 +

a

|x|
(1.215)

Note that both sides are positive, and so taking the positive square root on both sides (and using
a/|x| > 0)

1 +
a

2|x|
>

√
1 +

a

|x|
(1.216)

1−
√

1 +
a

|x|
> − a

2|x|
(1.217)

2|x|
a

(
1−

√
1 +

a

|x|

)
> −1 (1.218)

1 +
2|x|
a

(
1−

√
1 +

a

|x|

)
> 0 (1.219)

Now if x > a, we see that

1− 2x

a

[
1∓

√
1− a

x

]
< 0 (1.220)

This is again obvious for the + sign, for the minus sign we note

0 <
a2

4x2
(1.221)

1− a

x
< 1− a

x
+

a2

4x2
= (1− a

2x
)2 (1.222)
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Note that because a/x < 1 then a/(2x) < 1/2 < 1 and so when we take the positive square root
we find √

1− a

x
< 1− a

2x
(1.223)

a

2x
< 1−

√
1− a

x
(1.224)

1 <
2x

a

(
1−

√
1− a

x

)
(1.225)

1− 2x

a

(
1−

√
1− a

x

)
< 0 (1.226)

as desired.

Then the discontinuity across the real axis from −∞ to 0 will be

F+ − F− =

√
1− a

z
ln

(
1− 2z

a

[
1−

√
1− a

z

])
−
{
−
√

1− a

z
ln

(
1− 2z

a

[
1 +

√
1− a

z

])}
(1.227)

=

√
1− a

z

(
ln

∣∣∣∣{1− 2z

a

[
1−

√
1− a

z

]}{
1− 2z

a

[
1 +

√
1− a

z

]}∣∣∣∣+ 2πip+ 2πip

)
(1.228)

=

√
1− a

z

(
ln

∣∣∣∣1− 2z

a

[
1−

√
1− a

z
+ 1 +

√
1− a

z

]
+

4z2

a2

[
1− (1− a

z
)
]∣∣∣∣+ 4πip

)
(1.229)

=

√
1− a

z

(
ln

∣∣∣∣1− 4z

a
+

4z

a

∣∣∣∣+ 4πip

)
(1.230)

=

√
1− a

z
(0 + 4πip) = 4πip

√
1− a

z
(1.231)

For the branch line of x > a define the argument of the logarithm as ω± with ± matching the F±
it is in. We see

ω± = 1− 2z

a

(
1∓

√
1− a

z

)
(1.232)

logω+ = ln |ω+|+ i(±π) + 2πip (1.233)

logω− = ln |ω−|+ i(±π) + 2πip (1.234)

where these two ±iπ indicate uncertainty in which sign to choose for ±π. Because of the definition
of log it must be π for both so that they coincide for a given p.

So

F+ − F− =

√
1− a

z
ln (ω+)−

{
−
√

1− a

z
ln (ω−)

}
(1.235)

=

√
1− a

z
[ln |ω+|+ πi+ 2πip]−

{
−
√

1− a

z
[ln |ω−|+ πi+ 2πip]

}
(1.236)
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=

√
1− a

z
[ln |ω+|+ ln |ω−|+ 2πi+ 4πip] (1.237)

=

√
1− a

z
[2πi+ 4πip] (1.238)

(b) We consider the function

G(z) =
F (z)− F (z0)

z − z0

(1.239)

For this, we take a contour that extends to infinity in all directions but avoids our two branch cuts.
As our function is analytic everywhere in this region, the contour integral must be zero. Thus, by
Cauchy’s integral theorem we have

G(z) =
1

2πi

∮
G(z′)dz′

z − z′
(1.240)

Thus, we only need to calculate the discontinuity across our two branch cuts along our contour to
find the answer (note the F+(z0)− F−(z0) term will cancel in both integrals as z0 should be in an
analytic region.)

G(z) =
F (z)− F (z0)

z − z0

=
1

2πi

[∫ 0

−∞
ds

F+(s)− F−(s)

(s− z0)(s− z)
+

∫ ∞
a

ds

∫ 0

−∞
ds

F+(s)− F−(s)

(s− z0)(s− z)

]
(1.241)

Note that for p = 0 the principal branch F+ − F− is zero along −∞ to 0 and so

G(z) =
F (z)− F (z0)

z − z0

=
1

2πi

∫ ∞
a

ds
2πi
√

1− a
s

(s− z0)(s− z)
(1.242)

F (z) = F (z0) + (z − z0)
1

2πi

∫ ∞
a

ds
2πi
√

1− a
s

(s− z0)(s− z)
(1.243)

and so W (s) =
√

1− a
z
.

1.25 Integral 9

Evaluate

lim
n→∞

√
n

∫ ∞
−∞

dx
1

(1 + x2)n
(1.244)

where n is a positive integer.

Solution:

Note for ∫ ∞
−∞

dx
1

(1 + x2)n
(1.245)
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we can close the integral in the upper half plane, and there will be an nth order pole at z = i.
The arc in the upper half plane will clearly vanish, as (1 + x2)n R2n so the integrand will scale as
R1−2n which will vanish as R→∞ and n > 1. Thus,∮

dz
1

(x− i)n(x+ i)n
=

∫ ∞
−∞

dx
1

(1 + x2)n
+

∫ π

0

dθ
iReiθ

(1 +R2e2iθ)n︸ ︷︷ ︸
→0

(1.246)

Thus, dj

dxj
x−n = (−1)j (n+j−1)!

(n−1)!
x−(n+j) for n > 0

∮
dz

1
(z+i)n

(z − i)n
=

2πi

(n− 1)!

dn−1

dzn−1

[
1

(z + i)n

]
z=i

=
2πi

(n− 1)!
(−1)n−1 (n+ n− 1− 1)!

(n− 1)!

1

(i+ i)n+n−1

(1.247)

= 2πi(−1)n−1 (2n− 2)!

[(n− 1)!]2
1

(2i)2n−1
= π(2)2−2n(−1)n−1i2−2n (2n− 2)!

[(n− 1)!]2
(1.248)

= π(2)2−2n(−1)ni−2n (2n− 1)!

[(n− 1)!]2
= π(2)2−2n(−1)ni2n

(2n− 1)!

[(n− 1)!]2
(1.249)

= π(2)2−2n(−1)n(−1)n
(2n− 1)!

[(n− 1)!]2
= π22−2n (2n− 1)!

[(n− 1)!]2
(1.250)

So putting this in, we find (using Stirling’s formula n! ∼
√

2πn(n/e)n and ignoring contributions
past factors of n)

lim
n→∞

√
n

∫ ∞
−∞

dx
1

(1 + x2)n
= lim

n→∞
π
√
n22−2n (2n− 1)!

[(n− 1)!]2
= lim

n→∞
π
√
n2−2n (2n)!

[(n)!]2
(1.251)

= lim
n→∞

22−2nπ
√
n

√
4πn(2n/e)2n

2πn(n/e)2n
= lim

n→∞
2−2n
√
n

22nπ√
πn

= lim
n→∞

π√
π

=
√
π (1.252)

It is rather interesting to note that this approaches a value independent of n, which is not obvious
from the initial expression (although could be guessed since we are evaluating it).

Alternatively, take x = y/
√
n and then

√
n dx = dy and

lim
n→∞

√
n

∫ ∞
−∞

dx
1

(1 + x2)n
= lim

n→∞

∫ ∞
−∞

dy

(1 + y2

n
)n

=

∫ ∞
−∞

dy lim
n→∞

1

(1 + y2

n
)n

=

∫ ∞
−∞

dy e−y
2

=
√
π

(1.253)

1.26 Integral 10

Compute

f(a, b) =

∫ ∞
0

dx
e−ax − e−bx

x
(1.254)

Solution:
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We note that a and b are interchangeable with only a − sign introduced. So take y = ax and we
can write ∫ ∞

0

e−y − e−ab y

y/a

dy

a
=

∫ ∞
0

dy
e−y − e−ab y

y
(1.255)

Thus, calling a/b ≡ c, we see that we can write

f(c) =

∫ ∞
0

dx
e−x − e−cx

x
(1.256)

f ′(c) =

∫ ∞
0

dx e−cx =
e−c∞ − e−c0

c
=

1

c
(1.257)

Thus ∫
f ′(c) dc = f(c) =

∫
dc

c
= ln(c) + C (1.258)

for c a constant. For c = 1 we have∫ ∞
0

e−x − e−x

x
dx =

∫ ∞
0

0 dx = 0 (1.259)

and so

f(1) = 0 = ln(1) + C ⇒ C = 0 (1.260)

Thus,

f(c) = f(a, b) =

∫ ∞
0

dx
e−ax − e−bx

x
= ln

(a
b

)
(1.261)

1.27 Summation of Infinite Series

Find the sum of the following infinite series

S = 1 + 2x+ 3x2 + 4x3 + · · · (1.262)

for |x| < 1.

Solution:

Note we may write this as

S(x) =
∞∑
n=1

nxn−1 =
∞∑
n=0

(n+ 1)xn (1.263)∫ x

0

S(x′) dx′ =
∞∑
n=0

xn+1 =
∞∑
n=1

xn (1.264)
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We can use that (for |x| < 1)

T (x) =
∞∑
n=0

xn (1.265)

T = 1 + x+ x2 + · · · = 1 + x(1 + x+ x2 + · · · ) = 1 + xT (1.266)

T =
1

1− x
(1.267)

So ∫ x

0

S(x′) dx′ = T − 1 =
1

1− x
− 1 =

1− (1− x)

1− x
=

x

1− x
(1.268)

Thus

d

dx

∫ x

0

S(x′) dx′ = S(x) =
d

dx

x

1− x
=

(1− x)− x(−1)

(1− x)2
=

1

(1− x)2
(1.269)

And hence

S(x) =
1

(1− x)2
(1.270)

1.28 Hermite Generating Function

A generating function F (x, t) of the Hermite polynomial Hn(x) is

F (x, t) = ex
2−(t−x)2 =

∞∑
k=0

Hk(x)
tk

k!
(1.271)

(a) Express Hn(x) as a contour integral.

(b) Prove that Hn(x) satisfies Hermite’s differential equation

d2H

dx
− 2x

dH

dx
+ 2nH = 0 (1.272)

(c) Deduce the relation

dHn

dx
(x) = 2nHn−1(x) (1.273)

Solution:

(a) We can take an integral of the form∮
dt

ex
2−(t−x)2

tj+1
=

∮
dt

∞∑
k=0

Hk(x)

k!
tk−(j+1) =

∮
dt

∞∑
k=0

Hk(x)

k!
tk−j−1 (1.274)
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From Cauchy’s theorem, we can simply do the residue of the integral on the right (say around the
unit circle) and see that the only contribution will be from j = k as the other powers will vanish.
Thus

Hk(x)

k!

∮
dt t−1 =

Hk(x)

k!

∫ 2π

0

dθ
ieiθ

eiθ
= 2πi

Hk(x)

k!
(1.275)

and so

Hk(x) =
k!

2πi

∮
dt

ex
2−(t−x)2

tk+1
(1.276)

(b) Note (x2 − (t− x)2 = −x2 − (t2 − 2xt+ x2) = t2 − 2xt)

∂F

∂x
= −2te−t

2−2xt (1.277)

∂F

∂t
= (−2t− 2x)e−t

2−2xt =

(
d

dx
− 2x

)
e−t

2−2xt =

(
d

dx
− 2x

)
F (1.278)

∂2F

∂x2
= 4t2e−t

2−2xt (1.279)

∂2F

∂x2
= −2t

∂F

∂t
+ 4xtF = −2t

∂F

∂t
− 2

∂F

∂x
(1.280)

Thus

∂F

∂t
− ∂F

∂x
+ 2xF = 0 (1.281)

This must be true order by order in t so

(k + 1)Hk+1 −H ′k + 2xHk = 0 (1.282)

And from ∂2F
∂x2

+ 2t∂F
∂t

+ 2∂F
∂x

= 0 we find

H ′′k + 2kHk + 2xH ′k = 0 (1.283)

which is the differential equation we desired.

(c) Use the contour integral expression. We see (x2 − (t− x)2 = −x2 − (t2 − 2xt+ x2) = t2 − 2xt)

dHk

dx
=

k!

2πi

∮
dt

e−t
2

tk+1
dxe−2tx =

k!

2πi

∮
dt
−2te−t

2−2tx

tk+1
= −2k

(k − 1)!

2πi

∮
dt

e−t
2−2tx

tk
= −2kHk−1(x)

(1.284)

1.29 Legendre Generating Function

A generating function for the Legendre polynomials Pl(x) is

1

(1− 2xr + r2)1/2
=
∞∑
l=0

rlPl(x) (1.285)
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with x = cos θ and |r| ≤ 1. Prove that xP ′l (x) = P ′l−1(x) + lPl(x) where P ′l (x) = dPl(x)
dx

Solution:

Consider F (x, r) = (1− 2xr + r2)
−1/2

. Then

∂F

∂x
=
−1

2
(−2r)(1− 2xr − r2)−3/2 =

r

(1− 2xr − r2)
F (1.286)

∂F

∂r
=
−1

2
(−2x+ 2r)(1− 2xr − r2)−3/2 =

x− r
(1− 2xr − r2)

F (1.287)

(1.288)

Hence we have

(1− 2xr − r2)

r

∂F

∂x
=

(1− 2xr − r2)

x− r
∂F

∂r
(1.289)

(x− r)∂F
∂x

= r
∂F

∂r
(1.290)

∞∑
l=0

(x− r)rlP ′l (x) =
∞∑
l=0

rl+1Pl(x) (1.291)

∞∑
l=0

[
(x− r)rlP ′l (x)− rl+1Pl(x)

]
= 0 (1.292)

arranging them order by order in rl we see

∞∑
l=0

[
rl
{
xP ′l (x)− P ′l−1(x)− Pl−1(x)

}]
= 0 (1.293)

and so we get

xP ′l (x) = P ′l−1(x) + Pl−1(x) (1.294)

as desired.

1.30 Integral Formulation of Bessel Function

Given the Laurent series for e(µ/2)(z−1/z) as
∑∞

n=−∞Anz
n where An = Jn(µ), obtain an expression

for the Bessel function Jn(µ) as an integral from −π to π.

Solution:

We use that ∮
dz z−j−1e(µ/2)(z−1/z) =

∮
dz

∞∑
n=−∞

Anz
n−j−1 (1.295)
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Clearly, only when n = j will there be a contribution to the expression on the right. Thus,∮
dz z−n−1e(µ/2)(z−1/z) = 2πiAn (1.296)

Let us be on the unit circle so z = eiθ and then

i

∫ π

−π
dθ eiθe−(n−1)θe

µ
2
eiθ−e−iθ = 2πiAn (1.297)

1

2π

∫ π

−π
dθ einθeiµ sin θ = An (1.298)

and so the expression is

Jn(µ) =
1

2π

∫ π

−π
dθ ei(µ sin θ−nθ) (1.299)

=
1

2π

∫ π

−π
dθ cos [µ sin θ − nθ] +

i

2π

∫ π

−π
sin [µ sin θ − nθ] (1.300)

Note that because µ sin θ − nθ ≡ g(θ) is an odd function then sin(g(θ)) is an odd function and so
that integral is identically zero. Also because cos is even then cos(g(θ)) is even.

The proof is simple. For f(x) even in x [f(−x) = f(x)] and g(x) odd in x [g(−x) = −g(x)], then
h(−x) = f(g(−x)) = f(−g(x)) = f(g(x)) = h(x). So h(x) is even. Let d(−x) = −d(x) then
c(−x) = d(g(−x)) = d(−g(x)) = −d(g(x)) = −c(x) and so c is odd. So

Jn(µ) =
1

2π

∫ π

−π
dθ cos [µ sin θ − nθ] =

1

π

∫ π

0

dθ cos [µ sin θ − nθ] (1.301)

1.31 Laplace Equation on a Plane

The function φ(x, y) is given on the plane z = 0. Find for z > 0, a solution ψ(x, y, z) of Laplace’s
equation that reduces to φ(x, y) on the plane z = 0.

Solution:

Laplace’s equation is given by

∇2ψ = 0 (1.302)

We are given that at z = 0 the solution is ψ = φ. We are basically using that we want a physical
solution and that the symmetry of the problem will require a certain combination of φ as the
general solution for z > 0. This is often called the method of images.

Suppose we put a charge above the z = 0 plane (say at z = a) that creates a potential at φ(x, y).
Then if we put a negative charge at z = −a, we note that we have not changed the potential at
z = 0, as the potential of these two charges is given by

φcharges =
−q + q

a
= 0 (1.303)
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Use ∇2G(x−x′) = 0 where G(x−x′) = −ε0δ(x−x′). Then we need to find G where G(z = 0) = 0.
Using

ε0ψ(x) = −
∫
V

d3x′ ρ(x′) +

∫
S

d2x′ n̂ · [ψ(x′)∇′G−G∇′ψ(x′)] (1.304)

Note that the volume integral must equal zero as ρ(x′) = ε0∇2ψ = 0 since this is a Laplace
equation.

We have G is zero on our surface, and n̂ will be ẑ on the plane, where the only contributions from
the surface integral will occur. Thus ∫

S

d2x′ ψ(x′)
∂G

∂z′
(1.305)

From the method of images, it’s clear that r(+z) =
√

(x− x′)2 + (y − y′)2 + (z − z′)2 and r(−z′) =√
(x− x′)2 + (y − y′)2 + (z + z′)2

G =
1√

(x− x′)2 + (y − y′)2 + (z − z′)2
− 1√

(x− x′)2 + (y − y′)2 + (z + z′)2
(1.306)

Thus,

∂G

∂z′
=
−1

2

−2(z − z′)(−1)

r(+z′)3/2
− −1

2

−2(z + z′)

r(−z′)3/2
(1.307)

=
−(z − z′)
r(+z′)3/2

− (z + z′)

r(−z′)3/2
(1.308)

Now we are at z′ = 0 for the integral so this reduces to

∂G

∂z′
=
−2z

r2
=

−2z

((x− x′)2 + (y − y′)2 + (z)2)3/2
(1.309)

So the answer is

ψ =
−2z

ε0

∫
S

dx′ dy′
φ(x′, y′)

((x− x′)2 + (y − y′)2 + (z)2)3/2
(1.310)

1.32 Integral 11

Show that

K0(x) =

∫ ∞
0

e−x coshφ dφ (1.311)

satisfies Bessel’s equation of zeroth order and imaginary argument, that is K0(x) ≡ J0(ix). Show
that K0(x) has the asymptotic form De−x/

√
x for very large x; give the value of the constant D.

Solution:
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Modified Bessel’s differential equation is (for n = 0)

x2 d2y

dx2
+ x

dy

dx
− x2y = 0 (1.312)

We use from the above definition that

K ′0(x) = −
∫ ∞

0

dφ e−x coshφ coshφ (1.313)

K ′′0 (x) =

∫ ∞
0

dφ e−x coshφ cosh2 φ (1.314)

and so

x2 d2K0

dx2
+ x

dK0

dx
− x2K0 =

∫ ∞
0

(x2 cosh2 φ− x coshφ− x2)e−x coshφ (1.315)

We use cosh2(φ)− 1 = sinh2 φ

x2 d2K0

dx2
+ x

dK0

dx
− x2K0 =

∫ ∞
0

(x2 sinh2 φ− x coshφ)e−x coshφ (1.316)

Now realize u = e−x coshφ, dv = −x coshφ and

−
∫ ∞

0

dφ x cosh(φ)e−x coshφ =
(((

((((
(((

((
−e−x coshφx sinh(φ)

∣∣∞
0
−
∫ ∞

0

dφ (−x sinhφ)(−x sinhφ)e−x coshφ dφ

(1.317)

= −
∫ ∞

0

dφ x2 sinh2(φ)e−x coshφ (1.318)

And so

x2 d2K0

dx2
+ x

dK0

dx
− x2K0 =

∫ ∞
0

(x2 sinh2 φ− x2 sinh2 φ)e−x coshφ = 0 (1.319)

Thus K0 is a solution.

Now to determine the solution for large x. We can note that e−x coshφ is a controlling factor, and
that most of the integral comes from 0 to some ε that is small (so use Taylor approximations for
coshφ around 0) and we see

K0(x) =

∫ ε

0

e
−x
(

1+φ2

2
+···

)
dφ (1.320)

We can then extend the integration over to∞, which won’t contribute much to the result anyway,
since the exponential quickly dies away. We use u

√
x/2 = φ and so

K0(x) ∼
∫ ε

0

e−xe
−xφ2

2 dφ =
e−x√
x/2

∫ ε

0

du e−u
2 ∼ e−x

√
2√

x

∫ ∞
0

du e−u
2

=
e−x
√
π√

2x
(1.321)

where
∫∞

0
dx e−x

2
=
√
π/2 was used. Thus D =

√
π/2.
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1.33 Toroidal Surface

Calculate
∫

r · dA over the surface of a torus.

Solution:

There are two straightforward ways to do this. The simpler method recognizes the above integral
as a divergence theorem application. Thus∫

S

r · dA =

∫
V

dV ∇ · (r) =

∫
V

dV 3 = 3Vtorus = 6πR(πr2) = 6π2Rr2 (1.322)

where R is the major radius and r is the minor radius of the torus.

Alternatively, use in primitive toroidal coordinates (r, θ, ζ) where r is the minor radius, θ is poloidal
and ζ is toroidal. We then have

x = (R + r cos θ) cos ζ (1.323)

y = −(R + r cos θ) sin ζ (1.324)

z = r sin θ (1.325)

Then clearly

r = x̂(R + r cos θ) cos ζ + ŷ (−(R + r cos θ) sin ζ) + ẑ(r sin θ) (1.326)

and so a surface vector is given by

∂r

∂θ
≡ F = −r sin θ cos ζx̂ + r sin θ sin ζŷ + r cos θẑ (1.327)

∂r

∂ζ
≡ G = −(R + r cos θ) sin ζx̂ +−(R + r cos θ) cos ζŷ (1.328)

n =
∂r

∂θ
× ∂r

∂ζ
= F×G (1.329)

= (Fy��Gz − FzGy)x̂ + (FzGx − Fx��Gz)ŷ + (FxGy − FyGx)ẑ (1.330)

= −(−1)r cos θ(R + r cos θ) cos ζx̂ + r cos θ(−[R + r cos θ] sin ζ)ŷ

+
[
r sin θ cos2 ζ(R + r cos θ) + r sin θ sin2 ζ(R + r cos θ)

]
ẑ

= r cos θ cos ζ(R + r cos θ)x̂− r cos θ sin ζ(R + r cos θ)ŷ + r sin θ(R + r cos θ)ẑ

(1.331)

n · n = r2 cos2 θ cos2 ζ(R + r cos θ)2 − r2 cos2 θ sin2 ζ(R + r cos θ)2 + r2 sin2 θ(R + r cos θ)2

(1.332)

= r2 cos2 θ(R + r cos θ)2 + r2 sin2 θ(R + r cos θ)2 (1.333)

= r2(R + r cos θ)2 (1.334)

And so

n̂ = cos θ cos ζx̂− cos θ sin ζŷ + sin θẑ (1.335)
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We also need the coordinate transformation’s “Jacobian” |F×G| = r(R + r cos θ) so∫
S

r · dA =

∫ 2π

0

dζ

∫ 2π

0

dθ r(R + r cos θ)r · n̂ (1.336)

=

∫ 2π

0

dζ

∫ 2π

0

dθ r(R + r cos θ)
(
cos θ(R + r cos θ) cos2 ζ + cos θ(R + r cos θ) sin2 ζ + r sin2 θ

)
(1.337)

=

∫ 2π

0

dζ

∫ 2π

0

dθ r(R + r cos θ)(R cos θ + r) (1.338)

=

∫ 2π

0

dζ

∫ 2π

0

dθ r(R2 cos θ + rR cos2 θ + rR + r2 cos θ) (1.339)

Clearly the cos θ terms will vanish, so

= rR2

∫ 2π

0

dζ

∫ 2π

0

dθ (1 + cos2 θ) = rR24π2 + 2πrR2

∫ 2π

0

dθ cos2 θ (1.340)

We use cos2 θ = 1+cos(2θ)
2

and thus∫ 2π

0

dθ
1 + cos(2θ)

2
= π −

�
�
�
�sin(2θ)

4
(1.341)

So we get ∫
S

r · dA = rR2(4π2 + 2π2) = 6π2rR2 (1.342)

in agreement with our previous answer.

1.34 Volume of 4D Sphere

Calculate the volume V of a four dimensional unit sphere.

x1 = r sinφ2 sinφ1 cosφ (1.343)

x2 = r sinφ2 sinφ1 sinφ (1.344)

x3 = r sinφ2 cosφ1 (1.345)

x4 = r cosφ2 (1.346)

First let’s form the inverse Jacobian.

∂(x1, x2, x3, x4)

∂(r, φ1, φ2, φ3)
=


∂x1
∂r

∂x1
∂φ

∂x1
∂φ1

∂x1
∂φ2

∂x2
∂r

∂x2
∂φ

∂x2
∂φ1

∂x2
∂φ2

∂x3
∂r

∂x3
∂φ

∂x3
∂φ1

∂x3
∂φ2

∂x4
∂r

∂x4
∂φ

∂x4
∂φ1

∂x4
∂φ2

 (1.347)

=


sinφ2 sinφ1 cosφ −r sinφ2 sinφ1 sinφ r sinφ2 cosφ1 cosφ r cosφ2 sinφ1 cosφ
sinφ2 sinφ1 sinφ r sinφ2 sinφ1 cosφ r sinφ2 cosφ1 sinφ r cosφ2 sinφ1 sinφ

sinφ2 cosφ1 0 −r sinφ2 sinφ1 r cosφ2 cosφ1

cosφ2 0 0 −r sinφ2


(1.348)
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So then ∣∣∣∣∂(x1, x2, x3, x4)

∂(r, φ1, φ2, φ3)

∣∣∣∣ = r3 sinφ1 sin2 φ2 (1.349)

And so (we integrate from 0 to π except for φ because otherwise we are going over the same area
twice) ∫

V

d4x 1 =

∫ 1

0

dr

∫ 2π

0

dφ

∫ π

0

dφ1

∫ π

0

dφ2 r
3 sinφ1 sin2 φ2 (1.350)

=

∫ π

0

dφ2 sin2 φ2

[∫ 1

0

dr

∫ 2π

0

dφ

∫ π

0

dφ1 sinφ1

]
(1.351)

=

∫ π

0

dφ2
1− cos(2φ2)

2

4π

4
=
π2

2
(1.352)

1.35 Concentration of Air in a Pipe

Gaseous helium is flowing without turbulence at a velocity v down a pipe and into the atmosphere.
Within a very short distance from the end of the pipe, the helium is rapidly diluted to essentially
zero concentration.

Set up and solve the differential equation for the concentration of air in the pipe as a function of
distance from the end of the pipe. Assume equilibrium conditions, neglect wall friction and end
effects, assume no temperature difference, and assume that the coefficients of diffusion of O2 and
N2 into He are the same and equal to D.

Solution:

We must have conservation of particles in the pipe.

∂n

∂t
+∇ · (nV) = S (1.353)

where n = nh +na with nh the helium and na the air number density. Put x = 0 at the end of the
pipe. The S is a source.

We know in steady state that we must have sources to keep the helium and air continually supplied.
Consider na.

If there is diffusion of air into the pipe, we can note that they contribute by

S = D
∂2n

∂x2
(1.354)

Thus in steady state we have

v
∂na
∂x

= D
∂2na
∂x2

(1.355)
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Hence,

v

D
na =

∂na
∂x

(1.356)

na = C0e
vx/D + C (1.357)

At x = −∞ we want na = 0 so C = 0 and we see

na = nevx/D (1.358)

C0 is set by choosing what the density at x = 0, which is purely air so n. Then the concentration
of helium would be given by

nh
n

=
n− na
na + nh

= n
1− evx/D

n
= 1− evx/D (1.359)

and for air
na
n

= evx/D (1.360)

for x < 0 in both cases.

1.36 Neutron Density in Reactor

The equation describing the neutron density in a chain reacting pile is ∇2n+K2n = 0.

(a) With the boundary condition that it vanish outside the pile, find the radius for a spherical pile
of a given value of K.

(b) Now suppose that a thin layer of material of thickness t is added to the surface, and that the
neutron density in the layer is described by ∇2n− µ2n = 0. Assume the boundary conditions at
the interface are that n and ∇n are continuous. Demanding that n vanish outside the pile and
material layer, find for fixed values of K, µ and t, an expression for the radius of the internal
region. Assuming K � µ, derive an approximate relation for the difference between the radii
without and with the layer.

Solution:

(a)

We have Dirichlet boundary conditions that we want enforced on a sphere. We remember that on
a sphere, that this equation becomes

1

r2

∂

∂r

(
r2∂n

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂n

∂θ

)
+

1

r2 sin θ

∂2n

∂ϕ2
+K2n = 0 (1.361)

We know via spherical symmetry that there is no θ or ϕ dependence. Thus

∂

∂r

(
r2∂n

∂r

)
+ r2K2n = 0 (1.362)

r2n′′ + 2rn′ + r2K2n = 0 (1.363)

(1.364)
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We can recognize this as almost the equation for a Spherical Bessel function. Let x = κr we find

r2n′′ + 2rn′ + r2K2n = 0 (1.365)

x2 d2n

dx2
+ 2x

dn

dx
+ x2n = 0 (1.366)

which is a spherical Bessel function which has solution jk for

x2 dy2

dx2
+ 2r

dy

dx
+ (x2 − k(k + 1))y = 0 (1.367)

so our solution is

j0(x) =
sin(x)

x
=

sin(Kr)

Kr
(1.368)

If we want n = 0 outside some radius we require

sin(Kr)

Kr
= 0 (1.369)

So Kr = π is the smallest value for our solution so at r = π/K. If we chose some other value,
then we would have negative densities inside the radius, which would make little sense.

(b)

Note that if we take µ = im then the equation is a spherical Bessel function j0 and so the solution
is of the form (let Ri be the internal radius)

n =
sin(mr)

mr
=

sin(−iµr)
−iµr

=
ei(−iµr) − e−i(−iµr)

2i(−iµr)
=
eµr − e−µr

2µr
=

sinh(µr)

µr
(1.370)

we want at r = Ri+t that this vanishes. The only way for this to occur is if we let µr → [µ(r−Ri−t)]
so

n =
A sinh(µ(r −Ri − t)

r
(1.371)

for some A.

Let the inner solution have a constant B.

Now we require that for some internal Radius Ri that

B sin(KRi)

Ri

=
A sinh(−µt)

Ri

=
−A sinh(µt)

Ri

A = −B sin(KRi)

sinh(µt)
(1.372)

(1.373)

The derivative condition requires

B
KRi cos(KRi)− sin(KRi)

R2
i

= A
µRi cosh(µt) + sinh(µt)

R2
i

(1.374)

B
KRi cos(KRi)− sin(KRi)

R2
i

= −BµRi coth(µt) sin(KRi) + sin(KRi)

R2
i

(1.375)

KRi cos(KRi) = −µRi coth(µt) sin(KRi) (1.376)

KRi cot(KRi) = −µRi coth(µt) (1.377)

K tanh(µt) = −µ tan(KRi) (1.378)
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So our solution is given by

KRi = tan−1

(
−K
µ

tanh(µt)

)
(1.379)

if K � µ then we can use that for x� 1

tan−1 (x) ≈ x (1.380)

KRi ≈
−K
µ

tanh(µt) (1.381)

We recognize this solution is unphysical. If we more carefully look at tan we see that it repeat
every π so we can add multiples of π to our answer. Clearly, then,

Ri ≈
π

K
− 1

µ
tanh(µt) (1.382)

as that way as t→ 0 we see we recover the solution of Ri = π/K as from (a).

1.37 Neutron Flux

A point source of neutrons on the axis of a long square column of graphite 150 cm on a side emits
106 neutrons per second. Calculate the flux of neutrons at a point on the axis 1 m from the source
if the diffusion coefficient of the neutrons is D = λv/3, v is their velocity, and λ = 2.8 cm is the
mean free path for scattering. Neglect the effects of slowing down and capture.

Solution:

This question is not very well-worded. A “long square column” would be clearer as a “long, square
column”. I assume that it means there is a small hole in the graphite cube, such that the neutrons
can exit along the axis of the hole unimpeded.

Place the axis (say the z along the point source), then we have diffusion in the form (placing the
point source at the origin and Q = 106)

D∇2n = Qδ(r) (1.383)

For x and y let’s put boundary conditions x = y = ±a that n = 0. For z we want z = ±∞ that
n = 0.

n =
∑
l,k

eilx+ikyAlk(z) (1.384)

The boundary condition at x = ±a implies e±ila = 0 so la = (2m + 1)π/2, and similarly ka =
(2n+ 1)π/2 [because we care about the real part in the end]. We then find

∇2n =
∑
l,k

eilx+iky((−l2 − k2)Alk + A′′lk) = Cδ(r) (1.385)

∇2n =
∑
l,k

ei
(2m+1)π

2a
x+i

(2n+1)π
2a

y((−l2 − k2)Alk + A′′lk) = Cδ(r) (1.386)
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where C = Q/D. Integrate while using the orthogonality of eil
′x and eik

′y (changing from x, y, to
u, v via u = πx/(a) and v = πy/(a) yields a factor of a/(π) for each and orthogonality for both
picks up a two factors of (π)) That is β = (2m+ 1)/2 and γ = (2n+ 1)/2∫ a

−a
dx cos

(
(2m+ 1)πx

2a

)
cos

(
(2n+ 1)πx

2a

)
(1.387)

=
a

π

∫ π

−π
du cos

(
(2m+ 1)u

2

)
cos

(
(2n+ 1)u

2

)
(1.388)

=
a

2π

∫ π

−π
du [cos ([β + γ]u) + cos ([β − γ]u)] (1.389)

=
a

2π

[
−sin ([β + γ]u)

β + γ
− sin (β − γ)

β − γ

]π
−π

= 0 for β 6= γ and β 6= −γ (1.390)

if β = γ or β = −γ we find∫ a

−a
dx cos

(
(2m+ 1)πx

2a

)
cos

(
(2n+ 1)πx

2a

)
(1.391)

=
a

2π
2π = a (1.392)

proving the orthogonality factor above is indeed a2.

(−l2 − k2)Alk + A′′lk(z) =
C

a2
δ(z) (1.393)

Integrating z over a small region around zero will yield (let’s assume A is continuous, since we
want n to not be discontinous)

JA′lk(z)K = C/a2 (1.394)

Thus, the jump in the derivative of Alk = C/a2 and also have A′′lk = fAlk where f = (l2 + k2).
Thus for A+ in z > 0 and A− in z < 0 our boundary conditions require

A±lk = C0e
∓
√
fz (1.395)

A±′lk = ∓C0

√
fe∓

√
fz (1.396)

Our jump condition indicates

−
[
−C0

√
fe−

√
f0 − C0

√
fe
√
f0
]

= C/a2 (1.397)

2C0

√
f = C/a2 (1.398)

C0 =
C

2a2
√
f

(1.399)

Thus, altogether, we find

n =
∑
l,k

eilx+iky Q

2Da2
√
l2 + k2

e−
√
l2+k2|z| (1.400)
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with l = (2m+1)π
2a

and k = (2n+1)π
2a

. Thus the flux along z will be given by

jz = D
∂n

∂z
=
∑
l,k

Q

2a2
e−
√
l2+k2|z| |z|

z
(1.401)

D
∂n

∂z
=
∑
n,m

Q

2a2
e−

π
2a

√
(2m+1)2+(2n+1)2|z| |z|

z
(1.402)

Evaluating the sum, we see that the larger m and n get, the smaller the contribution.

Note n,m go over 0 to ∞ at this point. So we get

10∑
j=0

10∑
k=0

e
−1
0.75

π
2a

√
(2m+1)2+(2n+1)2 ≈ 0.188 (1.403)

jz =
Q

2a2
(0.188) =

106

(0.75)2
(0.188) ≈ 3.3× 105 (1.404)
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Chapter 2

Mechanics

2.1 Stokes’s Law

Derive the form of Stokes’s law by dimensional analysis. Assume that the force is independent of
the density ρ of the fluid. What happens when the assumption is dropped?

(Note: Stokes’s law is the force due to a fluid flowing past a sphere)

Solution:

What do we have? The radius of the sphere R, the kinematic viscosity ν = µ/ρ where µ is the
dynamic viscosity, and the velocity of the fluid around the sphere v.

Using [Q] to denote units with L, M , S standing for length, mass, and time, we see

[F ] =
ML

S2
(2.1)

[R] = L (2.2)

[v] = L/S (2.3)

[ν] =
L2

S
(2.4)

[µ] =
M

LS
(2.5)

(2.6)

So clearly a combination of

[R]α[v]β[µ]γ = MLS−2 (2.7)

LαLβS−βMγL−γS−γ = MLS−2 (2.8)

Lα+β−γMγS−β−γ = MLS−2 (2.9)

α + β − γ = 1 (2.10)

−β − γ = −2 (2.11)

γ = 1 (2.12)
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54 Dimensional Analysis Explosion

Thus γ = 1, β = 1 and α = 1. So we have

F ∼ Rvµ = Rvνρ (2.13)

If the force is independent of the fluid density that means that the ρ above does not contribute
except as a constant factor and so for scaling we have

F ∼ Rvν (2.14)

Re ≡ Rv

ν
(2.15)

F ∼ Reν2 (2.16)

Here Re = Rv/ν is dimensionless and so the scaling parameter for F must be able to be written
as a function of the number, often called the Reynolds number Re.

Small Reynolds number indicates viscosity is dominant and non-turbulent flow is occurring. Large
Reynolds number indicates turbulence, which will complicate our analysis and make it incorrect if
it occurs. That is because there are turbulent eddies and so v won’t be a good measure of what’s
happening as there are no nice streamline flows.

2.2 Dimensional Analysis Explosion

A gas bubble from a deep explosion under water oscillates with a period T ∼ padbec where p is
static pressure, d the water density, and e the total energy of the explosion. Find, a, b, and c.

Solution:

Use dimensional analysis

[T ] = S (2.17)

[p] = ML−1S−2 (2.18)

[d] = ML−3 (2.19)

[e] = ML2S−2 (2.20)

[p]a[d]b[e]c = MaL−aS−2aM bL−3bM cL2cS−2c = Ma+b+cL−a−3b+2cS−2a−2c (2.21)

and so we have

a+ b+ c = 0 (2.22)

−a− 3b+ 2c = 0 (2.23)

−2a− 2c = 1 (2.24) 1 1 1
−1 −3 2
−2 0 −2

ab
c

 =

0
0
1

 (2.25)
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We see that two times the first equation plus the last equation yields 2b = 1 or b = 1/2. So

−a+ 2c =
3

2
(2.26)

−2a− 2c = 1 (2.27)

−3a =
5

2
(2.28)

a =
−5

6
(2.29)

Thus

−5

6
+

1

2
+ c = 0 (2.30)

c =
2

6
=

1

3
(2.31)

Altogether a = −5
6

, b = 1
2

and c = 1
3
.

Double checking we have

5

6
− 3

2
+

2

3
=

5− 9 + 4

6
= 0 (2.32)

−2

(
−5

6
+

1

3

)
= −2

−3

6
= 1 (2.33)

so

T ∼ p−5/6d1/2e1/3 (2.34)

This tells us, for example, the larger the static pressure the shorter the period.

2.3 Satellite Circular Orbit

A satellite is put into a circular orbit at a distance R0 above the center of the earth. A viscous
force resulting from the thin upper atmosphere has a magnitude Fv = Avα, where v is the velocity
of the satellite. It is noted that this results in a rate of change in the radial distance r given by
dr/dt = −C where C is a positive constant, sufficiently small so that the loss of energy per orbit
is small compared to the total kinetic energy. Obtain expressions for A and α.

Solution:

We use that for a circular orbit, we must have the centripetal force balanced by gravity, so

mv2

r
=
MEmG

r2
(2.35)

v =

√
MEG

r
(2.36)
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56 Mass on a String around a Cylinder

We can then use that the tangential force on the satellite is given by (note that since this is a drag
force, we expect Fv to have a negative sign overall)

F = m
dv

dt
= m

dv

dr

dr

dt
= −1

2
m

√
MEG

r3
(−C) =

Cm

2

√
MEG

r3
(2.37)

=
Cm

2MEG

√
MEG

r

3

=
Cm

2MEG
v3 (2.38)

Note that the F above is −Fv that we desire. So

A = − Cm

2MEG
(2.39)

α = 3 (2.40)

Alternatively we can use

E = −MEmG

r
+

1

2
mv2 = −MEmG

r
+
MEGm

2r
=
−MEmG

2r
(2.41)

and so

dE

dt
= F · v = Avα+1 =

dE

dr

dr

dt
=

d

dr

(
−MEmG

2r

)
(−C) = −CMEmG

r2
(2.42)

Avα+1 = A

(
MEG

r

)(α+1)/2

= −CMEmG

2r2
(2.43)

For the powers of r to match, we must have α = 3 and we find

A =
−C

2MEG
(2.44)

2.4 Mass on a String around a Cylinder

A point mass m under no external forces is attached to a weightless cord fixed to a cylinder of
radius R. Initially the cord is completely wound up so that the mass touches the cylinder. A
radially-directed impulse is now given to the mass, which starts unwinding.

(a) Find the equation of motion in terms of some suitable generalized coordinate.

(b) find the general solution satisfying the initial condition.

(c) find the angular momentum of the mass about the cylinder axis using the result of (b)

Solution:

(a)

Let ϕ be the angle from the top of the cylinder to where the string begins to leave the cylinder.
Then the length of the string off the cylinder is L = Rϕ where we allow ϕ to go beyond 2π as an
angle.
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Let’s write out what the position of the particle is (using L̇ = Rϕ̇)

x = R sinϕ− L cosϕ (2.45)

y = R cosϕ+ L sinϕ (2.46)

ẋ = R cosϕϕ̇− L̇ cosϕ+ L sinϕϕ̇

= L̇ cosϕ− L̇ cosϕ+ L sinϕϕ̇

= L sinϕϕ̇

(2.47)

ẏ = −R sinϕϕ̇+ L̇ sinϕ+ L cosϕϕ̇

= −L̇ sinϕ+ L̇ sinϕ+ L cosϕϕ̇

= L cosϕϕ̇

(2.48)

v2 = L2ϕ̇2 = L2 L̇
2

R2
(2.49)

So without a potential energy we find

L = T =
mL2L̇2

2R2
(2.50)

d

dt

(
∂L
∂L̇

)
=
∂L
∂L

(2.51)

d

dt

(
mL2

R2
L̇

)
=
mL̇2L

R2
(2.52)

d

dt

(
L2L̇

)
= L̇2L (2.53)

2LL̇L̇+ L2L̈ = L̇2L (2.54)

L2L̈ = −L̇2L (2.55)

L̈ = − L̇
2

L
(2.56)

We see that this can be rewritten

LL̈+ L̇2 = 0 (2.57)

d

dt

(
LL̇
)

= 0 (2.58)

(b)

We see that we need something satisfying LL̇ = C for some constant C such that at time t = 0
we have L = 0 (L0 = 0). We see ∫ L(t)

L0

dL L =

∫
dt C (2.59)

L(t)2 − L2
0

2
= Ct (2.60)

L2(t) =
2Ct+ L2

0

2
= Ct (2.61)

L(t) =
√
Ct (2.62)
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58 Lawn Sprayer

We must have with initial velocity v0 that

L′(t) =
C

2L
=
Rv0

L
(2.63)

so

L2(t) = 2Rv0t (2.64)

L(t) =
√

2Rv0t (2.65)

So LL̇ = Rv0.

(c)

To find the angular momentum, we need the distance from the center of mass and then we multiply
by the velocity at that time. This is clearly

mvr = m
LL̇

R

√
L2 +R2 = mLL̇

√
L2

R2
+ 1 (2.66)

= m
√

2Rv0t

√
Rv0√
2t

√
2v0t

R
+ 1 (2.67)

= mv0R

√
2v0t

R
+ 1 (2.68)

The book says

mvr = mvL = m
√

2Rv3
0t (2.69)

which is clearly incorrect. The distance from the center of the cylindrical axis is always R2 + L2,
and so I have no idea how they can say r = L. My answer makes a lot more sense as it says intially
that mvr = mv0R as you’d expect at t = 0.

The book’s answer only makes sense if you go from where the cylinder and string meet, which isn’t
a stationary axis.

2.5 Lawn Sprayer

Consider a lawn sprayer consisting of a spherical cap (α0 = 45◦) provided with a large number of
equal holes through which water is ejected with velocity v0. The lawn is not uniformly sprayed if
these holes are evenly spaced. How must ρ(α), the number of holes per unit area, be chosen to
achieve uniform spraying of a circular area? Assume the radius of the sprinkling cap is very much
less than the radius of the area to be sprayed, and the surface of the cap is at the level of the lawn.

Solution:

With α measured from the upward direction, we see that we can look at the distribution based on
how far a particle goes when ejected from a hole. This will be determined by having

xd = tdv0 sinα (2.70)
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To find the amount of time in the air we use that there is an acceleration downwards and so

y = −1

2
gt2 + v0 cosαt (2.71)

0 = −gtd/2 + v0 cosα (2.72)

td =
2v0 cosα

g
(2.73)

So

x = v0 sinα
2v0 cosα

g
= v2

0

2 sinα cosα

g
=
v2

0 sin(2α)

g
(2.74)

Because of spherical symmetry it’s clear this x is also good for any r. Let rd = xd. Then the area
is proportional to rd dr. We can convert this into α and find

2πrd dr = 2π
v2

0 sin(2α)

g
dr (2.75)

dr =
v2

02 cos(2α)

g
dα =

2v2
0 cos(2α)

g
dα (2.76)

rd dr =
v2

0 sin(2α)

g

2v2
0 cos(2α)

g
dα =

2v4
0 sin(2α) cos(2α)

g2
dα =

v4
0

g2
sin(4α) dα

(2.77)

Now, we know that in the form of α that given dα, the amount of water on a given angle spread
is proportional to ρ(α) sinα dα because this is the water passing through a solid angle ρ(α) dΩ ∼
ρ(α) sinα dα.

Thus, equating these two differentials yields

ρ(α) sin(α) ∼ v4
0

g2
sin(4α) (2.78)

ρ(α) ∼ sin(4α)

sin(α)
(2.79)

2.6 Constraining Surface

Find the differential equation for the contour of a constraining surface on which a point mass will
oscillate with a period independent of the amplitude.

Solution:

We consider some surface with gravity. Then align the y axis with the force of gravity. Then let s
be a coordinate along the constraining surface, that is the path length. This implies for y = y(x)
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that

ds =

√
1 +

(
dy

dx

)2

dx (2.80)

ṡ =

√
1 +

(
dy

dx

)2

ẋ (2.81)

|v|2 =

(
dx

dt

)2

+

(
dy

dt

)2

= ẋ2 +

(
dy

dx
ẋ

)2

= ẋ2

(
1 +

[
dy

dx

]2
)

(2.82)

= ṡ2

(
1 +

[
dy
dx

]2)(
1 +

[
dy
dx

]2) = ṡ2 (2.83)

And so the equation of motion is given by letting f(s) =
(

dx
ds

)2
+
(

dy
ds

)2

L =
1

2
m|v|2 −mgy(s) =

m

2
ṡ2 −mgy(s) (2.84)

And so

d

dt

(
∂L
∂ṡ

)
=
∂L
∂s

(2.85)

m
d

dt
(ṡ) = −mgdy

ds
(2.86)

ms̈ = −mgdy

ds
(2.87)

s̈ = −gdy

ds
(2.88)

(2.89)

If we want it to oscillate then we must have s(t) ∼ e−iωt and so with x = s and y = y(s)

s̈ = −ω2s (2.90)

Note that the book arrives at this by saying s̈ = −g sin θ = −g dy
ds

and so

s̈ = −gdy

ds
(2.91)

dy

ds
=
ω2

g
s (2.92)

y =
ω2

2g
s2 (2.93)

2.7 Equilateral Mass Triangle

Three masses (m1,m2,m3) forming the corners of an equilateral triangle, attract each other ac-
cording to Newton’s Law. Determine the rotational motion which will leave the relative position
of these masses uncharged.
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Solution:

Define

rij = ri − rj = (xi − xj)x̂ + (yi − yj)ŷ (2.94)

|rij| =
√

(xi − xj)2 + (yi − yj)2 ≡ a (2.95)

Let ri point to the ith particle.

The force on mi is then given by

F1 =
m1G

a3
[m2r21 +m3r31] (2.96)

F2 =
m2G

a3
[m1r12 +m3r32] (2.97)

F3 =
m3G

a3
[m1r13 +m2r23] (2.98)

Let R point to the center of mass. Then R = (m1r1 + m2r2 + m3r3)/(m1 + m2 + m3) with
M = m1 +m2 +m3. Then the above can be written as (i, j, k) is an even permutation of (1, 2, 3)

Fi =
miG

a3
[MR−Mri] (2.99)

=
miMG

a3
(R− ri) (2.100)

In the center of mass frame R = 0 and so

Fi = −miMG

a3
ri (2.101)

In the rotating frame we must have no forces at all. In a rotating frame we will have

Frotating = Finertial −mΩ×Ω× r = 0 (2.102)

as there is no velocity in the rotating frame and also we have dΩ
dt

= 0.

Choose ẑ such that it is normal to the plane formed by the equilateral triangle. Thus we require
for any particle

−miMG

a3
ri = miΩ

2ẑ× ẑ× ri = −miΩ
2ri (2.103)

and so we see

Ω2 =
MG

a3
(2.104)

with Ω = Ωẑ where ẑ is pointing normal to the plane formed by the equilateral triangle.

We can prove perpendicularity by using

Ω×Ω× r = Ω(Ω · r)− Ω2ri (2.105)

and so we see from matching that (Ω · r) = 0, showing that Ω points normal to the equilateral
triangle plane.
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62 Circular Orbit Central Potential

2.8 Circular Orbit Central Potential

A mass m moves in a circular orbit of radius r0 under the influence of a central force whose
potential is −km/rn. Show that the circular orbit is stable under small oscillations (that is, the
mass will oscillate about the circular orbit) if n < 2.

Solution:

We use that this is a central force potential. So we can use there is an effective potential with that
term given by V = L2

2mr2
, thus

Feff ≡ F = −(∇f + ∇V ) = −
(
−−nkm

rn+1
+
−L2

mr3

)
r̂ (2.106)

To determine if this is a stable orbit, we make a small perturbation δr to r0 and see

r̂ · F(r + δr ) =
−nkm

(r0 + δr )n+1
+

L2

m(r0 + δr )3
=
−nkm
rn+1

0

1

(1 + δr
r0

)n+1
+

L2

mr3
0(1 + δr

r0
)3

(2.107)

≈ −nkm
rn+1

0

(
1− (n+ 1)δr

r0

)
+

L2

mr3
0

(
1− 3δr

r0

)
(2.108)

We use that the r̂ · F(r) term must cancel at equilibrium so

n(n+ 1)km

rn+2
0

δr − L2

mr4
0

δr (2.109)

Thus for stability we require

n(n+ 1)km

rn+2
0

− 3L2

mr4
0

< 0 (2.110)

We use that the equilibrium term must cancel so

−nkm
rn+1

0

+
L2

mr3
0

= 0 (2.111)

and so

(n+ 1)L2

mr3
0r0

− L2

mr4
0

< 0 (2.112)

(n+ 1− 3)
L2

mr4
0

< 0(n− 2)
L2

mr4
0

< 0 (2.113)

Thus n < 2 is stable.

2.9 Collision After Circular Orbits

Two particles move about each other in circular orbits under the influence of gravitational forces,
with a period τ . The motion is suddenly stopped at a given instant of time, and the particles are
then released and allowed to fall into each other. Prove that they collide after a time τ/(4

√
2).
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Solution:

Define

rij = ri − rj = (xi − xj)x̂ + (yi − yj)ŷ (2.114)

|rij| =
√

(xi − xj)2 + (yi − yj)2 ≡ a (2.115)

Let ri point to the ith particle.

The force on mi is then given by (because the distance between them is constant)

F1 =
m1m2G

a3
r21 (2.116)

F2 =
m1m2G

a3
r12 (2.117)

Let R point to the center of mass. Then R = (m1r1 +m2r2)/(m1 +m2) with M = m1 +m2. Then
the above can be written as (i, j) is an even permutation of (1, 2) Then

Fi =
miG

a3
(mjrj −mjri) =

miG

a3
(MR−Mri) (2.118)

Fi =
miMG

a3
(R− ri) (2.119)

Thus if we choose the center of mass frame, we see R = 0 and

Fi = −miMG

a3
ri (2.120)

In order for there to be circular motion by each, we must have

−miMG

a3
ri =

miv
2
i

a2
rj (2.121)

it is simple to see that in the center of mass frame that ri = −rj and so

miMG

a3
=
miv

2
i

a2
(2.122)

MG = av2
i (2.123)

a =
MG

v2
i

(2.124)

The period is given by

τ =
2πa

vi
=

2πMG

v3
i

(2.125)

τ 2 =
4π2a2

v2
i

=
4π2a3

MG
(2.126)

a3 =
MGτ 2

4π2
(2.127)
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If they are stopped then we can find the position by using that it is now 1D motion and we need
only find when they hit the center of mass.

We can solve the problem as where r is the relative distance between the particles and µ = m1m2/M
is the reduced mass. In this system, it is one dimensional, and so using conservation of energy, we
have

µ

2
ṙ2 − Gm1m2

r
=
−Gm1m2

a
(2.128)

ṙ = −

√
2Gm1m2

µ

√
1

r
− 1

a
(2.129)∫ a

0

dr√
1
r
− 1

a

= −
∫ 0

t

√
2GM dt (2.130)

t
√

2GM =

∫ a

0

dr√
1
r
− 1

a

=

∫ a

0

√
ra dr√
a− r

(2.131)

Try x = r/a and we find

=

∫ 1

0

a
√
x

√
a
√

1− x
a dx = a3/2

∫ 1

0

√
x dx√
1− x

(2.132)

If we try x = sin2 θ then dx = 2 sin θ cos θ dθ = 2 sin θ
√

1− x dθ and

= a3/2

∫ π
2

0

2 sin θ sin θ dθ = 2a3/2

∫ π
2

0

dθ
1− cos(2θ)

2
= a3/2π

2
(2.133)

and so

t =

√
a3π2

4(2GM)
=

√
MGτ 2

4π2

π2

8GM
=

τ√
32

=
τ√

24
√

2
=

τ

4
√

2
(2.134)

as desired.

2.10 Moon Jump

If re and ρe are the earth’s radius and density, respectively, the corresponding quantities for the
moon are rm = 0.275re and ρm = 0.604ρe. A man standing on Earth bends his knees, lowering his
center of mass 50 cm. Exerting his maximum strength he jumps straight up, raising his center of
mass 60 cm above its height at his normal erect posture. How much higher can he jump in this
manner, on the moon?

Solution:

The small height differences mean we can use a constant force/acceleration for these calculations.
Then use that the gravitational force is the same as if both are considered at their center of mass.
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Then

ge =
MEG

r2
e

=
4πr3

eGρe
3r2

e

=
4πreρeG

3
(2.135)

gm =
4πrmρmG

3
(2.136)

(2.137)

Put the zero of the gravitational potential at the man’s center of mass when he is bending down.
Then the energy he uses on earth is

δE = mgeh (2.138)

with m the mass of the man and h = 60 cm + 50 cm = 1.1 m. On the moon, place the zero at
where the man’s knees are bent and we have

hm =
∆E

mgm
=
mgeh

mgm
=

ge
gm
h =

4πreρeG
3

4πrmρmG
3

h =
reρe
rmρm

h (2.139)

=
1

(0.275)(0.604)
h ≈ 6.02h (2.140)

Thus the man can go up to 6.02(1.1 m) ≈ 6.6 m above his center of mass when bending his knees.

From his center of mass normally standing, he can then jump 6.6 m − 0.5 m = 6.1 m up on the
moon.

2.11 Force on Balance Beam

A uniform thin rigid rod of weight W is supported horizontally by two vertical props at its ends.
At t = 0 one of these supports is kicked out. Find the force on the other support immediately
thereafter.

Solution:

Let the rod be 2d long. When it was in static equilibrium, we know that there was a torque on the
left side support of Wd. This means that the other support must be providing a torque of −Wd.
Since it is a distance 2d from the left support then the force must be −W/2.

This tells us that before we kick out the support each support supports half the load of W .

When we kick out the support we have (measure from the remaining support for torque)

Iθ̈ = Wd (2.141)

where m is the mass of the entire rigid rod. The moment of inertia for a rigid rod of length L is

I =
m

L

∫ L

0

dx x2 =
M

L

L3

3
=
mL2

3
(2.142)
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Thus we have

θ̈ =
Wd
m(2d)2

3

=
3W

4md
(2.143)

We must also have for a short period of time that at the center of the rod that

F −W = mÿ (2.144)

with y pointing upward and where F is the force due to the support. It’s fairly clear that for small
angles that y ≈ dθ since y = d sin θ and so ÿ ≈ dθ̈ and we have

F −W
md

=
3W

4md
(2.145)

F =
W

4
(3− 4) =

−W
4

(2.146)

so the magnitude of the force on the support is W/4, half of what it was just a moment before.

2.12 Three Cylinders Minimum Angle

Three identical cylinders with parallel axes are in contact with each other on a rough plane with
two cylinders lying on the plane and the third resting on top of them. What is the minimum
angle which the direction of the force acting between the cylinders and the plane makes with the
vertical? (What they mean is, what is the force between one of the bottom cylinders and the
plane. . . Very poorly worded. . . )

Solution:

By symmetry all the weight must be supported vertically by the two bottom cylinders evenly. If
each cylinder weighs W , then 3W/2 is the total force on any of the bottom cylinders.

Take the bottom right cylinder then, and we see that

Fx = FT cos
π

3
− Ffx + FL = 0 (2.147)

Fy = −FT sin
π

3
−W +

3W

2︸︷︷︸
Ffy

= 0 (2.148)

(Fy) : FT

√
3

2
=
W

2
(2.149)

where FT is the force from the top cylinder, FL is the force from the bottom left cylinder and Ff
is the horizontal force from the floor. So

Fx =
1√
3
W

1

2
− Ffx + FL = 0 (2.150)

Ff =
1

2
√

3
W + FL (2.151)
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We see that the smallest angle from the floor will be given for Ff being as small as possible. The
smallest Ff could be is for FL = 0 and then (using θ measured from the vertical

tan θ =
Ffx
Ffy

=

1
2
√

3
W

3W
2

=
1

3
√

3
(2.152)

θ ≈ 0.1901 ≈ 10.9◦ (2.153)

Strangely the book argues that there is an extra Ff force exerted where FT hits the bottom right
cylinder but pointing tangent and to the left of that point.

I think it’s pretty obvious that the floor is not exerting an extra force at that point, and so I don’t
know why they think it is there. It is extremely puzzling.

The book gets tan θ ≈ 2+
√

3
3

which would yield

θ ≈ 0.8937 ≈ 51.2◦ (2.154)

and even if I assume that’s an angle measured from the horizontal, so that we should have tan θ ≈
3

2+
√

3
we’d get θ ≈ 0.6771 ≈ 38.8◦ which all seem rather large for the minimum angle.

2.13 Pull on a Yo-Yo

A yo-yo rests on a level surface. A gentle horizontal pull is exerted on the cord so that the yo-yo
rolls without slipping (the cord is wrapped around the axle and so the force is exerted at a radius
r < R where R is the radius of the yo-yo, and the cord is pulled such that it pulls from the lower
part of the yo-yo). Which way does it roll and why?

Solution:

We are exerting a force to the right on the yo-yo. This means the center of mass of the yo-yo and
string system must move to the right. The string is basically massless in comparison to the yo-yo
and so this means the yo-yo must begin rolling to the right. The point P may move to the left, so
long as the center of mass of the yo-yo moves to the right.

2.14 Dog Walks in Horizontal Circular Disk

A horizontal circular disk of mass M is free to rotate about a vertical axis through a point on its
rim. If a dog of mass m walks once around the rim, show that the disk turns through an angle
given by the expression ∫ π

0

4m cos2 γ dγ

3M/2 + 4m cos2 γ
(2.155)

Solution:
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The moment of inertia of the uniform circular disk at its center of mass would be (use ρ(r, θ) = M
πR2

with R the radius of the disk)

∫ R

0

dr

∫ 2π

0

dθ rρ(r, θ)r2 =
2πM

πR2

∫ R

0

dr r3 =
2M

R2

R2

4
=
MR2

2
(2.156)

and so by the parallel axis theorem, we have that moving the rotation point R to a point on the
rim of the disk that

I = Icm +MR2 =
MR2

2
+MR2 =

3MR2

2
(2.157)

Because there was initially no angular momentum, then at all further times there is no angular
momentum for the system. Let α be the angle the disk rotates about it’s fixed point and β be
the angle of the dog from the rotation point. The fixed disk will have it’s point farthest from the
rotation axis rotate around a circle of radius 2R from the rotation axis. I assume this is what is
meant by the angle α, but the book seems to want some other angle that makes no sense as they
don’t define it. Then we must have from conservation of angular momentum that

−Idiskα̇︸ ︷︷ ︸
Ldisk

+ Idogω︸ ︷︷ ︸
Ldog

= 0 (2.158)

using that the dog can be reduced to a point mass then Icm,dog = mr2 and Idisk = 3MR2

2
. Here ω is

the angular velocity of the dog. Note −α̇ because I am defining counterclockwise as positive and
if ω > 0 then α̇ must be point in the opposite direction.

We need r the distance of the dog from the part of the rotational axis of the disk. The distance
between a point fixed on a circle and another point on the circle and angle β is 2R sin(β/2). Thus
the we have

Idog = 4mR2 sin2(β/2) (2.159)

If we use α as I conceive it (in Figures 2.1 and 2.2) then we can calculate the position of the dog
to find ω and so

r = sin βx̂′ + (1− cos β)ŷ′ (2.160)

x̂′ = cosαx̂− sinαŷ (2.161)

ŷ′ = sinαx̂ + cosαŷ (2.162)

r = [sin(β − α) + sinα] x̂ + [cosα− cos(β − α)] ŷ (2.163)

ṙ =
[
cos(β − α)(β̇ − α̇) + cosα(α̇)

]
x̂ +

[
− sinα(α̇) + sin(β − α)(β̇ − α̇)

]
ŷ (2.164)

ω =
r× ṙ

|r|2
(2.165)
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Figure 2.1: Main coordinates x and y for the loop.

Figure 2.2: Sub coordinates x′ and y′ on the loop itself ignoring the pivot point.

ẑ · r× ṙ = [sin(β − α) + sinα]
[
− sinα(α̇) + sin(β − α)(β̇ − α̇)

]
− [cosα− cos(β − α)]

[
cos(β − α)(β̇ − α̇) + cosα(α̇)

]
= −α̇ sinα sin(β − α) + sin2(β − α)(β̇ − α̇)− α̇ sin2 α + sinα sin(β − α)(β̇ − α̇)

−
[
cosα cos(β − α)(β̇ − α̇) + α̇ cos2 α− cos2(β − α)(β̇ − α̇)− α̇ cosα cos(β − α)

]
= −α̇

[
sinα sin(β − α) + sin2 α + cos2 α− cosα cos(β − α)

]
+ (β̇ − α̇)

[
sin2(β − α) + sinα sin(β − α)− cosα cos(β − α) + cos2(β − α)

]
= α̇ [−1− sinα sin(β − α) + cosα cos(β − α)]

+ (β̇ − α̇) [1 + sinα sin(β − α)− cosα cos(β − α)]

= α̇ [−1 + cos(β − α + α)] + (β̇ − α̇) [1− cos(β − α + α)]

= α̇ [cos β − 1] + (β̇ − α̇) [1− cos β]

= 2α̇ (cos β − 1) + β̇ (1− cos β)
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|r|2 = sin2(β − α) + sin2 α + 2 sinα sin(β − α) + cos2 α + cos2(β − α)− 2 cosα cos(β − α)

= 2 + 2 [sinα sin(β − α)− cosα cos(β − α)]

= 2(1− cos β)

(2.167)

and so

ω = −α̇ +
β̇

2
(2.168)

We then have (note my sign convention for α and β is such that as β increases α decreases)

−3MR2

2
α̇ + 4mR2 sin2(β/2)

[
−α̇ +

β̇

2

]
= 0 (2.169)

α̇

[
3MR2

2
+ 4mR2 sin2(β/2)

]
= β̇

[
4mR2

2
sin2(β/2)

]
(2.170)

α̇ = β̇
4mR2

2
sin2(β/2)

3MR2

2
+ 4mR2 sin2(β/2)

= β̇
2m sin2(β/2)

3M
2

+ 4m sin2(β/2)
(2.171)∫ tf

0

dt α̇ =

∫ tf

0

dt β̇
2m sin2(β/2)

3M
2

+ 4m sin2(β/2)
(2.172)∫ α

0

dα =

∫ 2π

0

dβ
2m sin2(β/2)

3M
2

+ 4m sin2(β/2)
(2.173)

α =

∫ 2π

0

dβ
2m sin2(β/2)

3M
2

+ 4m sin2(β/2)
(2.174)

Then we introduce γ = β/2, 2 dγ = dβ and

α =

∫ π

0

dγ
4m sin2 γ

3M
2

+ 4m sin2 γ
(2.175)

just as the book desires. (Because their γ is an angle that is π/2 off from my γ, so we need to use
the periodic properties of sin and cos.)

2.15 Dust Layer

A layer of dust is formed h feet thick (h small compared to the Earth’s radius) by the fall of
meteors reaching the Earth from all directions. Show, by considering angular momentum, that
the change in the length of the day is approximately 5hd/(RD) of a day, where R is the radius of
the Earth, and D and d the densities of Earth and dust, respectively. Use a notation in which the
initial quantities carry subscript zero, final quantities a subscript 1. The moment of inertia of a
sphere about an axis through its center is (2/5)MR2, that of a thin walled, hollow sphere of mass
M and radius R is (2/3)MR2.

Solution:
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Let’s find the moment of inertia of a sphere with an axis through its center. The distance as a
function of z from the center to the edge of the sphere will be given by r2 + z2 = R2 with R the
radius of the sphere.

Thus

Isphere =

∫ 2π

0

dθ

∫ R

−R
dz

∫ √R2−z2

0

dr rρr2 = 2π
M

4
3
πR3

∫ R

−R
dz

(R2 − z2)2

4
(2.176)

=
3Mπ

8πR3

∫ R

−R
dz (R4 − 2z2R2 + z4) =

3M

8R3

[
2R5 − 4R3R2

3
+

2R5

5

]
(2.177)

=
3MR2

8

[
30− 20 + 6

15

]
=

3MR2

8

16

15
=

6MR2

15
=

2MR2

5
(2.178)

For a thin-walled hollow sphere, however we’d require (using r2 = R2 − z2) remembering that a
shell will have 2πrR dθ as its “volume” we use r = R sin θ and so

Ih. sphere =

∫ π

0

dθ
M

4πR2︸ ︷︷ ︸
ρ

R2 sin2 θ︸ ︷︷ ︸
r2

2πR2 sin θ︸ ︷︷ ︸
dA/ dθ

=
MR2

2

∫ π

0

sin3 θ =
MR2

2

[
2− 2

3

]
=

2MR2

3

(2.179)

Let earth initially have angular momentum

L0 = I0ω0 =
2MER

2

5
ω0 (2.180)

The final angular momentum of the new system is

I1 = I0 +
2MDR

2

3
(2.181)

if we assume uniform density then

I0 =
2R2

5

4πR3D

3
=

8πR5D

15
(2.182)

I1 =
8πR5D

15
+

2R2

3
4πR2hd = 8R4π

(
RD

15
+
hd

3

)
(2.183)

so with the period τ = 2π/ω we find

L0 =
8πR5D

15
ω0 = L1 = 8πR4

(
RD

15
+
hd

3

)
ω1 (2.184)

2πτ1

2πτ0

=
8πR4

(
RD
15

+ hd
3

)
8πR5D

15

(2.185)

τ1

τ0

=
15

RD

(
RD

15
+
hd

3

)
= 1 +

5hd

RD
(2.186)

Thus τ1 − τ0 is

τ1 − τ0 =
5hd

RD
τ0 (2.187)
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2.16 Gyrocompass

A simple gyrocompass consists of a gyroscope spinning about its axis with angular velocity ω. The
moment of inertia about this axis is C, that about a transverse axis is A. The gyroscope suspension
floats on a pool of mercury so that the only torque acting on the gyroscope is one constraining
its axis to remain in a horizontal plane. If the gyro is placed at the earth’s equator, the angular
velocity of the earth being Ω, show that the axis of the gyro will oscillate about the north-south
direction; and for small amplitudes of oscillation, find this period. Remember that ω � Ω is an
excellent approximation.

Solution:

Let’s make a coordinate system for the earth. Let ŷ be the coordinate pointing along the earth’s
spin axis (and the original gyroscope direction). Let ẑ then be “up” on the Earth and then x̂ be
perpendicular to these two directions for a right-handed coordinate system.

We then must calculate the torque on the system in this rotating system.

We have in an inertial frame.

dL

dt
= τ (2.188)

with τ the torque. In any inertial frame, we can switch a quantity to its rotational form via

Q︸︷︷︸
inertial

=

(
dL

dt

)
rot.

+ ω′ ×Q (2.189)

Since we are rotating in a frame where ω′ = Ω we have

dL

dt

∣∣∣∣
rot.

= τ −Ω× L (2.190)

Consider φ to be the angel in the xy plane that gives the precession. Then using that φ increasing
is leads to negative Lz we write

Lx = Cω sinϕ (2.191)

Ly = Cω cosϕ+��Ω (2.192)

Lz = −Aϕ̇ (2.193)

and for small angle φ sinϕ ≈ φ and cosϕ ≈ 1 so that we have for the z component that

−Aϕ̈ = Nz + ΩCωϕ (2.194)

and Nz = 0 since it is free to rotate in the x and y plane. so ϕ ∼ eϕΩCω/A and so the frequency is

ν2 =
ωΩC

A
(2.195)
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2.17 Sphere Surface Vibrating

The surface of a sphere is vibrating slowly in such a way that the principal moments of inertia are
harmonic functions of time:

Izz =
2mr2

5
(1 + ε cosωt) (2.196)

Ixx = Iyy =
2mr2

5

(
1− εcosωt

2

)
(2.197)

where ε � 1. The sphere is simultaneously rotating with angular velocity Ω(t). Show that the
z-component of Ω remains approximately constant. Show also that Ω(t) precesses around z with
a precession frequency ωp = 3εΩz

2
cosωt provided Ωz � ω.

Solution:

We must have

dL

dt

∣∣∣∣
rot.

= τ −Ω× L (2.198)

from before. No torques are given, so

dL

dt

∣∣∣∣
rot.

= −Ω× L (2.199)

d

dt
[IxxΩx] = −ΩyLz + ΩzLy = ΩzIyyΩy − ΩyIzzΩz (2.200)

d

dt
[IyyΩy] = −ΩzLx + ΩxLz = ΩxIzzΩz − ΩzIxxΩx (2.201)

d

dt
[IzzΩy] = −ΩxLy + ΩyLx = ΩyIxxΩx − ΩxIyyΩy (2.202)

and so for each component we have

d

dt
[IxxΩx] = ΩyΩz (Iyy − Izz) (2.203)

d

dt
[IyyΩy] = ΩxΩz (Izz − Ixx) (2.204)

d

dt
[IzzΩz] = ΩxΩy

(
Ixx−Iyy

)
= 0 (2.205)

So Lz = IzzΩz is constant in time. Let the initial Ωz be Ωz0 then

Ωz =
Izz(0)Ωz0

Izz
=

2mr2

5
Ωz0

2mr2

5
(1 + ε cosωt)

=
Ωz0

1 + ε cos(ωt)
(2.206)

Thus for ε� 1 we have

Ωz ≈ Ωz0 (1− ε cos(ωt)) (2.207)

so Ωz ≈ Ωz0.
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Then we can take a derivative of the x component and find

d2

dt2
[IxxΩx] = Ωz

d

dt
[Ωy (Iyy − Izz)] (2.208)

If we ignore terms O(ω) this equation becomes

Ixx
d2Ωx

dt2
= Ωz (Iyy − Izz)

dΩy

dt
= Ωz (Iyy − Izz) ΩxΩz

Izz − Ixx
Iyy

(2.209)

d2Ωx

dt2
= −Ω2

z

(Iyy − Izz)2

I2
xx

Ωx (2.210)

and using (throw away O(ε2) terms)

Iyy − Izz
Iyy

≈
−3ε cosωt

2

(1− ε cosωt+O(ε2))
=
−3ε cosωt

2
+O(ε2) (2.211)

Thus we have, assuming that on the long times scales we are talking about that cos(ωt) barely
varies so that it is essentially a constant and we have

Ωx ∼ e−i
√
ωpt (2.212)

ωp ∼
3εΩz

2
cos(ωt) (2.213)

Clearly due to the coupling of Ωx and Ωy this will be true for Ωy as well, and so that is the
precession frequency.

2.18 Rigid Sphere Normal Modes

Three rigid spheres are connected in a line by light, flexible rods with relative masses m1 : m2 :
m3 = 1 : 2 : 1. Describe all the normal modes of the system and state whatever you can about the
relative frequencies.

Solution:

The first normal mode, due to symmetry, is the middle mass remaining still and the two side
masses vibrating in and out. Say this frequency is ω1.

The second normal mode will be the big mass moving back and forth towards the little masses
(and them moving slightly as well. Say this frequency is ω2.

A “third” normal mode is all of them moving together, so no frequency.

If we allow planar motion, then we will have the big mass moving up/down and the small masses
moving down/up as another mode.

We can figure this out by forming the Lagrangian. Let yi be normal to the rods, and xi displacement
of mi from its equilibrium position. Let k be the spring coefficient along x and ky be the coefficient
in the y direction. Note that we need the y term to represent the bending of the rod away from
the straight line equilibrium in x so we cannot allow arbitrary changes in yi. What we want is a
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force if the rods do not form a straight line. Thus if the change in y isn’t the same for (y2, y1) and
(y3, y2).

2L = m1ẋ1
2 +m2ẋ2

2 +m3ẋ3
2 +m1ẏ1

2 +m2ẏ2
2 +m3ẏ3

2

− k
[
(x1 − x2)2 + (x2 − x3)2

]
− ky [(y1 − y2)− (y2 − y3)]2

(2.214)

L′ ≡ 2L
m1

= ẋ1
2 + 2ẋ2

2 + ẋ3
2 + ẏ1

2 + 2ẏ2
2 + ẏ3

2

− k

m1

[
(x1 − x2)2 + (x2 − x3)2

]
− ky
m1

[(y1 − y2)− (y2 − y3)]2
(2.215)

Then

d

dt

(
∂L′

∂ẋ1,3

)
=

d

dt
(2 ˙x1,3) =

∂L′

∂x1,3

= −2
k

m1

(x1,3 − x2) (2.216)

ẍ1,3 = −k(x1,3 − x2) (2.217)

d

dt

∂L′

∂ẋ2

= 4ẍ2 =
∂L′

∂x2

= −2
k

m1

[(x2 − x3)− (x1 − x2)] = −2
k

m1

(2x2 − x1 − x3) (2.218)

Summarizing

ẍ1 =
−k
m1

(x1 − x2) (2.219)

ẍ2 =
−k
2m1

(2x2 − x3 − x1) (2.220)

ẍ3 =
−k
m1

(x3 − x2) (2.221)

To find the frequencies here, we say xi ∼ e−iωt and find−ω2 + k
m1

− k
m1

0

− k
2m1

−ω2 + k
m1

− k
2m1

0 − k
m1

−ω2 + k
m1

x1

x2

x3

 =

0
0
0

 (2.222)

Taking the determinant we’d find

−ω2

(
k

m1

− ω2

)(
2k

m1

− ω2

)
= 0 (2.223)

yielding frequencies (from above)

ω1 = ±
√

k

m1

(2.224)

ω2 = ±
√

2k

m1

(2.225)

ω3 = 0 (2.226)

with ω3 = 0 as we guessed.
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For the y direction we do the same thing and find a frequency

ω4 = ±
√

4ky
m

(2.227)

Namely, (k′y = ky/m1)

∂L′

∂ẏ1

= 2ÿ1 =
∂L′

∂y1

= −2k′y(y1 − 2y2 + y3) (2.228)

∂L′

∂ẏ2

= 4ÿ3 =
∂L′

∂y2

= 4k′y(y1 − 2y2 + y3) (2.229)

so for y ∼ e−iωt −ω2 + k′y −2k′y k′y
−k′y −ω2 + 2k′y −k′y
k′y −2k′y −ω2 + k′y

x1

x2

x3

 =

0
0
0

 (2.230)

So the determinant gives

ω4
(
4k′y − ω2

)
= 0 (2.231)

giving what I stated before.

2.19 Bar on Springs

A rigid uniform bar of mass M and length L is supported in equilibrium in a horizontal position
by two massless springs attached one at each end. The springs have the same force constant k.
The motion of the center of the gravity is constrained to move parallel to the vertical X axis. Find
the normal modes and frequencies of vibration of the system, if the motion is constrained to the
XZ plane.

Solution:

We have for small perturbations that the center of mass will accelerate under

M
ẍ1 + ẍ2

2
= Mg − k(x1 + x2) (2.232)

while the torque can be calculated if in directions from using

I =

∫ L/2

−L/2
dr

M

L
r2 =

M

L

2L3

3(2)3
=
ML2

12
(2.233)

Thus we have the torque as

I(ẍ1 − ẍ2)/L = k(x1 − x2)
L

2
(2.234)
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Writing these in matrix form and assuming Xi ∼ e−iωt, we find[
−ω2M

2
+ k −ω2M

2
+ k

ML
12
ω2 − kL

2
−ω2ML

12
+ kL

2

] [
X1

X2

]
=

[
Mg
0

]
(2.235)

the Mg term can be defined away with a new coordinate system. Thus we find(
2k

M
− ω2

)(
6k

M
− ω2

)
= 0 (2.236)

giving frequencies

ω2
1 =

2k

M
(2.237)

ω2
2 =

6k

M
(2.238)

corresponding to eigenvector

v1 = X1 +X2 (2.239)

v2 = X2 −X1 (2.240)

2.20 Particle on Uniform String

A particle of mass M hangs from one end of a uniform string of mass m and length L; the other
end of the string is fixed. The particle is given a small lateral displacement δ and released from
rest. Set up the differential equations and boundary conditions to determine the motion of string
and particle. Set up a transcendental equation that determines the natural frequencies, and solve
the equation for the case m�M .

Solution:

Let y(x, t) represent the horizontal motion of the string at point x along the string at time t.

Then are boundary conditions are clearly

y(0, t) = 0 (2.241)

y(L, 0) = δ (2.242)

∂y

∂t
(x, 0) = 0 (2.243)

∂2y

∂x2
(L, t) = 0 (2.244)

where the last boundary condition comes from the bend in the string not be discontinuous. In
general, for any line/string we know tension will be what pushes on any small element, so

µ
∂2y

∂t2
=

∂

∂x

[
T (x)

∂y

∂x

]
(2.245)
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with T (x) = g(m(1 − x/L) + M) is the tension (since a small displacement initially, this is the
equilibrium value).

We see the third boundary condition yields y = f(x) cosωt. Thus our equation becomes

−ω2µf =
∂

∂x

[
g
(
m
{

1− x

L

}
+M

) df

dx

]
(2.246)

If we assume f(x) = h(
√
T (x)) then we get

h′′ +
h′√
T

+ µ

(
2Lω

mg

)2

h = 0 (2.247)

which is is a Bessel equation of order zero and so has solutions

f(x) = AJ0

(
2ω

g

√
T (x)

µ

)
+BN0

(
2ω

g

√
T (x)

µ

)
(2.248)

Then we can use boundary conditions to find y and set up the transcendental equation.

In the large argument limit of m�M we get a solution that y = δx cosωt
L

.

2.21 Membrane with Surface Tension

Set up a variational principle for the frequency ω of a membrane with surface tension T of mass
σ per unit area, and with fixed edges that is , find an integral over the area of the membrane, of
which the extreme value is the frequency of the membrane.

Solution:

This is basically going to be Rayleigh’s quotient. We have

σ
∂2y

∂t2
= T ∇2y (2.249)

If we assume y ∼ e−iωt then

−σω2y = T ∇2y (2.250)

Then y = u(x, y)e−iωt and we can then view this as an eigenvalue problem for y with eigenvalue
σω2/T . Then we know that the minimum of the Rayleigh quotient is given by

λ = −σω
2

T
=

∫
dA u∇2u∫

dA u2
(2.251)

now we can find good approximations by putting in trial functions that satisfy the boundary
conditions and iterating.
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2.22 Watch Moved to High Altitude

If a watch is moved to a high altitude, does it run fast or slow?

Solution:

Depends on the watch. For a mechanical watch, they usually work by tension in a string, and
so temperature is more important than anything else. However if they use a flywheel, then the
viscosity of air pushes against the flywheel, so that when there’s less air this is less of a force
and the flywheel releases more energy causing the clock to go slightly faster. Apparently Fermi
calculated this.

Of course, today with quartz watches, this effect would make no difference at all, as the electrical
components will be almost completely unaffected by air viscosity.

2.23 Release Mass on String

A mass m is attached to a weightless string of length L, cross section S, and tensile strength T .
The mass is suddenly released from a point near the fixed end of the string. How small should the
Young’s modulus, Y , of the string be, in order that it not break?

Solution:

The mass will exert a force mg on the string eventually. The Young’s modulus is the effective
spring constant for a material (Y S

L
makes it a spring constant k). We have

Y =
FL

∆LS
⇒ F =

SY∆L

L
(2.252)

where ∆L is the change in length of the object under force F .

We can find ∆L from conservation of energy.

mg(L+ ∆L ) =
Y S

2L
∆L 2 (2.253)

∆L 2 −mg 2L

Y S
δL −mgL 2L

Y S
= 0 (2.254)

∆L =
mgL

Y S
±
√
m2g2L2

Y 2S2
+

2mgL2

Y S
(2.255)

Clearly only the + sign makes sense, and so

∆L =
mgL

Y S

(
1 +

√
1 +

2Y S

mg

)
(2.256)
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We must have

F < ST (2.257)

Y
S∆L

L
< ST (2.258)

Y
mg

Y S

(
1 +

√
1 +

2Y S

mg

)
< T (2.259)

mg

S

(
1 +

√
1 +

2Y S

mg

)
< T (2.260)√

1 +
2Y S

mg
<
ST

mg
− 1 (2.261)

1 +
2Y S

mg
<

(
ST

mg
− 1

)2

(2.262)

2Y S

mg
<

(
ST

mg
− 1

)2

− 1 (2.263)

Y <
mg

2S

(
ST

mg
− 1

)2

− mg

2S
(2.264)

Y <
mg

2S

(
S2T 2

m2g2
− 2

ST

mg
+ �1

)
−
�
��
mg

2S
(2.265)

Y <
ST 2

2mg
− T (2.266)

2.24 Train Into a Spring

A train of massM , moving with velocity v is to be stopped with a coil-spring buffer of uncompressed
length l0 and spring constant k0, which remains constant until the spring is fully compressed. At
this point l� l0 the spring constant k suddenly becomes very much greater than k0. Assuming a
free choice of k0, what is the minimum value of l0 if the absolute value of the maximum deceleration
is not to exceed amax?

Solution:

Clearly we have to get there before x→ l and the last point this is possible is then

amax =
k0

M
(l0 − l) (2.267)

We know want the train stopped at this point for l� l0. From energy, at standstill we will have

M

2
v2 =

k0

2
(l0 − l)2 (2.268)
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we can plug in k0 here from the acceleration equation and so

M

2
v2 =

1

2

Mamax

l0 − l
(l0 − l)2 =

M

2
amax(l0 − l) (2.269)

l0 =
v2

amax

+ l ≈ v2

amax

(2.270)

using l� l0.

2.25 Cylinder in Fluid

(a) A cylinder of radius R, length h, and density ρ floats upright in a fluid of density ρ0. If it is
given a small downward displacement of amplitude x, find the circular frequency ω of the resulting
(undamped) harmonic motion.

(b) Show that for small oscillations, the motion of the fluid near the oscillating cylinder extends
for a distance δ ∼

√
η/(ρ0ω) from the edge of the cylinder. The maximum gradient of velocity

near the cylinder is thus dV/dr ≈ ωx/δ. Neglecting the friction at the bottom of the cylinder,
show that the maximum viscous retarding force on the cylinder is F ≈ 2πRhρ(ηω3/ρ0)1/2x .

Solution:

(a) The small displacement will cause a displacement of fluid. It will displace a volume of xπR2.
Then there will be a buoyant force on the cylinder from the surrounding fluid to push the can back
towards equilibrium. This buoyant force should be the mass of the displaced fluid times g. Thus

hπR2ρẍ = −xgπR2ρ0 (2.271)

ẍ = −xgπR
2ρ0

hπR2ρ
(2.272)

ω2 =
gρ0

hρ
(2.273)

(b) Imagine a slab of fluid next to the cylinder of area A (extending dr away). Then the viscous
force on this slab is given by (η is the dynamic viscosity)

Aη
∂2v

∂r2
dr (2.274)

with η the viscosity of the water. By Newton’s second law this force must equal the acceleration
of this fluid slab

Aρ0 dr
∂v

∂t
= Aη

∂2v

∂r2
dr (2.275)

Given a harmonic response in time v ∼ e−iωt we find

−iωρ0v = η
∂2v

∂r2
(2.276)
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So that

v = v0e
√
−i√ωρ0r/

√
η = v0e

(1−i)√
2

√
ωρ0r/

√
η

= v0e
(1−i)r/δ (2.277)

if we make δ =
√

2η/(ρ0ω) as one e-folding period. Then the viscous force on the cylinder is given
by (the (ρ/ρ0)2 is to correct for the difference in force due to mass density differences between the
fluid column surrounding the cylinder and the cylinder itself)

|F |2 =
ρ2

ρ2
0

A2

∣∣∣∣η∂v∂r
∣∣∣∣2 =

ρ2

ρ2
0

A2|η (1− i)
δ

v0|2 = 2
ρ2

ρ2
0

A2η2ωρ0

2η
v2

0 (2.278)

We clearly need a v0 which will be given by our previous problem with ẋ = −iωx and so v2
0 = ω2x2

|F |2 = (2πRh)2ρ
2

ρ0

ηω3x2 (2.279)

|F | = 2πRhρ

√
ηω3

ρ0

|x| (2.280)

2.26 Surface Tension Between Loops

A liquid film of surface tension τ is stretched between two circular loops of radius a.Find the
equation r(z). For what ratio d/a is the configuration indicated in the figure stable?

Solution:

Set the z axis in between the centers of the two loops, so that each loop center is a distance d from
the z = 0 point.

Consider some infinitesimal area then we will have an angle formed from the vertical and the curve
inwards from the surface tension curve. (At the top let the angle be θ1 and at the bottom θ2). We
have force balance and so in the vertical direction we must have

2πr1τ cos θ1 = 2πr2τ cos θ2 (2.281)

This implies ri cos θi = C for some constant C. Drawing the r-z triangle for this infinitesimal area
we see that

cos θi =
dz√

dr2 + dz2
=

1√
1 +

(
dr
dz

)2
(2.282)

And so we find that the curve is given by
r√

1 +
(

dr
dz

)2
= C (2.283)

r2

C2
= 1 +

(
dr

dz

)2

(2.284)

dr

dz
=

√
r2

C2
− 1 (2.285)∫

dr
1√
r2

C2 − 1
= z − z0 (2.286)
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Substitute r
C

= coshx then dr = C sinhx dx so∫
dx

C sinhx

(
√

sinh2 x)
=

∫
dx C = Cx− Cx0 = C arccosh

( r
C

)
− C arccosh

(r0

C

)
(2.287)

Let’s eliminate z0 and the extra cosh term by setting z0 = 0 and C = r0 (that is, at z = 0 we have
the radius as r0). Then

arccosh

(
r

r0

)
=

z

r0

(2.288)

r = r0 cosh

(
z

r0

)
(2.289)

We require

a = r0 cosh

(
d

r0

)
(2.290)

a

r0

= cosh

(
d

r0

)
(2.291)

which determines r0. We see that these only sometimes intersect depending on the value of a and
d. Define α = d

r0
and we see the above equation is equivalent to

a

d
α = coshα (2.292)

This only has solutions when a/d is large enough. We can find it by using that a/d = (coshα)/α
which has a minimum. We find the minimum via

d coshα/α

dα
=
α sinhα− coshα

α2
= 0 (2.293)

α tanhα = 1 (2.294)

Using a Newton Iteration with a guess of about 1.2 we find α ≈ 1.1997 and so then the smallest
a/d possible is cosh(1.1997)/1.1997 ≈ 1.51. The maximum d/a is therefore d/a = 0.663.

chapter2/NewtonApprox.py
1 #! / usr / bin /env python2
2
3 import numpy as np
4 import math
5 import matp lo t l i b . pyplot as p l t
6
7 de f newtonit ( val , d e r i v a t i v e , t o l=1e−9) :
8 x = va l
9 xprev = x

10 f v a l = x∗np . tanh ( x )−1.
11 j=0
12 whi l e ( ( np . abs ( f v a l ) > t o l ) | (np . abs (x−xprev )>t o l ) ) :
13 xprev = x
14 x = d e r i v a t i v e ( x )
15 f v a l = x∗np . tanh ( x )−1.
16 j+=1
17 # pr i n t j , x
18
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19 re turn x , f va l , j
20
21 de f x i d i f f ( x ) :
22 f = x∗np . tanh ( x )−1.
23 fp = np . tanh ( x )+x/np . cosh ( x ) ∗∗2
24 re turn x − f / fp
25
26 x = 1 .2
27 p r i n t newtonit (x , x i d i f f )

2.27 Vertical Strut

A straight vertical strut, having length l and a square cross section with side a, is firmly fixed to
the ground. Show that the maximum weight it can carry on the free end without bending is given
by W = π2a4Y/(48l2), where Y is the Young’s modulus for the material of the strut.

Solution:

We consider a small bending of the strut horizontally. Then we have to calculate the restoring
force. We have to calculate the restoring force at a height x and horizontal distance (bending) y.

Consider the bending moment from the center of the beam. We then must have (note that it the

length of the bent part will be (R+ z)θ for bending θ so that the strain ∆L
L

= (R+z)θ
Rθ

with z being
measured from the square plane center and

F =

∫ a/2

−a/2
dy

∫ a/2

−a/2
dz Y

(R + z)

R
z =

Y a

R

[
2(a/2)3

3

]
=
Y a

R

a3

12
=
Y a4

12R
(2.295)

We can use that R is the radius of curvature and given by

1

R
=

d2y

dx2

[
1 +

(
d2y

dx2

)2
]−3/2

≈ d2y

dx2
(2.296)

for small bending. Thus

F =
Y a4

12

d2y

dx2
(2.297)

We must have the weight torque equal this restoring force for equilibrium. Given weight W , this
implies the torque is W (y(l)− y) (just τ = rW for this)

Y a4

12

d2y

dx2
= Wy(l)−Wy (2.298)

The general solution is

y = A cos(ωx) +B sin(ωx) + y(l) (2.299)

with boundary conditions y(0) = 0, y′(0) = 0 and y(l) = y(l) we find A = −y(l), B = 0 and

−y(l) cos(ωl) + y(l) = y(l) (2.300)
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with ω2 = 12W/(Y a4). Thus

y = y(l) [1− cos(ωx)] (2.301)

with y(l) cos(ωl) = 0 is our solution. Clearly either y(l) = 0 or ωl = π
2

for this to be true. The
y(l) = 0 is no change, whereas

ωl =

√
12W

Y a4
l =

π

2
(2.302)

W =
π2

4l2
Y a4

12
=
Y π2a4

48l2
(2.303)

is the other possible solution with infinitesimal deformation.

2.28 Rectangular Beam

A rectangular beam with cross section a× a and length L has one end anchored in a vertical brick
wall. Calculate the deflection of its free end due to its own weight. The density is ρ and the
Young’s modulus is Y . Assume small bending.

Solution:

Let z be along the direction horizontal along the beam. Then h(z) is the difference from the beam
under its weight and the beam completely horizontal. Then we must have through a generalized
Hooke’s law (Young’s law) that for bending a segment of area a ds and length dz through an angle
dθ (with s measured from the center of the beam), that the force required is

Y as dθ
ds

dz
(2.304)

If we take the moment about a point of those forces, then

M =

∫ a/2

−a/2

as2 dθ ds

dz
=
Y a3

12

dθ

dz
(2.305)

We can then use for small bending that dθ = dz ∂
2h
∂z2

. For rotational equilibrium, we then must
have

M =

∫ L

z

ρga2(L− u) du = ρga2

(
L(L− z)− L2 − z2

2

)
= ρga2

(
L2

2
− Lz +

z2

2

)
(2.306)

so that

Y a3

12

dθ

dz
= ρga2

(
L2

2
− Lz +

z2

2

)
(2.307)

(2.308)

and we must have h(0) = h′(0) = 0 and then

h(z) =
ρg

2Y a

[
6L2z2 − 4Lz3 + z4

]
(2.309)

h(L) =
ρgL4

2Y a
[6− 4 + 1] =

3ρgL4

2Y a
(2.310)
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2.29 Thin Uniform Chimney

A thin uniform chimney is pivoted at its low end. Show that a section through the chimney at any
point undergoes a flexion stress, and calculate the most probable point of rupture as the chimney
falls.

Solution:

As the chimney falls, it will clearly want to bend due to gravity from the weight of material above
it.

The chimney as a whole will rotate from its pivot point in the ground with I = ML2/3 and force
on its center of mass (MgL sin θ)/2 with θ the angle from the vertical. So this yields

θ̈ =
3g sin θ

2L
(2.311)

If we conceptually break the chimney into a part of length below of x and above of L−x, then we
must have each part satisfy equations due to the moment from the origin and the center of mass,
respectively. For the lower part x, we have ML

ML︷︸︸︷
M
x

L

x2

3
θ̈ = M

x

L

gx sin θ

2
+ xF − γ (2.312)

where γ is the restoring force from the L−x piece keeping the piece together despite the Fx force
from the rotation of the lower piece.

Similarly for the top piece we find, around its center of mass,

M
L− x
L

(L− x)2

12
θ̈ =

(L− x)

2
F + γ (2.313)

So

Mx3

3L

3g sin θ

2L
=
Mx2g sin θ

2L
+ xF − γ (2.314)

M(L− x)3

12L

3g sin θ

2L
=
L− x

2
F + γ (2.315)

or

Mx3g sin θ

2L2
− Mx2g sin θ

2L
− xF + γ = 0 (2.316)

M(L− x)3g sin θ

8L2
+
x− L

2
F − γ = 0 (2.317)

DRAFT:Graduate Problems in Physics Notes
January 8, 2018

c©K. J. Bunkers



Mechanics 87

are our two equations. We find F first

Mx3g sin θ

2L2
− Mx2g sin θ

2L
− xF +

M(L− x)3g sin θ

8L2
+
x− L

2
F = 0 (2.318)

−F
(
L+ x

2

)
+
Mg sin θ

8L2

(
4x3 − 4Lx2 + (L− x)3

)
= 0 (2.319)

−F
(
L+ x

2

)
+
Mg sin θ

8L2

(
4(x− L)x2 + (L− x)3

)
= 0 (2.320)

−F
(
L+ x

2

)
+
Mg sin θ

8L2

(
4x3 − 4Lx2 + L3 − L2x+ Lx2 − x3

)
= 0 (2.321)

F =
1

L+ x

Mg sin θ

4L2

(
3x3 − 3xL2 − L2x+ L3

)
(2.322)

F =
1

L+ x

Mg sin θ

4L2

(
(L− x)3 − 4x2(L− x)

)
(2.323)

so

γ =
x− L

2
F +

M(L− x)3g sin θ

8L2
(2.324)

=
Mg sin θ(L− x)3

8L2
+
x− L

2

Mg sin θ

4(L+ x)L2

[
(L− x)3 − 4x2(L− x)

]
(2.325)

=
Mg sin θ

8L2

[
(L− x)3 +

x− L
L+ x

{
(L− x)3 − 4x2(L− x)

}]
(2.326)

=
Mg sin θ

8L2
2(L− x)2x =

Mg sin θ

4L2
x(L− x)2 (2.327)

It should break when this is maximum for x. Thus we require

d

dx

[
x(L− x)2

]
= (L− x)2 − 2x(L− x) = 0 (2.328)

L2 − 2Lx+ x2 − 2xL+ 2x2 = 0 (2.329)

3x2 − 4Lx+ L2 = 0 (2.330)

x2 − 4

3
Lx+

L2

3
= 0 (2.331)

x =
2L

3
±
√

4L2

9
− L2

3
=

2L

3
± L

3
(2.332)

Clearly, x = 2L
3
− L

3
= L

3
is the solution that would give the correct answer.

2.30 Free Surface of Liquid

The free surface of a liquid is one of constant pressure. If an incompressible fluid is placed in
a cylindrical vessel and the whole rotated with constant angular velocity ω, show that the free
surface becomes a paraboloid of revolution.
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Solution:

We simply need the equation of pressure for an incompressible fluid.

This is given by

∂

∂t
(ρu) + u · ∇u = −∇p− ρgẑ (2.333)

In this case we have (R,ϕ, z) as the coordinates and there is no time dependence so

u = Rωϕ̂ = R2ω∇ϕ (2.334)

So that

u · ∇u = R2ω∇ϕ · ∇
(
R2ω∇ϕ

)
= R2ω∇ϕ ·

(
ω
[
2R∇R∇ϕ+R2∇∇ϕ

])
(2.335)

= R4ω2∇ϕ · ∇∇ϕ =
R4ω2

2
∇(∇φ)2 =

R4ω2

2
∇ 1

R2
=
R4ω2

2

−2

R3
∇R (2.336)

= Rω2∇R (2.337)

And so

Rω2∇R = −∇p− ρgẑ (2.338)

Rω2 = − ∂p
∂R

(2.339)

p− p0 = −ω2R
2 −R2

0

2
+ g(z) (2.340)

And so the surfaces of constant tension are those where R is fixed, and we have p ∝ R2 so it is a
parabola in R which is a paraboloid of revolution in Cartesian coordinates.

We must also of course have ∂p
∂z

= ρg or p = f(R) + ρgz. This yields

p = ω2R
2 −R2

0

2
− ρgz + p0 (2.341)

which does not change our conclusion in any way, it just adjusts the pressure based on height z.

2.31 Hangar Door Force

An aircraft hangar of semi-cylindrical shape (with length L and radius R) is exposed to wind
directly perpendicular to its axis at infinity with a velocity v∞. What force is exerted on this
hangar if the door, located at A is open (A is at the bottom of the hangar, and when open the
velocity points into the door)? The velocity potential is given by

φ = −v∞
(
r +

R2

r

)
cos θ (2.342)

L = 70 m; R = 10 m; v = 72 km/hr; air density = 1.2 kg/m3 (2.343)
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Solution:

The velocity potential yields

vr =
∂φ

∂r
= −v∞

(
1− R2

r2

)
cos θ (2.344)

vθ =
1

r

∂φ

∂θ
= v∞

(
1 +

R2

r2

)
sin θ (2.345)

Thus the velocity at the open door (r, θ) = (R, π) is

vr(A) = vθ(A) = 0 (2.346)

v2 = v2
∞

(
1− R2

r2

)2

cos2 θ + v2
∞

(
1 +

R2

r2

)2

sin2 θ (2.347)

= v2
∞

[
cos2 θ(1− 2R2

r2
+
R4

r4
) + sin2 θ(1 +

2R2

r2
+
R4

r4
)

]
(2.348)

= v2
∞

[
1 +

R4

r4
+ 2(sin2 θ − cos2 θ)

R2

r2

]
(2.349)

Pressure must be equal inside and outside the hangar. Call it P0 on the inside. So using Bernoulli’s
principle, the pressure along a streamline on the outside must have

P0 = P +
ρ

2
v2 (2.350)

Thus the pressure difference P−P0 is given by −ρ
2
v2. The force due to this pressure is (we evaluate

only along r = R eliminating the vr component

|F | =
∫

dA
ρ

2
v2 =

Lρ

2

∫ π

0

dθ R
(
4v2
∞ sin2 θ

)
= 2LRρv2

∞

∫ π

0

dθ
1− cos θ

2
= πLRρv2

∞ (2.351)

The pressure is higher in the hangar, so the force is outward when in the hangar. Its magnitude is

|F | = π(70 m)(10 m)(20 m/s)2(1.2 kg/m3) = 1.056× 106 kg m/s2 = 1.056 MN (2.352)

2.32 Gravity Waves in Air

An air mass of T = 280 K is separated by a horizontal plane from an air mass at T = 300 K, lying
above it. Assume the presence of gravity waves of wavelength λ and small amplitude, causing a
sinusoidal wave on the interface. Find the velocity of the wave as a function of the wavelength,
assuming the interface is far from other horizontal interfaces. Treat the oscillations of the air
masses as incompressible.

Solution:

From general concerns, it’s clear that the velocity will be given by v = λν where ν is the frequency
of the wave.
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For the gravity waves, let’s assume that it’s due to the pressure and gravitational difference between
the two air masses.

Let the top have pressure P1 and the bottom interface P2. The momentum equation yields

ρ
∂v

∂t
+ ρv · ∇v = −∇P (2.353)

If we take the divergence and use incompressibility we see that ∇2P = 0.

Assume the amplitude of the wave (in the z direction, is given by αei(kx−ω) so that P ∼ ei(kx−ωt)

on the two sides of the interface. (x is along the interface and z is up from the ground with the
boundary at z = 0). These then yield

P1 = −ρ1gz + β1e
−k(z)+i(kx−ωt) (2.354)

P2 = −ρ2gz + β2e
kz+i(kx−ωt) (2.355)

We must now match across the boundary. We need P1 = P2 at z = z0. We can then use the
momentum condition near the boundary (ignoring the non-linearity which should be small for
small perturbations)

ρ
∂v

∂t
= ∇P (2.356)

In the z direction these yield

ρ1ω
2α = −kβ1 (2.357)

ρ2ω
2α = kβ2 (2.358)

−kβ1 + kβ2 = ω2α (ρ1 + ρ2) (2.359)

β1 − β2 = −ω
2α

k
(ρ1 + ρ2) (2.360)

The matching means

−ρ1gα + β1 = −ρ2gα + β2 (2.361)

β1 − β2 = gα(ρ1 − ρ2) (2.362)

This means

−ω
2α

k
(ρ1 + ρ2) = gα(ρ1 − ρ2) (2.363)

ω2 =
gk(ρ2 − ρ1)

ρ1 + ρ2

(2.364)

Thus, the phase and group velocity of the wave is given by

v2
p =

ω2

k2
=
g(ρ2 − ρ1)

k(ρ1 + ρ2)
(2.365)

vp =

√
g(ρ2 − ρ1)

k(ρ1 + ρ2)
(2.366)

vg =
dω

dk
=

√
g(ρ2 − ρ1)

k(ρ1 + ρ2)
(2.367)
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so that vp = vg in this case.

In terms of λ we have

vg =

√
λg(ρ2 − ρ1)

2π(ρ1 + ρ2)
(2.368)

If we have an ideal gas law, then ρ ∼ N
V

so that for P = NV T we can replace V with P/NT

vg =

√
λg( 1

T2
− 1

T1
)

2π( 1
T1

+ 1
T2

)
=

√√√√λg(T1−T2
T1T2

)

2π(T1+T2
T1T2

)
=

√
λg(T1 − T2)

2π(T1 + T2)
(2.369)

We note that if ρ2 < ρ1 then this is unstable, (the heavy air falls and keeps falling), or equivalently,
if T2 > T1.

2.33 Pressure On Two Perpendicular Walls with Incom-

pressible Fluid

Two perpendicular semi-infinite walls, OA and OB in the diagram, intersect at the origin O, and
block the two-dimensional hydrodynamic flow of an incompressible fluid of density ρ from a point
source of strength K situated at the coordinates (a, b). Calculate the pressure on the walls.

Solution:

This should be time-dependent, or so one would think. We have (α is the strength of the source)

∂ρ

∂t
+���

�v · ∇ρ+ ρ∇ · v = αδ(x− a, y − b) (2.370)

ρ
∂v

∂t
+ v · ∇v = −∇p (2.371)

If we assume there is a time asymptotic state, then

ρ∇ · v = αδ(x− a, y − b) (2.372)

v · ∇v = −∇p (2.373)

Usually, one would have ∇ · v = 0 for incompressibility, but if there’s a point source, then we
nearly have it so we use that.

If we assume v = ∇φ then (K = α/ρ)

∇2φ = Kδ(x− a)δ(x− b) (2.374)

which is known to have a solution in 2D of

φ =
K

2π
ρ (2.375)
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with ρ =
√

(x− a)2 + (y − b)2. We also need vx = 0 at OB (x = 0) and vy = 0 at OA (y = 0),
so then we can construct the total solution by symmetry, (φ = 0 on those boundaries). Denote
φ±± = φ(±x,±y), so then the solution is given by

φtot = φ++ + φ+− + φ−− + φ−+ (2.376)

which can be imagined as putting in source strengths at (a,−b), (−a,−b), and (−a, b) to balance
out on the two axes.

Thus the solution is

φ =
K

4π

{
log
[
(x− a)2 + (y − b)2

]
+ log

[
(x− a)2 + (y + b)2

]
+ log

[
(x+ a)2 + (y + b)2

]
+ log

[
(x+ a)2 + (y − b)2

]} (2.377)

The pressure is given by Bernoulli’s principle, ρ
2
v2 + P = P0. P0 is found by finding where v = 0

2π

K
∇φ = x̂

[
(x− a)

(x− a)2 + (y − b)2
+

(x− a)

(x− a)2 + (y + b)2
+

x+ a

(x+ a)2 + (y + b)2
+

x+ a

(x+ a)2 + (y − b)2

]
+ ŷ

[
(y − b)

(x− a)2 + (y − b)2
+

(y + b)

(x− a)2 + (y + b)2
+

y + b

(x+ a)2 + (y + b)2
+

y − b
(x+ a)2 + (y − b)2

]
(2.378)

2.34 Tides from Sun and Moon

Let M and m be the masses of the sun and moon, and R and r be their respective distances from
the earth. What is the ratio of the tides induced by these two bodies at the equator?

Solution:

The tides should be proportional to the force acting on them through gravity.

The force of gravity on some water mass mw will be given by (on the nearest side of the Earth)

|FS| = FS =
GMmw

R2
(2.379)

|FM | = FM =
Gmmw

r2
(2.380)

We can imagine the difference in effect due to the water being at the center of the Earth instead,
and how much force there would be on such a mass of water there.

|fS| = fS =
GMmw

(R +RE)2
(2.381)

|fM | = fM =
Gmmw

(r +RE)2
(2.382)
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Since the tide height should be proportional to the force, the tide height difference is proportional
to the difference between these two. Then, because RE � r, R, we can write

fS ≈
GMmw

R2 + 2RRE

≈ GMmw

R2

1

1 + 2RE
R

≈ GMmw

R2

(
1− 2RE

R

)
(2.383)

fM ≈
Gmmw

r2

(
1− 2RE

r

)
(2.384)

and thus the height difference will be

FS − fS ≈
GMmw

R2
− GMmw

R2

(
1− 2RE

R

)
≈ 2GMmWRE

R3
(2.385)

FM − fM ≈
Gmmw

r2
− Gmmw

r2

(
1− 2RE

r

)
≈ 2GmmWRE

r3
(2.386)

so that the sun/moon ratio will be given by

FS − fS
FM − fM

=
Mr3

mR3
(2.387)

Because r/R � 1 and M � m, we see that this ratio isn’t clearly anything. Based on this
estimate,

FS − fS
FM − fM

=
(1.99× 1030 kg)(3.58× 108 m)3

(7.35× 1022 kg)(1.5× 1011 m)3
≈ 0.37 (2.388)

So we see the moon is dominant, causing 1/1.37 ≈ 73% of the tide height.

2.35 Water Planet Self-Oscillation

Find the fundamental period of oscillation of an isolated mass of incompressible water, having the
radius of the Earth 6300 km and vibrating under its own gravitational attraction. Assume the
velocity flow is irrotational.

Solution:

Let’s assume that we perturb the sphere with a small perturbation of the form r ∼ δei(k·R−ωt).

We then have that the acceleration of some bit of water near the surface along this perturbation
is given by

ẍ =
GMW

(RE + r)2
∼ GMW

R2
E

(
1− r

RE

)
(2.389)

and so

r̈ = −GMW

R3
E

r (2.390)

−ω2δei(k·R−ωt) = −GMW

R3
E

δei(k·R−ωt) (2.391)

ω2 =
GMW

R3
E

(2.392)
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Then using MW = ρW
4
3
πR3

E and so

ω2 =
4

3
πGρW ≈

4

3
(3.14159)(6.67× 10−11 m3/kg s2)(1000 kg/m3) ≈ 2.79× 10−7 rad2/s2 (2.393)

ω ≈ 5.29× 10−4 rad/s (2.394)

ν =
ω

2π
≈ 8.41× 10−5 Hz (2.395)

This yields a period of about 11 887 s or about a seventh of a day.

If you were to carefully analyze this problem, which is apparently what the book desires, you have
to write out the entire potential energy due to the deformation in spherical harmonics and then
keep second order contributions from the perturbation (to keep first order contributions in the
equations of motion).

Thus, you’d write

U =
−1

2

∫
dV dV ′

Gρ(r)ρ(r′)

|r− r′)|
(2.396)

with ρ = ρ0 + δρ the density and ρ0 the homogeneous sphere of radius R density.

You write out all the terms, and use for incompressibility that∫ R+h

R

dΩdr r2 = 0 (2.397)

where h represents the perturbation in space, (and so everything beyond the sphere must average
out to zero since we have incompressible flow).

This can be translated into∫
dΩ

(R + h)3 −R3

3
=

∫
dΩ

(
R2h+Rh2

)
= 0 (2.398)

R

∫
dΩ h = −

∫
dΩ h2 (2.399)

One then notes that

1

|r− r′|
=

1

R

∑ 4π

2l + 1
Ylm(n̂)Y ∗lm(n̂′) (2.400)

Because of incompressibility the l = 0 mode only exists when other l modes does, and so is not
independent. We note l = 1 which is just a spatial displacement creates no change in gravitational
energy. Then use v = ∇φ with incompressibility to find the kinetic energy, form the Hamiltonian,
look at the coefficients and find

ω2
l =

8πρ0Gl(l − 1)

3(2l + 1)
(2.401)

ω2
2 =

16πρ0G

15
(2.402)

Note that our early, rougher estimate, is not wildly off (here l = 2 is the lowest mode of use,
[4/3− 16/15 = 4/15 ≈ 0.26])
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2.36 Time on Clock Between Reference Systems

The coordinate systems S1 and S2 move along the x-axis of a reference coordinate frame S, with
velocities v1 and v2 respectively, referred to S. The time measured in S for the hand of a clock in
S1 to go around once, is t. What is the time interval t2 measured in S2 for the hand to go around?

Solution:

In S1 the clock is stationary so that t is the proper time. We then need to find the velocity of S2

with respect to S1. For this, we require the rules for velocity addition in relativity.

We use (the difference in value between the S1 and S frame is velocity v1 and find what v2 is in
the S1 frame)

v′2 =
v2 − v1

1− v1v2
c2

(2.403)

This gives us a β′2 = v′2/c for the time dilation factor. So

t2 = γt =
1√

1−
(
v′2
c

)2
t =

[
1− (β2 − β1)2

(1− β1β2)2

]−1/2

t (2.404)

=

[
1− 2β1β2 + β2

1β
2
2 − β2

1 − β2
2 + 2β1β2

(1− β1β2)2

]−1/2

= (1− β1β2)
[
1 + β2

1β
2
2 − β2

1 − β2
2

]−1/2
t (2.405)

= (1− β1β2)
[
(1− β2

1)(1− β2)2
]−1/2

t (2.406)

= γ1γ2(1− β1β2)t (2.407)

with γi = (1− β2
i )
−1/2

and βi = vi/c.

2.37 Constant Acceleration Rocket Into Space

Solution:

A rocket is shot out from the earth into interstellar space. Except for a short time in the beginning,
the acceleration of the rocket, as measured by the passengers, is constant. The rocket has been
aimed at a star a fixed distance from the earth, and moves on a straight line. According to clocks
inside the rocket, how long will it take to get to the star? Denote the constant distance and
acceleration by D and a′ respectively.

Solution:

We start with the velocity addition rule for some velocity v, and have u = dx/dt in the Earth
frame and the u′ = dx′

dt′
in the frame going with velocity v at that particular time (corresponding
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to the rocket frame), and we have

u′ =
u− v
1− uv

c2

(2.408)

du′

dt
=

du
dt

(1− uv
c2

)−−du
dt

v
c2

(u− v)

(1− uv
c2

)2
=

du

dt

1− uv
c2

+ vu
c2
− v2

c2

(1− uv
c2

)2
(2.409)

du′

dt
=

du

dt

1− v2

c2

(1− uv
c2

)2
(2.410)

Further, we use u = v so that the above with β = v/c becomes

du′

dt
=

du

dt

1− β2

(1− β2)2
=

du

dt

1

1− β2
=

du

dt
γ2 (2.411)

Then use

cγt− βγx = ct′ (2.412)

−cβγt+ γx = x′ (2.413)

cγ(1− β2)t = cγγ−2t = ct′ − x′ (2.414)

c
dt

dt′
= cγ − γ

�
�
�dx′

dt′
(2.415)

and so

du′

dt
=

du′

dt′
dt′

dt
=

du′

dt′
γ−1 =

du

dt
γ2 (2.416)

du′

dt′
=

du

dt
γ3 (2.417)

Thus, write du′

dt′
= a′ and du

dt
= a as the accelerations in the rocket and Earth frame, respectively.

Thus, ∫
dt′ =

∫
1

γ
dt =

∫
1

γa

du

dt
dt =

∫
1

γa′γ−3
du =

1

a′

∫
du

1

1− u2/c2
(2.418)

Then we have

T ′ =

∫
dt′ =

c

2a′
ln

(
1 + vf/c

1− vf/c

)
=

c

a′
arctanh

(vf
c

)
(2.419)

with vf the final speed of the rocket as seen from Earth.

We can find vf via

D =

∫
u dt =

∫
u

a

du

dt
dt =

1

a′

∫
vγ3 dv =

c2

a′

 1√
1− v2

f/c
2
− 1

 (2.420)
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Thus

v2
f = c2 − c2

(1 +Da′/c2)2
(2.421)

and so

T ′ =
c

2a′
ln

1 +
√

1− 1
(1+Da′/c2)2

1−
√

1− 1
(1+Da′/c2)2

 =
c

a′
arctanh

(√
1− 1

(1 +Da′/c2)2

)
(2.422)

2.38 Relativistic Oscillator

A particle of rest mass m moves on the x-axis of a Galilean frame of reference and is attracted
to the origin O by a force (time rate of change of momentum) mω2x. It performs oscillations of
amplitude a. Express the period of this relativistic oscillator in terms of a definite integral, and
obtain an approximate value for this integral.

Solution:

We must have the force given by

d

dt

(
mγ

dx

dt

)
= −mω2x (2.423)

The period will pretty clearly be 4 times as long as the time it takes to go from x = 0 to x = a by
the symmetry of this situation.

We use

d

dt
(γv) = −ω2x (2.424)

d

dt
(γv) =

dγ

dt
v + γ

dv

dt
= v
−1(−2v/c2)γ3

2

dv

dt
+ γ

dv

dt
(2.425)

= (β2γ2 + 1)γ
dv

dt
=
β2 + 1− β2

1− β2
γ

dv

dt
= γ3 dv

dt
(2.426)

We can then use

vγ3 dv

dt
= c2γ

3

2

dv2/c2

dt
= −c

2γ3

2

d(1− v2/c2)

dt
= c2−γ3

2

dγ−2

dt
= c2γ

3

γ3

dγ

dt
= c2 dγ

dt
(2.427)

So we then have (define k = ω/c) (note γ = 1 at t = T/4 because then v = 0)∫
dt v

d(γv)

dt
= −

∫
dt v

ω2

c2
x (2.428)∫ t

T/4

dt
dγ

dt
= −

∫ x

a

dx k2x = −k2 (x2 − a2)

2
=
k2

2
(a2 − x2) (2.429)

γ − 1 = k2a
2 − x2

2
(2.430)
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1(
1 + k2(a2−x2)

2

)2 = 1− 1

c2

(
dx

dt

)2

(2.431)

dx

dt
= c

√√√√1− 1(
1 + k2(a2−x2)

2

)2 (2.432)

and so ∫ T/4

0

dt =
T

4
=

∫ a

0

dx

c
√

1− 1(
1+

k2(a2−x2)
2

)2 =
1

c

∫ a

0

dx√
1− 1(

1+
k2a2(1−x2

a2
)

2

)2

(2.433)

Let ξ = x/a and λ2 = k2a2 = ω2a2

c2
and we then have

T

4
=
a

c

∫ 1

0

dξ
1√

1− 1(
1+λ2

2
(1−ξ2)

)2 =
a

c

∫ 1

0

dξ
1 + λ2

2
(1− ξ2)√

λ2(1− ξ2) + λ4

4
(1− ξ2)2

(2.434)

=
a

c

∫ 1

0

dξ
1 + λ2

2
(1− ξ2)√

λ2(1− ξ2)
[
1 + λ2

4
(1− ξ2)

] =
1

ω

∫ 1

0

dξ
1 + λ2

2
(1− ξ2)√

(1− ξ2)
[
1 + λ2

4
(1− ξ2)

] (2.435)

If we assume λ� 1 then we can write the integrand as a power series,

1

ω

∫ 1

0

dξ
1 + λ2

2
(1− ξ2)√

(1− ξ2)
[
1 + λ2

4
(1− ξ2)

] =
1

ω

∫ 1

0

dξ

[
1√

1− ξ2
+ λ2

{√
1− ξ2

2
− 1

8

√
1− ξ2

}
+O(λ4)

]
(2.436)

=
1

ω

[
arcsin(ξ) + λ2 3

8

1

2

{
ξ
√

1− ξ2 + arcsin(ξ)
}]1

0

(2.437)

=
1

ω

[
π

2
+

3ω2a2

16c2

{π
2

}]
=

π

2ω
+

3ωπa2

32c2
+O

(
ω3a4

c4

)
(2.438)

so

T =
2π

ω
+

3ωπa2

8c2
+O

(
ω3a4

c4

)
=

2π

ω

[
1 +

3ω2

16c2
+O

(
ω4a4

c4

)]
(2.439)

Note that we could have used conservation of energy at the beginning and found v via

mγc2 +
mω2x2

2
= mc2 +

mω2a2

2
(2.440)

yielding the same v = dx/dt we found above.

2.39 Total Energy of Antiproton-Deuterium Reaction

Antiprotons are captured at rest in deuterium, giving rise to the reaction p̄ + D −→ n + π0 (In
this problem we ignore other possibilities). Determine the π0 total energy. The rest masses are
M(p̄) = 938.2 MeV, M(D) = 1875.5 MeV, M(n) = 939.5 MeV, and M(π0) = 135.0 MeV.
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Solution:

Let pp̄, pD, pn, and pπ be the four-vectors for p̄, D, n, and π0. By conservation of momentum, we
must have (c = 1 units)

pp̄ + pD = pn + pπ (2.441)

pp̄ + pD − pπ = pn (2.442)

mp̄ +mD = En + Eπ (2.443)

We have (assume that n and π0 have some momentum in the x direction)

pp̄ = (mp̄, 0, 0, 0)ᵀ (2.444)

pD = (mD, 0, 0, 0)ᵀ (2.445)

pn = (En, px, 0, 0)ᵀ (2.446)

pπ = (Eπ,−px, 0, 0)ᵀ (2.447)

We then find (use the square of a particle’s four vector is the mass of a particle, with m2 = mp̄+mD)

(mp̄ +mD + Eπ)2 − p2
x = m2

n (2.448)

(m2 − Eπ)2 = m2
n + p2

x (2.449)

(m2 − Eπ)2 − p2
x −m2

n = 0 (2.450)

We can then use that p2
π = E2

π − p2
x = m2

π and write

(m2 − Eπ)2 − E2
π +m2

π −m2
n = 0 (2.451)

−2Eπm2 +m2
2 +m2

π −m2
n = 0 (2.452)

Eπ =
m2
π +m2

2 −m2
n

2m2

(2.453)

Alternatively, (and less elegantly), use conservation of energy with the original four-vector’s squared
We also must have m2

a ≡ m2
2 −m2

n −m2
π

m2
2 = m2

n +m2
π + 2EnEπ + 2p2

x (2.454)

m2
a

2
= (m2 − Eπ)Eπ + p2

x (2.455)

−p2
x = (m2 − Eπ)Eπ −

m2
a

2
(2.456)

Thus, substituting above, (use mp = mp̄)

(m2 − Eπ)2 +m2Eπ − E2
π −

m2
2 −m2

n −m2
π

2
−m2

n = 0 (2.457)

�
�E2
π − 2Eπm2 +m2

2 +m2Eπ −��E
2
π −

m2
2 −m2

n −m2
π

2
−m2

n = 0 (2.458)

−Eπm2 +
m2

2 −m2
n +m2

π

2
= 0 (2.459)

(2.460)
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100 Positron and Electron Pair Creation

yielding once again

Eπ =
m2

2 +m2
π −m2

n

2m2

(2.461)

Or, putting units back in, we find

Eπ =
(938.2 + 1875.5)2 + (135.0)2 − (939.5)2

2(938.2 + 1875.5)
× 1 Mev (2.462)

= 1253 MeV = 1.253 GeV (2.463)

2.40 Positron and Electron Pair Creation

A positron (Energy E+, momentum p+) and an electron (Energy E−, momentum p−) are produced
in a pair-creation process. (a) What is the velocity of the frame in which the pair has zero
momentum (barycentric frame)? (b) Deduce the energy either particle has in this frame, and (c)
give an expression for the magnitude of the relative velocity between the particles, i.e., the velocity
of one particle as seen by an observer attached to the other.

Solution:

(a)

We use the Lorentz transformation for momentum is given by (for change of velocity v, with v’s
direction being parallel)

p′‖ = γ(p‖ − Ev) (2.464)

p′⊥ = p⊥ (2.465)

So p′ = 0 when p‖ = Ev and p⊥ = 0. Thus when

v = p/E (2.466)

where E is the total energy and p the total momentum.

Thus this is the velocity of the frame in which the pair has zero momentum.

v =
p+ + p−
E+ + E−

(2.467)

(b)

Each must have equal momentum and energy. The square of the four vectors must be equal, as
well, so

4E ′2 = (E+ + E−)2 − (p+ + p−)2 = (E+ + E−)2 − (E+ + E−)2v2 (2.468)

= (E+ + E−)2(1− v2) =
(E+ + E−)2

γ2
(2.469)
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where γ = 1/
√

1− v2, or

E ′ =
E+ + E−

2γ
(2.470)

E ′ =

√
(E+ + E−)2 − (p+ + p−)2

2
(2.471)

(c)

From the barycentric frame, we can figure out what a velocity in the opposite direction would look
like to a mover in the other frame. That is, look at what velocity −v looks like in the primed
frame which is moving at velocity v relative to the unprimed frame.

We have u′ is the velocity of the other particle in the frame of one particle.

u′ = vrel =
v + v

1 + v2

c2

=
2v

1 + v2

c2

=
2|p+ + p−|

(E+ + E−) +
|p++p−|2
c2(E++E−)

(2.472)

The book claims that I = (p+ − p−)2 − (E+ − E−)2 is in an invariant and then uses that for the

electron rest frame p− = 0, E− = m and E+ = m/
√

1− v2
rel and solves for vrel.

vrel =

√
1− 1

(1 + I
2m2 )2

(2.473)

I am unaware of anywhere that proves that I is invariant. In fact, it would clearly be zero in the
center of momentum frame, so is not invariant. If instead, they meant I = I = (p+ +p−)2− (E+ +
E−)2, then with their assumptions [let u = vrel for convenience and γ2 = 1/(1− u2)]

I = m2γ2u2 −m2(γ + 1)2 = m2
[
γ2u2 − γ2 − 2γ − 1

]
= m2

[
γ2(u2 − 1)− 2γ − 1

]
(2.474)

= m2
[
−γ2γ−2 − 2γ − 1

]
= −2m2(γ + 1) (2.475)

and so then one would actually find

−I
2m2

− 1 = γ =
1√

1− u2
(2.476)

1− u2 =
1

(1 + I
2m2 )2

(2.477)

u =

√
1− 1

(1 + I
2m2 )2

(2.478)

as they desired.

I know that my solution above must be correct, as well, since in the non-relativistic limit we must
find vrel = 2v, and for the ultrarelativistic limit we should find u′ = c as we do above.

From I = (v2 − 1)(E+ − E−)2 = −γ−2(E+ + E−)2 = −γ−24γ2E ′2 = −4E ′2 we see that

u =

√
−|I|
m2 + I2

4m4

1− |I|
2m2

=

√
|I|
m2

√
|I|

4m2 − 1

1− |I|
2m

=
2E ′

m

√
E′2

m2 − 1

1− E′

m

(2.479)
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102 Relativistic Electron in Capacitor

2.41 Relativistic Electron in Capacitor

A fast (extremely relativistic) electron enters a capacitor at an angle α as shown in the sketch. V
is the voltage across the capacitor and d is the distance between plates. Give an equation for the
path of the electron in the capacitor.

Solution:

The x-direction velocity will be about c cosα which is unaffected by the Capacitor potential. The
y-direction velocity will then obviously be c sinα. The potential across the capacitor is V ,and so
the potential at some distance y above the capacitor is given by yV/d. Let’s look at this in the
frame where the capacitor is at rest. If we assume γ is some constant (so basically unchanged)
then

γme
dvy
dt

= −qeV/d (2.480)

vy =
−V qe
dmeγ

t+ v0y (2.481)

y = − qeV

dmeγ
t2 + v0yt (2.482)

while x is

x = v0xt (2.483)

We can see that the larger γ, the less the correction to y makes.

If we wish to be more precise we can use

d

dt
(px) =

d

dt
(p cos θ) = 0 (2.484)

d

dt
(py) =

d

dt
(p sin θ) = 0 (2.485)

and can use p cos θ = p0 cosα which becomes a constant of motion

p cos θ = p0 cosα = C1p sin θ = p tan θ cos θ = C1 tan θ = C1
dy

dx
(2.486)

We can use that d
dt
≈ c d

ds
where ds =

√
dx+ dy is the arclength of the path. Then we have

d

dt
(p sin θ) = C1c

d

ds

(
dy

dx

)
=
−qeV
d

(2.487)

We then have to use

df

ds
=

df

dx

dx

ds
+

df

dy

dy

dx
=

df

dx

1√
1 +

(
dy
dx

)2
+

df

dy

1√
1 +

(
dx
dy

)2
(2.488)
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because f = dy/dx then df/dy = 0 so

d2y

dx2
=
−qeV
dcC1

√
1 +

(
dy

dx

)2

(2.489)

This is a nonlinear differential equation. It happens to have a solution, of

y = A− dcC1

qeV
cosh

(
qeV

dcC1

[x− a]

)
(2.490)

one can find the constants via y(0) = 0 and y′(0) = tanα.

2.42 Give Probability Cone for Decaying Meson

The neutral π0 meson, of rest mass M , decays into two photons. The angular distribution of these
γ-rays is isotropic in the rest system of the π0. If in the laboratory the π0 travels with velocity v
in the z-direction, what is the probability P (θ) dΩ that a photon is emitted in the solid angle dΩ
about θ, when the meson decays in flight? Here θ is the angle as measured in the laboratory with
respect to the z-axis, and v may be comparable to the speed of light.

Solution:

We use the Lorentz transformations for the momentum-energy 4-vector and see that for a photon
emitted that (the primed frame is the rest frame of the pion and the unprimed frame is the
laboratory frame) using E = p for the photon (v/c = β)

p′z = γpz − βγp′ (2.491)

p′x = px (2.492)

p′y = py (2.493)

p′ = γp− βγpz (2.494)

We can then reformulate these into angles using
√
p2
x + p2

y = p sin θ and pz = p cos θ so that

p′ cos θ′ = γp(cos θ − β) (2.495)

p′ sin θ′ = p sin θ (2.496)

p′ = γp(1− β cos θ) (2.497)

sin θ′ =
p sin θ

p′
=

sin θ

γ(1− β cos θ)
(2.498)

Therefore, we find

tan θ′ =
sin θ

γ(cos θ − β)
(2.499)

cos θ′ =
γ(cos θ − β)

sin θ
sin θ′ =

γ(cos θ − β)

sin θ

sin θ

γ(1− β cos θ)
=

cos θ − β
1− β cos θ

(2.500)
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104 Cosmic Ray Interactions

We can then use that P (θ′) = 1
4π

because of it being uniform and that the probability is conserved
so that P (θ′) dΩ′ = P (θ) dΩ

P (θ) dΩ = − 1

4π
d cos θ′ dϕ′ = − 1

4π

d cos θ′

d cos θ
d cos θ

dϕ′

dϕ
dϕ (2.501)

We clearly have since ϕ′ is independent of z′ that dϕ′/dϕ = 1 and from above we have

d cos θ′

d cos θ
=

du

dw
=

d

dw

(
w − β
1− βw

)
=

(1− βw)− (w − β)(−β)

(1− βw)2
(2.502)

=
1− β2

(1− βw)2
=

1− β2

(1− β cos θ)2
(2.503)

Thus

P (θ′) dΩ′ = − 1

4π

1− β2

(1− β cos θ)2
d cos θ dϕ =

1− β2

4π(1− β cos θ)2
dΩ (2.504)

so that

P (θ) =
1− β2

4π(1− β cos θ)2
=

1

4πγ2(1− β cos θ)2
(2.505)

As a check, for θ = π/2 and γ = 1 we should simply get 1/4π. Also if γ � 1 then P (π/2) � 1
because the velocity is near c in the z direction and so it become difficult for the photons to
conserve momentum and have a large excursion from the z axis (because they can’t exceed speed
c and most of the speed is along the z axis).

P (π/2) =
1

4πγ2
(2.506)

which corresponds with my intuition.

2.43 Cosmic Ray Interactions

(a) If neutrons from a cosmic-ray interaction one light-year from the earth were to reach here with
a probability of 1/e or greater, what must their minimum energy be? (b) If they then decay, what
is the maximum angle to the flight path at which their decay electrons could be produced? (c)
What is the maximum angle for the decay neutrinos? (d) At the angle calculated in (c), what is
the maximum energy of the neutrino?

Solution:

(a)

Neutrons have a free decay half-life of 10.3 min = 618 s. Thus, the time for free neutrons to have
a 1/e probability is

τ =
t1/2
ln 2
≈ 891.6 s (2.507)
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We see then that the time dilation must be given by

γ = t/t′ (2.508)

where t is the lab-time and t′ is the time in the frame of the free neutron. For 1/e we require t′ = τ
from above. The t must be t = d/v = d/(βc) where d is one light-year, so that

γβ =
d

ct′
≡ α (2.509)

γ

√
1− 1

γ2
= α (2.510)

γ2 − 1 = α2 (2.511)

γ2 = 1 + α2 (2.512)

γ =
√

1 + α2 (2.513)

Then we find the energy via E = mγ So

γ =

√
1 +

d

ct′
=

√
1 +

(
1 yr

891.6 s

)2

≈

√
1 +

(
π × 107

891.6

)2

≈
√

1 + 1.242× 109 ≈ 35 240 (2.514)

Thus, using that the neutron mass is 939.5 MeV/c2 we get

E = 35 240(939.5 MeV) ≈ 3.310× 107 MeV = 33 310 GeV = 33.310 TeV (2.515)

(b)

The neutron will decay into a proton, an electron, and a neutrino.

Thus using four vectors in the earth frame, we see we have

pn = pe + pν (2.516)

pn = (En, p, 0, 0) (2.517)

pe = (Ee, pex, pey, 0) (2.518)

pν = (Eν , pνx,−pey, 0) (2.519)

We then must have

pn − pe = pν (2.520)

p2
n + p2

e − 2pn · pe = p2
ν (2.521)

m2
n +m2

e − 2(EnEe − pn · pe) = m2
ν (2.522)

pn · pe = EnEe +
m2
ν −m2

n −m2
e

2
(2.523)

|pn||pe| cos θ = EnEe +
m2
ν −m2

n −m2
e

2
(2.524)

cos θ =
EnEe
|pn||pe|

+
m2
ν −m2

n −m2
e

2|pn||pe|
(2.525)
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106 Special Relativistic Perihelion Precession

2.44 Special Relativistic Perihelion Precession

A precession of the perihelion of planetary trajectories has been derived from the general theory
of relativity. However, even the special theory of relativity predicts such an effect because of the
dependence of inertial mass on velocity. Derive a formula for the special-relativistic precession for
a planet of given angular momentum L, rest mass m, and energy E, moving in the gravitational
potential of the sun. [Hint. Use polar coordinates u = 1/r and θ, and find a differential equation
involving u and θ, but not involving time explicitly].

Solution:

2.45 Balloon Accelerates in Space

A helium-filled balloon floats inside a closed container filled with air at STP in interstellar space.
The container accelerates in a given direction, with acceleration equal to that due to gravity at
the surface of the earth. Which way does the balloon move relative to the acceleration.

Solution:

DRAFT:Graduate Problems in Physics Notes
January 8, 2018

c©K. J. Bunkers


	Contents
	Mathematical Physics
	Strange Birth Control
	Painting Cubes/Dice
	Painting an Octahedron
	Card Dealing
	Probability Process
	Star Distribution
	Eigenvalues and Eigenvectors
	Trace and Square Trace
	Pauli Matrices
	Symmetric Second Rank Tensor
	Residues of Simple Functions
	Integral 1
	Integral 2
	Integral 3
	Fourier Integral
	Laplace Transform
	Integral 4
	Integral 5
	Integral 6
	Gamma Function
	Integral 7
	Integral 8
	Evaluate Series Through Contour Integration
	Riemann Surface Analytic Surface
	Integral 9
	Integral 10
	Summation of Infinite Series
	Hermite Generating Function
	Legendre Generating Function
	Integral Formulation of Bessel Function
	Laplace Equation on a Plane
	Integral 11
	Toroidal Surface
	Volume of 4D Sphere
	Concentration of Air in a Pipe
	Neutron Density in Reactor
	Neutron Flux

	Mechanics
	Stokes's Law
	Dimensional Analysis Explosion
	Satellite Circular Orbit
	Mass on a String around a Cylinder
	Lawn Sprayer
	Constraining Surface
	Equilateral Mass Triangle
	Circular Orbit Central Potential
	Collision After Circular Orbits
	Moon Jump
	Force on Balance Beam
	Three Cylinders Minimum Angle
	Pull on a Yo-Yo
	Dog Walks in Horizontal Circular Disk
	Dust Layer
	Gyrocompass
	Sphere Surface Vibrating
	Rigid Sphere Normal Modes
	Bar on Springs
	Particle on Uniform String
	Membrane with Surface Tension
	Watch Moved to High Altitude
	Release Mass on String
	Train Into a Spring
	Cylinder in Fluid
	Surface Tension Between Loops
	Vertical Strut
	Rectangular Beam
	Thin Uniform Chimney
	Free Surface of Liquid
	Hangar Door Force
	Gravity Waves in Air
	Pressure On Two Perpendicular Walls with Incompressible Fluid
	Tides from Sun and Moon
	Water Planet Self-Oscillation
	Time on Clock Between Reference Systems
	Constant Acceleration Rocket Into Space
	Relativistic Oscillator
	Total Energy of Antiproton-Deuterium Reaction
	Positron and Electron Pair Creation
	Relativistic Electron in Capacitor
	Give Probability Cone for Decaying Meson
	Cosmic Ray Interactions
	Special Relativistic Perihelion Precession
	Balloon Accelerates in Space


